Volume 21, Issue 1 (JIAEEE Vol.21 No.1 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(1): 55-61 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emami Nejad H, Mir A, Farmani A, Talebzadeh R. Analysis of the Effects of Temperature and Vertical Electric Field on the Propagation of Transverse Electric Waves in Silicene Monolayer. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :55-61
URL: http://jiaeee.com/article-1-1439-en.html
Lorestan University
Abstract:   (808 Views)
In this paper, we have analytically investigated the effects of temperature and electric field perpendicular to the silicene surface on the transverse electric wave propagation range in the frequency range of 1 to 30 THz. Unlike graphene, the atomic structure of a silicene composite is not flat, which makes the surface conductivity of silicene, in addition to the Fermi level, adjustable with an electric field perpendicular to the silicene surface. This property allows silicene to emit transverse electric waves over a wider range than graphene. According to the simulation results based on Kubo equations, per vertical electric field of 100 mV/Å, the propagation bandwidth of TE waves at temperatures of 5 K, 100 K, 200 K and 300 K are equal to 9.2 THz, THz 8, 1.3 THz and 0.9 THz, respectively. By increasing the vertical electric field to 200 mV/Å, the bandwidth for these temperatures will be 20.7 THz, 20.6 THz, 16.7 THz and 11.7 THz, respectively. In the vertical electric field to 300 mV/Å, these values ​​are 29 THz, 28.8 THz, 26.4 THz and 21.8 THz, respectively. The confinement length of TE waves in the propagation ranges has also been obtained, which has increased the trapping length with increasing temperature.
Full-Text [PDF 945 kb]   (149 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2022/02/25 | Accepted: 2023/01/7 | Published: 2023/09/9

References
1. [1] Landau, Lev Davidovich. "On the theory of phase transitions. I." Zh. Eksp. Teor. Fiz. 11 (1937): 19.
2. [2] Mermin, N. David. "Crystalline order in two dimensions." Physical Review 176, no. 1 (1968): 250. [DOI:10.1103/PhysRev.176.250]
3. [3] Peierls, R. E. "Bemerkungen über umwandlungstem peraturen." Helv. Phys. Acta 7, no. 2 (1934): 81.
4. [4] Fagan, Solange B., R. J. Baierle, R. Mota, Antonio JR da Silva, and A. Fazzio. "Ab initio calculations for a hypothetical material: Silicon nanotubes." Physical Review B 61, no. 15 (2000): 9994. [DOI:10.1103/PhysRevB.61.9994]
5. [5] Novoselov, Kostya S., Andre K. Geim, Sergei Vladimirovich Morozov, Dingde Jiang, Michail I. Katsnelson, IVa Grigorieva, SVb Dubonos, and AA Firsov. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438, no. 7065 (2005): 197-200. [DOI:10.1038/nature04233] [PMID]
6. [6] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, "Designing an electro-optical encoder based on photonic crystals using the graphene-Al2O3 stacks," Appl. Opt. 59, 2179-2185 (2020). [DOI:10.1364/AO.386248] [PMID]
7. [7] F. Haddadan, M. Soroosh, and N. Alaei-Sheini, "Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate," Appl. Opt. 61, 3209-3217 (2022). [DOI:10.1364/AO.449123] [PMID]
8. [8] Bagheri, F., et al. "Design and simulation of a compact graphene-based plasmonic D flip-flop." Optics & Laser Technology 155 (2022): 108436.‌ [DOI:10.1016/j.optlastec.2022.108436]
9. [9] Haddadan, F., and M. Soroosh. "Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder." Optics & Laser Technology 157 (2023): 108680.‌ [DOI:10.1016/j.optlastec.2022.108680]
10. [10] Jalali Azizpour, M.R.; Soroosh, M.; Dalvand, N.; Seifi-Kavian, Y. All-Optical Ultra-Fast Graphene-Photonic Crystal Switch. Crystals, 9, 461, (2019). [DOI:10.3390/cryst9090461]
11. [11] Darvari S M, Khatir M. Plasmonic biosensor using gold nanorods based on graphene. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (3) :105-112 [DOI:10.52547/jiaeee.19.3.105]
12. [12] Yousefi S, Pourmahyabadi M, Rostami A. Design of a Dual Band Graphene-Plasmonic Absorber for Optical Communication Devices. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (2) :55-63 [DOI:10.52547/jiaeee.19.2.55]
13. [13] Afroozeh A. The role of grating and electro-optical to adjustment of optical switches with voltage to graphene layer in increasing bandwidth. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (3) :65-71 [DOI:10.52547/jiaeee.18.3.65]
14. [14] ghaziasadi H, nayebi P. Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (1) :9-16
15. [15] Li, Lin, Ye Zhang, Ziyi Han, Huanli Dong, Gui Yu, Dechao Geng, and Hui Ying Yang. "A mini review on chemical vapor deposition growth of wafer-scale h-BN single crystals." Nanoscale (2021). [DOI:10.1039/D1NR04034K] [PMID]
16. [16] Kharadi, Mubashir A., Gul Faroz A. Malik, Farooq A. Khanday, Khurshed A. Shah, Sparsh Mittal, and Brajesh Kumar Kaushik. "Silicene: From material to device applications." ECS Journal of Solid-State Science and Technology 9, no. 11 (2020): 115031. [DOI:10.1149/2162-8777/abd09a]
17. [17] Liu, Yundan, Dan Mu, and Jincheng Zhuang. "Group IVA of 2D Xenes materials (Silicene, Germanene, Stanene, Plumbene)." In 2D Monoelemental Materials (Xenes) and Related Technologies, pp. 39-66. CRC Press, 2022. [DOI:10.1201/9781003207122-3]
18. [18] Zhang, Xiaoli, Xiaoyi Zhang, and Yu Yang. "The process for preparing MX2 (M= Mo, W; X= Se, S) single crystal." In Journal of Physics: Conference Series, vol. 2079, no. 1, p. 012014. IOP Publishing, 2021. [DOI:10.1088/1742-6596/2079/1/012014]
19. [19] Molle, Alessandro, Carlo Grazianetti, Li Tao, Deepyanti Taneja, Md Hasibul Alam, and Deji Akinwande. "Silicene, silicene derivatives, and their device applications." Chemical Society Reviews 47, no. 16 (2018): 6370-6387. [DOI:10.1039/C8CS00338F] [PMID]
20. [20] Lalmi, Boubekeur, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray. "Epitaxial growth of a silicene sheet." Applied Physics Letters 97, no. 22 (2010): 223109. [DOI:10.1063/1.3524215]
21. [21] Wu, Chen-Huan. "Tight-binding model and ab initio calculation of silicene with strong spin-orbit coupling in low-energy limit." arXiv preprint arXiv:1804.01695 (2018).
22. [22] Drummond, N. D., Viktor Zolyomi, and V. I. Fal'Ko. "Electrically tunable band gap in silicene." Physical Review B 85, no. 7 (2012): 075423 [DOI:10.1103/PhysRevB.85.075423]
23. [23] de Vargas, Douglas D., Mateus H. Köhler, and Rogério J. Baierle. "Electrically tunable band gap in strained h-BN/silicene van der Waals heterostructures." Physical Chemistry Chemical Physics 23, no. 31 (2021): 17033-17040. [DOI:10.1039/D1CP02012A] [PMID]
24. [24] Ezawa, Motohiko. "A topological insulator and helical zero mode in silicene under an inhomogeneous electric field." New Journal of Physics 14, no. 3 (2012): 033003. [DOI:10.1088/1367-2630/14/3/033003]
25. [25] "R. Saito, G. Dresselhaus and MS Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998, xii+ 259p., 22× 15.5 cm,10,560 54, no. 10 (1999): 832-833.
26. [26] Ukhtary, M. Shoufie, Ahmad RT Nugraha, Eddwi H. Hasdeo, and Riichiro Saito. "Broadband transverse electric surface wave in silicene." Applied Physics Letters 109, no. 6 (2016): 063103. [DOI:10.1063/1.4960531]
27. [27] Menabde, Sergey G., Daniel R. Mason, Evgeny E. Kornev, Changhee Lee, and Namkyoo Park. "Direct optical probing of transverse electric mode in graphene." Scientific reports 6, no. 1 (2016): 1-6. [DOI:10.1038/srep21523] [PMID] []
28. [28] He, Xiao Yong, and Rui Li. "Comparison of graphene-based transverse magnetic and electric surface plasmon modes." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 1 (2013): 62-67. [DOI:10.1109/JSTQE.2013.2257991]
29. [29] Mikhailov, Sergey A., and Klaus Ziegler. "New electromagnetic mode in graphene." Physical review letters 99, no. 1 (2007): 016803. [DOI:10.1103/PhysRevLett.99.016803] [PMID]
30. [30] Falkovsky, L. A., and A. A. Varlamov. "Space-time dispersion of graphene conductivity." The European Physical Journal B 56, no. 4 (2007): 281-284. [DOI:10.1140/epjb/e2007-00142-3]
31. [31] Simpson, Robert Edmund. Introductory electronics for scientists and engineers. Allyn & Bacon, 1974.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb