Volume 21, Issue 2 (JIAEEE Vol.21 No.2 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(2): 61-73 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalooei Khozani A, Rahimi M. Reactive Power Sharing in Parallel Inverters and Stability Improvement of Parallel Inverters in AC Microgrid Comprising Active Loads. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :61-73
URL: http://jiaeee.com/article-1-1559-en.html
Department of Electrical Engineering, University of Kashan
Abstract:   (705 Views)
The system under study in this paper is an AC microgrid, consisting of parallel inverters and feeding an independent load. This paper includes two main parts. In the first part, the control method based on the conventional droop control method is modified to achieve accurate reactive power sharing between parallel inverters even under unequal transmission lines impedances. Then, in the second part, according to the widely use of active loads in existing microgrids, the response of the AC microgrid in presence of active loads is investigated, and effects of the factors such as the bandwidth of the DC bus voltage control loop of the active load and amount of the active load power on the system stability are studied. Next, the stability of the whole system is improved by modifying the control loops of parallel inverters on the source-side. At the end, simulation results are given in the Matlab-Simulink enviroment to evaluate the AC microgrid responses.
Full-Text [PDF 1660 kb]   (45 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/01/17 | Accepted: 2023/11/2 | Published: 2024/06/24

References
1. [1] H. Cai, R. Zhao and H. Yang, "Study on Ideal Operation Status of Parallel Inverters", in IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2964-2969, Nov. 2008. [DOI:10.1109/TPEL.2008.2003358]
2. [2] R. S. Kushwah and G. R. Walke, "Parallel Operation of Inverters with Droop Control of Voltage and Frequency", 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, pp. 1-5, 2018. [DOI:10.1109/ICSCET.2018.8537386]
3. [3] Q. Zhong and Y. Zeng, "Universal Droop Control of Inverters with Different Types of Output Impedance", in IEEE Access, vol. 4, pp. 702-712, 2016. [DOI:10.1109/ACCESS.2016.2526616]
4. [4] J. M. Guerrero, J. Matas, L. Garcia de Vicuna, M. Castilla and J. Miret, "Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance", in IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 994-1004, April 2007. [DOI:10.1109/TIE.2007.892621]
5. [5] D. C. Raj and D. N. Gaonkar, "Frequency and voltage droop control of parallel inverters in microgrid", 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, pp. 407-411, 2016. [DOI:10.1109/CIEC.2016.7513771] [PMID] []
6. [6] C. Dou, Z. Zhang, D. Yue and M. Song, "Improved Droop Control Based on Virtual Impedance and Virtual Power Source in Low-Voltage Microgrid", in IET Generation, Transmission & Distribution, vol. 11, no. 4, pp. 1046-1054, 2017. [DOI:10.1049/iet-gtd.2016.1492]
7. [7] L. Zheng, C. Zhuang, J. Zhang and X. Du, "An Enhanced Droop Control Scheme for Islanded Microgrids", International Journal of Control and Automation, vol. 8, no. 4, pp. 63-74, 2015. [DOI:10.14257/ijca.2015.8.4.08]
8. [8] S. Zhang et al., "An Enhanced Droop Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids", 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, pp. 2352-2356, 2019. [DOI:10.1109/ISGT-Asia.2019.8881692]
9. [9] X. Bai, H. Miao and C. Zeng, "Improved Droop Control Strategy for Reactive Power Sharing of Parallel Inverters in Low-Voltage Microgrid", 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, pp. 2538-2543, 2019. [DOI:10.1109/ISGT-Asia.2019.8881812] [PMID] []
10. [10] L. Lei, M. A. Elgendy, N. Wade and S. Ethni, "Power Sharing Between Parallel Inverters by Using Droop Control with a Secondary Control Loop", 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi'an, China, pp. 653-658, 2019. [DOI:10.1109/PEDG.2019.8807661] [PMID]
11. [11] B. Wang, S. Liu and Y. Zhang, "Reactive power sharing control based on voltage compensation strategy in microgrid", 2017 36th Chinese Control Conference (CCC), Dalian, pp. 10745-10750, 2017. [DOI:10.23919/ChiCC.2017.8029069]
12. [12] J. M. Guerrero, Luis Garcia de Vicuna, J. Matas, M. Castilla and J. Miret, "Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control", in IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1126-1135, Aug. 2005. [DOI:10.1109/TIE.2005.851634]
13. [13] Gu. Herong, W. Deyu, Sh. Hong, Z. Wei and G. Xiao-Qiang, "New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept", The Scientific World Journal, vol. 2013, 2013. [DOI:10.1155/2013/816525] [PMID] []
14. [14] S. Y. Altahir, Xiangwu Yan and Xinxin Liu, "A power sharing method for inverters in microgrid based on the virtual power and virtual impedance control", 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, pp. 151-156, 2017. [DOI:10.1109/CPE.2017.7915161]
15. [15] R. AN, Z. LIU, J. LIU and S. WANG, "A Communication-independent Reactive Power Sharing Scheme with Adaptive Virtual Impedance for Parallel Connected Inverters", 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, pp. 3692-3697, 2018. [DOI:10.23919/IPEC.2018.8507425] [PMID]
16. [16] R. Zhao, X. He, H. Xin, Z. Wang and K. P. Wong, "A decentralized and hierarchical reactive power sharing control strategy for DGs parallel operation in an islanded microgrid", 10th International Conference on Advances in Power System Control, Operation & Management (APSCOM 2015), Hong Kong, pp. 1-6, 2015. [DOI:10.1049/ic.2015.0254] []
17. ]17[ بابایی، محمدجواد. رضوانی، محمد. نوری شیرازی، عبدالرضا. یوسفی، برزو. "کنترل متوسط‌گیری ثانویه توزیع‌شده زمان محدود برای تنظیم ولتاژ و تقسیم توان ریز شبکه‌های AC"، نشریه مهندسی برق و الکترونیک ایران، سال بیستم، شماره چهارم، زمستان 1402.
18. ]18[ لرزاده، ایمان. عسکریان ابیانه، حسین. ثواقبی، مهدی. "کنترل سلسله مراتبی برای تسهيم دقيق توان راکتيو و جريان های هارمونيکی در ريزشبکه های جزيره ای براساس کنترل جريان چرخشی لحظه‫ای"، نشریه مهندسی برق و الکترونیک ایران، سال سیزدهم، شماره سوم، پاییز 1395.‬‬‬‬‬‬‬‬‬‬‬
19. [19] J. Chen and J. Chen, "Stability Analysis and Parameters Optimization of Islanded Microgrid with Both Ideal and Dynamic Constant Power Loads", in IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3263-3274, April 2018. [DOI:10.1109/TIE.2017.2756588]
20. [20] N. Bottrell and T. C. Green, "Modeling microgrids with active loads", 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), Kyoto, pp. 1-8, 2012. [DOI:10.1109/COMPEL.2012.6251748]
21. [21] N. Bottrell, M. Prodanovic and T. C. Green, "Dynamic Stability of a Microgrid with an Active Load", in IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5107-5119, Nov. 2013. [DOI:10.1109/TPEL.2013.2241455]
22. [22] S. Rezaee, M. Moallem, J. Wang and A. A. A. Radwan, "Dynamic Modeling and Stability Analysis of Converter-based Three-phase AC Microgrids with Active Loads", 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, pp. 81-86, 2019. [DOI:10.1109/ISIE.2019.8781370]
23. [23] D. P. Ariyasinghe and D. M. Vilathgamuwa, "Stability analysis of microgrids with constant power loads", 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, pp. 279-284, 2008. [DOI:10.1109/ICSET.2008.4747017]
24. [24] M. A. Hassan, "Dynamic Stability of an Autonomous Microgrid Considering Active Load Impact with a New Dedicated Synchronization Scheme", in IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4994-5005, Sept. [DOI:10.1109/TPWRS.2018.2798160]
25. [25] G. Ding, S. Zhang, Qingzhi Jian, F. Gao and Xingong Cheng, "Coordinate control of distributed generation and active power electronics loads in islanding microgrid", 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, pp. 1581-1585, 2017. [DOI:10.1109/IFEEC.2017.7992282]
26. [26] T. L. Vandoorn, B. Renders, L. Degroote, B. Meersman and L. Vandevelde, "Active Load Control in Islanded Microgrids Based on the Grid Voltage", in IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 139-151, March 2011. [DOI:10.1109/TSG.2010.2090911]
27. [27] M. AL-Nussairi, R. Bayindir, P. Sanjeevikumar, L. Mihet-Popa and S. Pierluigi, "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques", Energies 10, no. 10: 1656, 2017. [DOI:10.3390/en10101656]
28. [28] M. Céspedes, T. Beechner, L. Xing and J. Sun, "Stabilization of constant-power loads by passive impedance damping", 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, pp. 2174-2180, 2010. [DOI:10.1109/APEC.2010.5433538]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb