1. [1] Landau, Lev Davidovich. "On the theory of phase transitions. I." Zh. Eksp. Teor. Fiz. 11 (1937): 19.
2. [2] Mermin, N. David. "Crystalline order in two dimensions." Physical Review 176, no. 1 (1968): 250. [
DOI:10.1103/PhysRev.176.250]
3. [3] Peierls, R. E. "Bemerkungen über umwandlungstem peraturen." Helv. Phys. Acta 7, no. 2 (1934): 81.
4. [4] Fagan, Solange B., R. J. Baierle, R. Mota, Antonio JR da Silva, and A. Fazzio. "Ab initio calculations for a hypothetical material: Silicon nanotubes." Physical Review B 61, no. 15 (2000): 9994. [
DOI:10.1103/PhysRevB.61.9994]
5. [5] Novoselov, Kostya S., Andre K. Geim, Sergei Vladimirovich Morozov, Dingde Jiang, Michail I. Katsnelson, IVa Grigorieva, SVb Dubonos, and AA Firsov. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438, no. 7065 (2005): 197-200. [
DOI:10.1038/nature04233] [
PMID]
6. [6] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, "Designing an electro-optical encoder based on photonic crystals using the graphene-Al2O3 stacks," Appl. Opt. 59, 2179-2185 (2020). [
DOI:10.1364/AO.386248] [
PMID]
7. [7] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, "Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate," Appl. Opt. 61, 3209-3217 (2022). [
DOI:10.1364/AO.449123] [
PMID]
8. [8] Bagheri, F., et al. "Design and simulation of a compact graphene-based plasmonic D flip-flop." Optics & Laser Technology 155 (2022): 108436. [
DOI:10.1016/j.optlastec.2022.108436]
9. [9] Haddadan, F., and M. Soroosh. "Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder." Optics & Laser Technology 157 (2023): 108680. [
DOI:10.1016/j.optlastec.2022.108680]
10. [10] Jalali Azizpour, M.R.; Soroosh, M.; Dalvand, N.; Seifi-Kavian, Y. All-Optical Ultra-Fast Graphene-Photonic Crystal Switch. Crystals, 9, 461, (2019). [
DOI:10.3390/cryst9090461]
11. [11] Darvari S M, Khatir M. Plasmonic biosensor using gold nanorods based on graphene. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (3) :105-112 [
DOI:10.52547/jiaeee.19.3.105]
12. [12] Yousefi S, Pourmahyabadi M, Rostami A. Design of a Dual Band Graphene-Plasmonic Absorber for Optical Communication Devices. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (2) :55-63 [
DOI:10.52547/jiaeee.19.2.55]
13. [13] Afroozeh A. The role of grating and electro-optical to adjustment of optical switches with voltage to graphene layer in increasing bandwidth. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (3) :65-71 [
DOI:10.52547/jiaeee.18.3.65]
14. [14] ghaziasadi H, nayebi P. Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (1) :9-16
15. [15] Li, Lin, Ye Zhang, Ziyi Han, Huanli Dong, Gui Yu, Dechao Geng, and Hui Ying Yang. "A mini review on chemical vapor deposition growth of wafer-scale h-BN single crystals." Nanoscale (2021). [
DOI:10.1039/D1NR04034K] [
PMID]
16. [16] Kharadi, Mubashir A., Gul Faroz A. Malik, Farooq A. Khanday, Khurshed A. Shah, Sparsh Mittal, and Brajesh Kumar Kaushik. "Silicene: From material to device applications." ECS Journal of Solid-State Science and Technology 9, no. 11 (2020): 115031. [
DOI:10.1149/2162-8777/abd09a]
17. [17] Liu, Yundan, Dan Mu, and Jincheng Zhuang. "Group IVA of 2D Xenes materials (Silicene, Germanene, Stanene, Plumbene)." In 2D Monoelemental Materials (Xenes) and Related Technologies, pp. 39-66. CRC Press, 2022. [
DOI:10.1201/9781003207122-3]
18. [18] Zhang, Xiaoli, Xiaoyi Zhang, and Yu Yang. "The process for preparing MX2 (M= Mo, W; X= Se, S) single crystal." In Journal of Physics: Conference Series, vol. 2079, no. 1, p. 012014. IOP Publishing, 2021. [
DOI:10.1088/1742-6596/2079/1/012014]
19. [19] Molle, Alessandro, Carlo Grazianetti, Li Tao, Deepyanti Taneja, Md Hasibul Alam, and Deji Akinwande. "Silicene, silicene derivatives, and their device applications." Chemical Society Reviews 47, no. 16 (2018): 6370-6387. [
DOI:10.1039/C8CS00338F] [
PMID]
20. [20] Lalmi, Boubekeur, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray. "Epitaxial growth of a silicene sheet." Applied Physics Letters 97, no. 22 (2010): 223109. [
DOI:10.1063/1.3524215]
21. [21] Wu, Chen-Huan. "Tight-binding model and ab initio calculation of silicene with strong spin-orbit coupling in low-energy limit." arXiv preprint arXiv:1804.01695 (2018).
22. [22] Drummond, N. D., Viktor Zolyomi, and V. I. Fal'Ko. "Electrically tunable band gap in silicene." Physical Review B 85, no. 7 (2012): 075423 [
DOI:10.1103/PhysRevB.85.075423]
23. [23] de Vargas, Douglas D., Mateus H. Köhler, and Rogério J. Baierle. "Electrically tunable band gap in strained h-BN/silicene van der Waals heterostructures." Physical Chemistry Chemical Physics 23, no. 31 (2021): 17033-17040. [
DOI:10.1039/D1CP02012A] [
PMID]
24. [24] Ezawa, Motohiko. "A topological insulator and helical zero mode in silicene under an inhomogeneous electric field." New Journal of Physics 14, no. 3 (2012): 033003. [
DOI:10.1088/1367-2630/14/3/033003]
25. [25] "R. Saito, G. Dresselhaus and MS Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998, xii+ 259p., 22× 15.5 cm,10,560 54, no. 10 (1999): 832-833.
26. [26] Ukhtary, M. Shoufie, Ahmad RT Nugraha, Eddwi H. Hasdeo, and Riichiro Saito. "Broadband transverse electric surface wave in silicene." Applied Physics Letters 109, no. 6 (2016): 063103. [
DOI:10.1063/1.4960531]
27. [27] Menabde, Sergey G., Daniel R. Mason, Evgeny E. Kornev, Changhee Lee, and Namkyoo Park. "Direct optical probing of transverse electric mode in graphene." Scientific reports 6, no. 1 (2016): 1-6. [
DOI:10.1038/srep21523] [
PMID] [
]
28. [28] He, Xiao Yong, and Rui Li. "Comparison of graphene-based transverse magnetic and electric surface plasmon modes." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 1 (2013): 62-67. [
DOI:10.1109/JSTQE.2013.2257991]
29. [29] Mikhailov, Sergey A., and Klaus Ziegler. "New electromagnetic mode in graphene." Physical review letters 99, no. 1 (2007): 016803. [
DOI:10.1103/PhysRevLett.99.016803] [
PMID]
30. [30] Falkovsky, L. A., and A. A. Varlamov. "Space-time dispersion of graphene conductivity." The European Physical Journal B 56, no. 4 (2007): 281-284. [
DOI:10.1140/epjb/e2007-00142-3]
31. [31] Simpson, Robert Edmund. Introductory electronics for scientists and engineers. Allyn & Bacon, 1974.