دوره 20، شماره 4 - ( مجله مهندسی برق و الکترونیک ایران - جلد 20 شماره 4 1402 )                   جلد 20 شماره 4 صفحات 45-33 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fadaeian T, Ghoreishy H, Gholamian S. A Generalized Control Strategy Based on Circuit-Level Decoupling Concept for Vienna Rectifier under Grid Unbalance. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :33-45
URL: http://jiaeee.com/article-1-1548-fa.html
فدائیان طاهره، قریشی هدی، غلامیان سیداصغر. استراتژی کنترلی تعمیم‌یافته مبتنی بر مفهوم تجزیه سطح مدار برای یکسوساز ویینا تحت نامتعادلی شبکه. نشریه مهندسی برق و الکترونیک ایران. 1402; 20 (4) :33-45

URL: http://jiaeee.com/article-1-1548-fa.html


دانشگاه صنعتی نوشیروانی بابل
چکیده:   (1338 مشاهده)
در این مقاله، یک روش مدولاسیون ناپیوسته تعمیم‌یافته مبتنی بر مفهوم تجزیه سطح مدار (GCLD-DPWM) در شرایط نامتعادلی شبکه برای یکسوساز ویینا پیشنهاد گردیده است. روش متعارف CLD-DPWM دارای مزایائی نظیر کاهش تلفات کلیدزنی، کاهش پیچیدگی استراتژی مدولاسیون، سرعت پردازش بالا و قابلیت خودمتعادل‌سازی ولتاژ خازن‌های باس DC می‌باشد. در روش پیشنهادی با معرفی یک پارامتر کنترلی جدید، سیگنال‌های مرجع مدولاسیون متناسب با میزان نامتعادلی شبکه تغییر می‌یابند. این امر بدون تحت تاثیر قرار دادن عملکرد مدار در دستیابی به مزایای روش متعارف، انعطاف‌پذیری سیستم را نیز به طرز قابل‌ملاحظه‌ای افزایش خواهد داد. بدین ترتیب که با تنظیم پارامتر مربوطه هدف کنترلی موردنظر که در این مقاله دریافت جریان سینوسی و متعادل از شبکه نامتعادل است، حاصل می‌شود. روش GCLD-DPWM جهت ارزیابی و اعتبارسنجی به یک یکسوساز ویینا تحت شبکه با نامتعادلی 20 و 30 درصد اعمال گردیده است. به‌علاوه، پاسخ دینامیکی سیستم تحت تغییرات نامتعادلی ولتاژ ورودی نیز رائه شده است. نتایج شبیه‌سازی نشان‌دهنده کارائی روش کنترلی پیشنهادی از نقطه نظر مزایای فوق‌الذکر می‌باشد.
متن کامل [PDF 1183 kb]   (855 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: قدرت
دریافت: 1401/10/14 | پذیرش: 1402/1/19 | انتشار: 1402/5/15

فهرست منابع
1. [1] Tahami, F., Abedi, M.R., "Analysis and Design of Predictive Control for Sheppard-Taylor Based PFC Rectifier", Journal of Iranian Association of Electrical and Electronics Engineers, Vol. 8, no. 1, pp. 21-29, 2012.
2. [2] Abdollahi, R., Abdolhosseini, M., "A Novel 36-pulse rectifier with low kVA rate to reduce harmonic input current distortion", Journal of Iranian Association of Electrical and Electronics Engineers, Vol. 19, no. 4, pp. 81-91, 2022. [DOI:10.52547/jiaeee.19.4.81]
3. [3] Obdan, H., Ozkilic, M.C., "Performance comparison of 2- level and 3-level converters in a wind energy conversion system", Rev. Roum. Sci.Techn. -Électrotechn. et Énerg., Vol. 61, 4, pp. 388-393 2016.
4. [4] Aiello, G., Cacciato, M., Scarcella, G., Gennaro, F., Aiello, N., "Real-time emulation of a three-phase Vienna rectifier with dc voltage control and power factor correction", Electrical Engineering, pp.1-10, 2019. [DOI:10.1007/s00202-019-00776-y]
5. [5] Molligoda, D., Ceballos, S., Pou, J., Satpathi, K., Sasongko, F., Gajanayake, C. and Gupta, A., "Hybrid Modulation Strategy for the Vienna Rectifier", IEEE Transactions on Power Electronics, Vol. 37, no. 2, pp.1283-1295, 2021. [DOI:10.1109/TPEL.2021.3103766]
6. [6] Hang, L., Zhang, H., Liu, S., Xie, X., Zhao, C., "A novel control strategy based on natural frame for Vienna-type rectifier under light unbalanced-grid conditions", IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1353-1362, 2014. [DOI:10.1109/TIE.2014.2364792]
7. [7] Lyu, J., Shi, Z., Shen, S. and Lyu, X., "A novel suppression method for input current distortion of the Vienna rectifier under unbalanced grid conditions", Energy Reports, Vol. 8, pp.327-343, 2022. [DOI:10.1016/j.egyr.2022.10.295]
8. [8] Xu, Z., Ren, X., Zheng, Z., Zhang, Z., Chen, Q., Hao, Z., "A Quadrature Signal Based Control Strategy for Vienna Rectifier Under Unbalanced Aircraft Grids", IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022. [DOI:10.1109/JESTPE.2022.3162948]
9. [9] Hang, L., Li, B., Zhang, M., Wang, Y., Tolbert, L. M., "Equivalence of SVM and carrier-based PWM in three-phase/wire/level Vienna rectifier and capability of unbalanced-load control", IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 20-28, 2013. [DOI:10.1109/TIE.2013.2240637]
10. [10] Lee, J.-S., Lee, K.-B., "A novel carrier-based PWM method for Vienna rectifier with a variable power factor", IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 3-12, 2015. [DOI:10.1109/TIE.2015.2464293]
11. [11] Yao, W., Lv, Z., Zhang, M., Lin, Z., "A novel SVPWM scheme for Vienna rectifier without current distortion at current zero-crossing point", IEEE 23rd International Symposium on Industrial Electronics (ISIE),: IEEE, pp. 2349-2353, 2014.
12. [12] Ma, H., Xie, Y., Sun, B., Mo, L., "Modeling and direct power control method of Vienna rectifiers using the sliding mode control approach", Journal of Power Electronics, vol. 15, no. 1, pp. 190-201, 2015. [DOI:10.6113/JPE.2015.15.1.190]
13. [13] Liu, C., Xing, X., Du, C., Zhang, B., Zhang, C., Blaabjerg, F., "An Improved Model Predictive Control Method Using Optimized Voltage Vectors for Vienna Rectifier With Fixed Switching Frequency", IEEE Transactions on Power Electronics, Vol. 38, no. 1, pp.358-371, 2022. [DOI:10.1109/TPEL.2022.3205946]
14. [14] Zhang, Q., Liu, F., Jiang, W., Wang, J., Yue, Y., "A Novel Modulation Method Based on Model Prediction Control with Significantly Reduced Switching Loss and Current Zero-Crossing Distortion for Vienna Rectifier", IEEE Transactions on Power Electronics, Vol. 38, no. 2, pp.1650-1661, 2022. [DOI:10.1109/TPEL.2022.3213795]
15. [15] Bagheri, A., Alizadeh, M., khodabakhshi, N., "The Capacitor Voltage Balancing for a four-switch three-phase rectifier using a space vector modulation technique and auxiliary signal design", Journal of Iranian Association of Electrical and Electronics Engineers, Vol. 17, no. 2, pp.1-12, 2020.
16. [16] Xie, S., Sun, Y., Su, M., Lin, J., Guang, Q., "Optimal switching sequence model predictive control for three-phase Vienna rectifiers", IET Electric Power Applications, Vol. 12, no. 7, pp. 1006-1013, 2018. [DOI:10.1049/iet-epa.2018.0033]
17. [17] Zhang, M., Hang, L., Yao, W., Lu, Z., Tolbert, L. M., "A novel strategy for three-phase/switch/level (Vienna) rectifier under severe unbalanced grids", IEEE Transactions on Industrial Electronics, Vol. 60, no. 10, pp. 4243-4252, 2012. [DOI:10.1109/TIE.2012.2217721]
18. [18] Liu, S., Hang, L., Tolbert, L. M., Lu, Z., "A novel strategy for vienna-type rectifier with light unbalanced input voltage", in 2013 IEEE Energy Conversion Congress and Exposition, IEEE, pp. 4253-4257, 2013. [DOI:10.1109/ECCE.2013.6647268]
19. [19] Ahrabi, R. R., Ajami, A., "Controlling of a three phase Vienna rectifier under utility side distortion based on sliding mode controller", in The 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015): IEEE, pp. 334-339, 2015. [DOI:10.1109/PEDSTC.2015.7093297]
20. [20] Hang, L., Zhang, M., "Constant power control-based strategy for Vienna-type rectifiers to expand operating area under severe unbalanced grid", IET Power Electronics, Vol. 7, no. 1, pp. 41-49, 2014. [DOI:10.1049/iet-pel.2012.0450]
21. [21] Feng, X., Sun, Y., Cui, X., Ma, W., Wang, Y., "A compound control strategy of three‐phase Vienna rectifier under unbalanced grid voltage", IET Power Electronics, Vol. 14, no. 16, pp.2574-2584, 2021. [DOI:10.1049/pel2.12202]
22. [22] Zhou, Y., Zhang, A., Zhang, H., Huang, J., Yang, W., Zhang, L., "Proportional integral resonance based sliding mode control of VIENNA rectifier for charging station of tramcar under unbalanced power supply", International Transactions on Electrical Energy Systems, Vol. 30, no. 10, p.e12518, 2020. [DOI:10.1002/2050-7038.12518]
23. [23] Wang, J., Ji, S., Liu, S., Jiang, H., Jiang, W., "A discontinuous PWM strategy to control neutral point voltage for Vienna rectifier with improved PWM sequence" IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021. [DOI:10.1109/JESTPE.2021.3120540]
24. [24] Song, L., Duan, S., Li, R., Liu, X., Ji, B., "A Hybrid Discontinuous PWM Strategy for Current Ripple and Neutral-Point Fluctuation Reduction of Parallel Vienna Rectifier", IEEE Transactions on Industrial Electronics, Vol. 70, no. 3, pp.2531-2542, 2022. [DOI:10.1109/TIE.2022.3170618]
25. [25] He, Z., Ding, H., Chen, Z., Xun, Z., Liu, C., Zhang, D., Shao, J., "A novel method to evaluate the influence of Vienna rectifier neutral-point voltage fluctuation on input current quality", IEEE Transactions on Power Electronics, Vol. 36, no. 7, pp.8347-8358, 2020. [DOI:10.1109/TPEL.2020.3042251]
26. [26] Zou, Y., Xing, Y., Zhang, L., Zheng, Z., Liu, X., Hu, H., Wang, T., Wang, Y., "Dynamic-space-vector discontinuous PWM for three-phase vienna rectifiers with unbalanced neutral-point voltage", IEEE Transactions on Power Electronics, Vol. 36, no. 8, pp.9015-9026, 2021. [DOI:10.1109/TPEL.2021.3057120]
27. [27] Huang, H.H., Ding, C., Li, E.W., "Modified DPWM method for Vienna rectifier considering current harmonic distortions reduction and neutral point potential balance", IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, no. 8, pp.1205-1212, 2020. [DOI:10.1002/tee.23183]
28. [28] Lee, J.S., Lee, K.B., "Carrier-based discontinuous PWM method for Vienna rectifiers", IEEE Transactions on Power Electronics, Vol. 30, no. 6, pp. 2896-2900, 2014. [DOI:10.1109/TPEL.2014.2365014]
29. [29] Fadaeian, T., Gholamian, S.A., Ghoreishy, H., "A Novel Discontinuous Pulse Width Modulation Strategy Besed On Circuit-Level Decoupling Concept For Vienna Rectifier", Rev. Roum. Sci. Techn.- Électrotechn. et Énerg. Vol. 61, no. 1, pp. 87-95, 2020.
30. [30] Xu, Y., Zhang, Q., Deng, K., "One-cycle control strategy for dual-converter three-phase PWM rectifier under unbalanced grid voltage conditions", Journal of power electronics, Vol. 15, no. 1, pp. 268-277, 2015. [DOI:10.6113/JPE.2015.15.1.268]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb