XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Izadiefar A, sadeh J. Wide area fault location for Multi-terminal HVDC using the distributed parameter line equations. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :167-183
URL: http://jiaeee.com/article-1-1488-en.html
Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,
Abstract:   (708 Views)
The increasing development of multi-terminal high-voltage direct current (MTDC) lines due to the advantages of this type of network over the AC network, especially in long distances, has drawn more attention to providing a solution to protect and estimate the fault location in this type of network. In this paper, a method based on distributed parameters line equations is presented for fault location in an MTDC network. In the proposed method, it is assumed that the measuring instruments are installed only on the terminals connected to the converter. The proposed algorithm includes three parts: identifying the faulty pole, detecting the faulty line and estimating the fault location. To identify the faulty pole, the voltage change index is proposed. Identifying the faulty pole leads to reducing the number of times the algorithm is executed and speeding up the entire process of estimating the fault location. Faulty line detection algorithm is also divided into offline and online subsections. In the offline section, a concept called hypothetical lines is introduced according to the network structure. In the online section, using hypothetical lines and applying line equations, a method is proposed to identify faulty lines. Then using a two-ended method, the location of fault is estimated in this line. If the data is not available on at least one side of the line, it is estimated using the distributed parameter line equations. The studied network includes overhead and cable lines and radial and ring structures so that the accuracy of the proposed method can be checked in all cases. The results of the simulations show the proper performance of the proposed method for various faults, including faults near the end of long lines and faults with high resistance.
 
Full-Text [PDF 1609 kb]   (71 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/07/16 | Accepted: 2023/06/6 | Published: 2024/06/24

References
1. [1] C. Rytoft, M. Callavik, H. Johansson, P. Lundberg, E. Jansson, H. Bawa, S. Funke, S. Stoeter and A. Moglestue, "ABB review special report 60 years of HVDC," ABB , Zurich, Switzerland, 2014.
2. [2] C. M. Franck, "HVDC circuit breakers: a review identifying future research needs," IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 998-1007, 2011. [DOI:10.1109/TPWRD.2010.2095889]
3. [3] X. Jiao, Fault location in transmission systems using synchronised measurments, Ph.D. dissertation: Electrical and Computer Engineering University of Kentacky, 2017.
4. [4] D. Tzelepis, A. Dyśko, G. Fusiea, P. Niewczas, S. Mirsaeidi, C. Booth and X. Dong, "Advanced fault location in MTDC networks utilising optically-multiplexed current measurements and machine learning approach," International Journal of Electrical Power & Energy Systems, vol. 97, pp. 319-333, 2018. [DOI:10.1016/j.ijepes.2017.10.040]
5. [5] Y. Yang and C. Huang, "A single ended fault location method for DC lines in bipolar MMC HVDC system," Electrical Engineering, vol. 102, pp. 899-908, 2020. [DOI:10.1007/s00202-020-00922-x]
6. [6] Q. Huai, K. Liu , A. Hooshyar, H. Ding, L. Qin and K. Chen, "Line fault location for multi-terminal MMC HVDC system based on SWT and SVD," IET Renewable Power Generation, vol. 14, no. 19, pp. 4053-4043, 2020. [DOI:10.1049/iet-rpg.2020.0702]
7. [7] A. E.B. Abu-Elanien, A. A. Elserougi, A. S. Abdel-Khalik, A. M. Massoud and S. Ahmed, "A differential protection technique for multi-terminal HVDC," Electric Power Systems Research, vol. 130, pp. 78-88, 2016. [DOI:10.1016/j.epsr.2015.08.021]
8. [8] D. Wang and M. Hou, "Travelling wave fault location algorithm for LCC-MMC-MTDC hybrid transmission system based on Hilbert-Huang transform," International Journal of Electrical Power & Energy Systems, vol. 121, no. 106125, 2020. [DOI:10.1016/j.ijepes.2020.106125]
9. [9] D. Wang and M. Hou, "Travelling wave fault location principle for hybrid multi-terminal LCC-VSCHVDC transmission line based on R-ECT," International Journal of Electrical Power and Energy Systems, vol. 117, no. 105627, 2020. [DOI:10.1016/j.ijepes.2019.105627]
10. [10] D. Wang, H. Yanga, M. Hou and Y. Guob, "Travelling wave fault location principle for hybrid multi-terminal LCCMMC-HVDC transmission lines based on C-EVT," Electric Power Systems Research, vol. 185, no. 106402, 2020. [DOI:10.1016/j.epsr.2020.106402]
11. [11] R. Muzzammel, A. Raza, M. R. Hussain, G. Abbas, I. Ahmed, M. Qayyum, M. A. Rasool and M.A. Khaleel, "MT-HVdc systems fault classification and location methods based on traveling and non-traveling waves-A comprehensive review," Applied Sciences, vol. 9, no. 4760, 2019. [DOI:10.3390/app9224760]
12. [12] D. Tzelepis, S. Mirsaeidi, A. Dyśko, Q. Hong, J. He and C. Booth, "Intelligent fault location in MTDC networks by recognising patterns in hybrid circuit breaker currents during fault clearance process," IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3056 - 3068, 2021. [DOI:10.1109/TII.2020.3003476]
13. [13] A. T. Johns and S. K. Salman, "Differential equation based techniques," in Digital protection for power systems, London, P. Peregrinus on behalf of the Institution of Electrical Engineers IEE Power Series 15, 1995, Chapter7, pp. 107-114.
14. [۱۴] م.م. کمالی فاز, "مکان‌یابی خطا در خطوط HVDC با استفاده از روش معادلات دیفرانسیل", پایان نامه کارشناسی ارشد: دانشگاه فردوسی مشهد, 1392.
15. [۱۵] ر. دشتی و م. قاسمی، "مکان یابی خطا در شبکه توزیع با حضور منابع تولید پراکنده به روش امپدانسی با استفاده از مدل خط متوسط،" مجله انجمن مهندسی برق و الکترونیک ایران, جلد ۴، شماره ۳، ش.ص. ۹۰-۷۹، ۱۳۹۶.
16. [۱۶] ع.کامیاب، م. ح. جاویدی و ج. ساده، "فاصله يابي خطا در خطوط انتقال نيرو با سه پايانه در حوزه زمان با استفاده از اندازه‌گيريهاي همزمان و مدل گسترده خط انتقال،" مجله انجمن مهندسين برق و الكترونيك ايران، جلد ۵، شماره ۱، ش.ص. ۶۷-۵۹، ۱۳۸۷.
17. [17] J. Xu, Y. Lu, C. Zhao and J. Liang, "A model-based DC fault location scheme for multi-terminal MMC-HVDC systems using a simplified line representation," IEEE Transaction on Power Delivery, vol. 35, no. 1, pp. 386-395, 2020. [DOI:10.1109/TPWRD.2019.2932989]
18. [18] Y. Xiang, K. L. Chen, Q. Xu, Z. Jiang, and Z. Hong, "A novel contactless current sensor for HVDC overhead transmission lnes," IEEE Sensors Journal, vol. 18, no. 11, pp. 4725-4732, 2018. [DOI:10.1109/JSEN.2018.2828807]
19. [19] S. Azizi, M. Sanaye-Pasand, M. Abedini and A. Hasani, "A traveling-wave-based methodology for wide-area fault location in multiterminal DC systems," IEEE Transactions on Power Delivery, vol. 29, no. 6, pp. 2552 - 2560, 2014. [DOI:10.1109/TPWRD.2014.2323356]
20. [20] S. Azizi, S. Afsharnia and M. Sanaye-Pasand, "Fault location on multi-terminal DC systems using synchronized current measurements," International Journal of Electrical Power & Energy Systems, vol. 63, pp. 779-786, 2014. [DOI:10.1016/j.ijepes.2014.06.040]
21. [21] Q. Lin, G. Luo and J. He, "Travelling-wave-based method for fault location in multi-terminal DC networks," The Journal of Engineering, vol. 2017, no. 13, pp. 2314-2318, 2017. [DOI:10.1049/joe.2017.0744]
22. [22] G. Luo, Y. Liu, D. Zhang, J. He, B. Xu, J. Ding and C. Luo, "Maximum traveling-wave-based fault location for meshed MTDC networks," in Energy Internet and Energy sestem Integration, Changsha. China, 2019. [DOI:10.1109/EI247390.2019.9062165] []
23. [23] H. W. Dommel, "Digital computer solution of electromagnetic transients in single and multiphase networks," IEEE Transactions on Power Apparatus and Systems, vol. 88, no. 4, pp. 389-3, 1969. [DOI:10.1109/TPAS.1969.292459]
24. [24] J. Sadeh, N. Hadjsaid, A. M. Ranjbar, and R. Feuillet, "Accurate fault location algorithm for series compensated transmission lines," IEEE Transactions on Power Delivery, vol. 15, no. 3, pp. 1027 - 1033, 2000. [DOI:10.1109/61.871370]
25. [25] A. Geoffrey, Writer, Full selective protection strategy for multi-terminal cable HVDC grids based on HB-MMC converters. [Performance]. Universite Grenoble Alpes, 2017.
26. [26] "Guide for the development of models for HVDC converters in a HVDC grid," Cigre, 2014.
27. [27] K. Nanayakkara, A.D. Rajapakse and R. Wachal, "Fault location in extra long HVdc transmission lines using continuous wavelet transform," in International Conference on Power Systems, Netherlands, 2011.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb