Volume 21, Issue 3 (JIAEEE Vol.21 No.3 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(3): 59-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalili-Tirandaz A, Kuhestani A. A Physical Layer Scheme for Secret Key Generation Based on Discrete Random Phase Injection. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (3) :59-68
URL: http://jiaeee.com/article-1-1494-en.html
Faculty of Electrical and Computer Engineering, Qom University of Technology
Abstract:   (876 Views)
In static point-to-point communications, secret key generation faces two challenges: low key generation rate and the presence of key disclosure regions. For mitigating the first challenge, the schemes which are based on local random generator could be used. One of these schemes is the random phase injection, where the random phases are exchanged between the communicating parties for channel probing. In this paper, a novel key generation scheme is presented which is based on discrete phased-probing signals. Then after defining key disclosure regions, we study the security of the proposed scheme with Geometric secrecy approach. The simulation results show that the secrecy regions increase significantly if the probing channel is excused on multi-frequencies instead of a single frequency. Moreover, it is shown that the idea of channel probing on multi-frequencies increases the key entropy. At the end of paper, some research directions are introduced to study or improve the security of key generation schemes.
Full-Text [PDF 1538 kb]   (253 Downloads)    
Type of Article: Research | Subject: Communication
Received: 2022/08/9 | Accepted: 2023/09/1 | Published: 2024/11/2

References
1. [1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications", IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, Oct 2017. [DOI:10.1109/JIOT.2017.2683200]
2. [2] P. Neelakanta, "Designing robust wireless communications for factory floors", in 2006 IEEE International Conference on Industrial Informatics, Aug. 2006. [DOI:10.1109/INDIN.2006.275685]
3. [3] S. K. Timalsina, R. Bhusal, and S. Moh, "NFC and its application to mobile payment: Overview and comparison", in 2012 8th International Conference on Information Science and Digital Content Technology (ICIDT), pp. 203- 206.
4. [4] N. Wang, P. Wang, A. Alipour-Fanid, L. Jiao and K. Zeng, "Physical layer security of 5G wireless networks for IoT: Challenges and opportunities", IEEE Internet Things J., vol. 6, no. 5, pp. 8169-8181, Oct. 2019. [DOI:10.1109/JIOT.2019.2927379]
5. [5] J. Zhang, G. Li, A. Marshall, A. Hu, and L. Hanzo, "A new frontier for IoT security emerging from three decades of key generation relying on wireless channels", IEEE Access, Aug. 2020. [DOI:10.1109/ACCESS.2020.3012006]
6. [6] G. Li, C. Sun, J. Zhang, E. Jorswieck, B. Xiao, and A. Hu, "Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities", Entropy, vol. 21, p. 497, 2019. [DOI:10.3390/e21050497] [PMID] []
7. [7] O. A. Topal and G. Karabulut Kurt, "Physical layer authentication for LEO satellite constellations", in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1952-1957. [DOI:10.1109/WCNC51071.2022.9771727]
8. [8] K. Lin, Z. Ji, Y. Zhang, G. Chen, P. L. Yeoh and Z. He, "Secret key generation based on 3D spatial angles for UAV communications", in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1-6. [DOI:10.1109/WCNC49053.2021.9417510]
9. [9] O. A. Topal, G. K. Kurt and H. Yanikomeroglu, "Securing the inter-spacecraft links: Physical layer key generation from doppler frequency shift", IEEE Journal of Radio Frequency Identification, vol. 5, no. 3, pp. 232-243, Sept. 2021. [DOI:10.1109/JRFID.2021.3077756]
10. [10] A. K. Tirandaz and A. Kuhestani, "Security analysis of a mutual random phase injection scheme to generate a secret key in static point-to-point communications", Electronic and Cyber Defense, vol. 10, no. 2, pp. 19-30, Oct. 2022
11. [11] T. M. Pham, A. N. Barreto, M. Mitev, M. Matthé and G. Fettweis, "Secure communications in line-of-sight scenarios by rotation-based secret key generation", in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1101-1105. [DOI:10.1109/ICCWorkshops53468.2022.9814519] [PMID] []
12. [12] G. Li, H. Yang, J. Zhang, H. Liu and A. Hu, "Fast and secure key generation with channel obfuscation in slowly varying environments", in 2022 IEEE INFOCOM, IEEE Conference on Computer Communications, pp. 1-10. [DOI:10.1109/INFOCOM48880.2022.9796694]
13. [13] S. Mohajer Hamidi, A. K. Khandani, and E. Bateni, "A secure key sharing algorithm exploiting phase reciprocity in wireless channels", arXiv:2111.15046v1, Nov. 2021. [DOI:10.1109/SPAWC51304.2022.9833972]
14. [14] Y. Liu, S. C. Draper, and A. M. Sayeed, "Exploiting channel diversity in secret key generation from multipath fading randomness", IEEE Trans. Inf. Foren. Sec., vol. 7, no. 5, pp. 1484-1497, Oct. 2012. [DOI:10.1109/TIFS.2012.2206385]
15. [15] X. Guan, N. Ding, Y. Cai and W. Yang, "Wireless key generation from imperfect channel state information: Performance analysis and improvements", in IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019, pp. 1-6. [DOI:10.1109/ICCW.2019.8756656]
16. [16] A. Kuhestani, A. Mohammadi and K.-K. Wong, "Optimal power allocation by imperfect hardware analysis in untrusted relaying networks", IEEE Trans. Wireless Commun., vol. 17, pp. 4302-4314, July 2018. [DOI:10.1109/TWC.2018.2822286]
17. [17] V. Shahiri, A. Kuhestani and L. Hanzo, "Short-packet amplify-and-forward relaying for the internet-of-things in the face of imperfect channel estimation and hardware impairments", IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 20-36, Mar. 2022. [DOI:10.1109/TGCN.2021.3092067]
18. [18] دزفولی‫زاده، سمانه، مبینی، زهرا، "استراق سمع فعال با کمک UAV برای بهبود امنیت شبکه های مخابرات مشارکتی"، مجله مهندسی برق و الکترونیک ایران، جلد 18، شماره 3، 143-151، پاییز 1400.‬‬‬‬‬‬‬‬‬
19. [19] M. T. Mamaghani, A. Kuhestani, and H. Behroozi, "Can a multi-hop link relying on untrusted amplify-and-forward relays render security?", Wireless Netw., vol. 27, no. 1, pp. 795-807, Jan. 2021. [DOI:10.1007/s11276-020-02487-w]
20. [20] H. Saedi, A. Mohammadi, and A. Kuhestani, "Characterization of untrusted relaying networks in the presence of an adversary jammer", Wireless Networks, Jun. 2019. [DOI:10.1007/s11276-019-02049-9]
21. [21] M. Letafati, A. Kuhestani, D. W. K. Ng, and H. Behroozi, "A new frequency hopping-aided secure communication in the presence of an adversary jammer and an untrusted relay", IEEE Int. Conf. Commun. Workshop (ICCW), Ireland, Jun. 2020. [DOI:10.1109/ICCWorkshops49005.2020.9145441]
22. [22] Z. Zhang, G. Li, and A. Hu, "An adaptive information reconciliation protocol for physical-layer based sewcret key generation", in 2019 IEEE 89th Veh. Technol. Conf. (VTC2019-Spring), 2019, pp. 1-5. [DOI:10.1109/VTCSpring.2019.8746667]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb