XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabzadeh F, Kuhestani A, Zarei S F. Ergodic Capacity of Power Line Communication System for Applications of Power Distribution Networks with Amplify- and- Forward Relaying. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :173-181
URL: http://jiaeee.com/article-1-1411-en.html
Qom University of Technology
Abstract:   (1205 Views)
In this paper, the capacity of power line communication (PLC) system in the applications of distribution networks is investigated. Unlike the conventional application of PLC in high-voltage networks, using relays in distribution networks is necessary considering their longer channel lengths and meshed structure. Then, determination of the average maximum capacity of communication system, so-called Ergodic capacity, is necessary demand for selection of appropriate PLC system in distribution network. The capacity of a communication system depends on various factors such as the channel characteristics, the system bandwidth and the noises in the network. In comparison with the studies in the field of PLC system, the PLC system with amplify- and- forward relaying considering the impulsive noises has not been analyzed. In this paper, using the practical models of channel and noise, the ergodic capacity of channel is calculated a function of input signal' signal to noise ratio. In this proposed scheme, the affecting parameters including statistical channel distribution, distance between source and relay nodes, distance between relay and destination nodes, the transmitted signal power and signal to impulsive noise ratio are considered. To do so, the signal to noise ratio in destination node is formulated with mathematical expressions, and then, the ergodic capacity is obtained using the Shannon theorem. Furthermore, the impact of assigned power to the source and relay on the capacity is investigated. Finally, by simulating a sample channel, the ergodic capacity is obtained for the different values of transmitted signal power, impulsive signal to noise ratio and channel length. The simulation results show that the average capacity changes linearly in terms of path losses; such that for SNR=20 dB and in the presence of the relay, by reducing the length of the line from 200 m to 10 m, the capacity increases by approximately 3.5 bits/s/Hz.
Full-Text [PDF 1339 kb]   (725 Downloads)    
Type of Article: Research | Subject: Power
Received: 2021/12/5 | Accepted: 2022/12/24 | Published: 2023/08/6

References
1. [1] شیخ حسینی، ״سیر تکاملی مخابرات خطوط قدرت: از یک سیستم تلفن ثابت تا فناوری مخابراتی شبکه هوشمند انرژی״، فصلنامه آموزش مهندسی ایران، شماره 80، 96-71، اسفندماه 97.
2. [2] C. Cano, A. Pittolo, D. Malone, L. Lampe; A. Tonello, A.Dabak," State of the Art in Power Line Communications: From the Applications to the Medium" IEEE Journal on Selected Areas in Communications ,Vol. 34, pp. 1935-1952, July 2016. [DOI:10.1109/JSAC.2016.2566018]
3. [3] H. C. Ferreira , L. Lampe , J Newbury and Th. G. Swart, "Power Line Communications: Theory and Applications for Narrowband and Broadband Communications over Power Lines," John Wiley & Sons, 2010. [DOI:10.1002/9780470661291]
4. [4] L. T. Berger, A. Schwager, and J. J. E Garzás, "Power Line Communications for Smart Grid Applications ," Journal of Electrical and Computer Engineering, Hindawi Publishing Corporation, Dec. 2012. [DOI:10.1155/2013/712376]
5. [5] سمانه دزفولی زاده، زهرا مبینی، "استراق سمع فعال با کمک UAV برای بهبود امنیت شبکه‌های مخابرات مشارکتی" نشریه مهندسی برق و الکترونیک ایران، جلد 18، شماره 3 ، 143-151، 1400.
6. [6] محسن ناصری، محمد جواد صابر، سید محمد سجاد صدوق، محمد ترابی، "ارزیابی عملکرد محرمانگی شبکه رله‌ای بافردار رادیوشناختی در کانال های محوشدگی رایلی" نشریه مهندسی برق و الکترونیک ایران، جلد 16، شماره 4 ، 113-121، 1398.
7. [7] H.S. Nguyen, L. Sevcik, H.-P. Van, "Performance Analysis on Low-Power Energy Harvesting Wireless Sensors Eco-Friendly Networks with a Novel Relay Selection Scheme," Electronics, vol.11, no.13, pp.1978, 2022. [DOI:10.3390/electronics11131978]
8. [8] M. L. Filomeno, M. L. R. Campos, H. V. Poor and M. V. Ribeiro, "Hybrid Power Line/Wireless Systems: Power Allocation for Minimizing the Average Bit Error Probability," IEEE Transactions on Communications, vol. 70, no. 2, pp. 810-821, Feb. 2022. [DOI:10.1109/TCOMM.2021.3139326]
9. [9] O. Ozgonenel, D. W. P. Thomas, S. U. Ercan, "Power Line Communication Through Distribution Transformers in Smar t Grid", in 40th International Conference on Telecommunications and singnal processing (TSP), IEEE, Oct. 2017. [DOI:10.1109/TSP.2017.8075981]
10. [10] S. U. Ercan, O. Ozgonenel, D. W. P. Thomas, "Power Line Communication Channel for Smart Grid", in 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), IEEE, 2018. [DOI:10.1109/SGCF.2018.8408974]
11. [11] A. Cataliotti, V. Cosentino, D. D. Cara, G. Tinè, "Simulation of a power line communication system in medium and low voltage distribution networks," in 2011 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), pp. 28-30, Sept. 2011. [DOI:10.1109/AMPS.2011.6090429]
12. [12] A. Salem, K. A. Hamdi, E. Alsusa, "Physical Layer Security Over Correlated Log-Normal Cooperative Power Line Communication Channels," IEEE Access, vol.5, pp. 13909-13921, July 2017. [DOI:10.1109/ACCESS.2017.2729784]
13. [13] K. M. Rabie, B. Adebisi, H. G. Yousif, H. Gacanin, A. M. Tonello, "A Comparison between Orthogonal and Non-Orthogonal Multiple Access in Cooperative Relaying Power Line Communication Systems", IEEE Access, vol.5, pp. 10118-10129, May 2017. [DOI:10.1109/ACCESS.2017.2710280]
14. [14] A. G. Liong, L. Gopal, C. Chiong, Y. Rong, "Channel Characteristics Comparison of Single-Relay and Two-Relay Two-way PLC Systems", IEEE Int. Conf on computing, communication and networking technologies (ICCCNT), India, July 2020. [DOI:10.1109/ICCCNT49239.2020.9225689]
15. [15] G. Prasad and D. Mishra, "Energy-Aware Outage Probability Minimization in DF-Relayed Power Line Communication," IEEE Networking Letters, vol. 3, no. 1, pp. 23-26, Mar. 2021. [DOI:10.1109/LNET.2020.3046418]
16. [16] A. Majumder and J. Caffery, "Power Line Communications: An Overview," IEEE Potentials, Oct. 2014.
17. [17] M. Zimmermann and K. Dostert, "A Multipath Model for the Powerline Channel", IEEE Transactions on Communications, vol. 50, no. 4, Apr. 2002. [DOI:10.1109/26.996069]
18. [18] L.D Bert, P. Caldera, D. Schwingshackl, and A.M. Tonello, "On Noise Modeling for Power Line Communications," in 2011 IEEE International Symposium on Power Line Communications and Its Applications, IEEE, Apr. 2011. [DOI:10.1109/ISPLC.2011.5764408]
19. [19] C. Abou-Rjeily, "Performance analysis of power line communication systems with diversity combining under correlated lognormal fading and Nakagami noise", IET Communications, vol. 11, no. 3. pp. 405-413, Feb. 2017. [DOI:10.1049/iet-com.2016.0802]
20. [20] S. Galli, "A simplified model for the indoor power line channel," in 2009 IEEE International Symposium on Power Line Communications and Its Applications, 2009, pp. 13-19. [DOI:10.1109/ISPLC.2009.4913396]
21. [21] J. Zhang, X. Liu, Y. Cui and D. Xu, "Physical-Layer Secret Key Generation in Power Line Communication Networks," IEEE Access, vol. 10, pp. 48539-48550, May 2022. [DOI:10.1109/ACCESS.2022.3168842]
22. [22] A. Camponogara, R. D. Souza and M. V. Ribeiro, "The Effective Secrecy Throughput of a Broadband Power Line Communication System Under the Presence of Colluding Wireless Eavesdroppers," IEEE Access, vol. 10, pp. 85019-85029, Aug. 2022. [DOI:10.1109/ACCESS.2022.3197528]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb