XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S E, Khajehzadeh A, Eslami M. Financial and Environmental Investigation of the Effects of the Demand Response Programs on the Network-Constrained Unit Commitment. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :133-145
URL: http://jiaeee.com/article-1-1376-en.html
Islamic Azad University of Kerman
Abstract:   (1221 Views)
Individual and public awareness of global warming and pollution has required the different sectors of industry to pay more attention to this issue and take some action in this regard. The electrical industry as the backbone of most other industries should devote more effort for pollution reduction. Unit commitment is the process of determining the state of the units for the day-ahead market. Therefore, managing unit commitment is the best option for contamination reduction. However, in the smart grid, customers can be part of the market via demand response programs. On the other hand, congestion is one of the main problems of the transmission network. Demand response programs could have a positive effect on congestion alleviation as they reduce the total power transmitted via the transmission system. 
In this paper, the effect of aggregated demand response programs as virtual power plants on operation cost, congestion and emission of network-constrained unit commitment is investigated. Moreover, the best rate of the incentive paid to the demand response programs participants is determined. In this study, according to the simultaneous implementation of the unit commitment problem and the demand response program, which is a complex nonlinear problem with continuous and discrete variables, the MILP method has been applied. Moreover, the transmission system is also considered to fully analyze the impact of demand response programs in the electricity market and its impact on reducing congestion. The recommended strategy is carried out on the IEEE 24 bus reliability test system to prove the effectiveness of demand response programs integration for cost and emission reduction.
Full-Text [PDF 1395 kb]   (678 Downloads)    
Type of Article: Research | Subject: Power
Received: 2021/09/23 | Accepted: 2022/04/5 | Published: 2023/08/6

References
1. [1] Commission Decision 2004/156/EC (2004) establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council.
2. [2] Wang, C., and S. M. Shahidehpour. "Optimal generation scheduling for constrained multi-area hydrothermal power systems with cascaded reservoirs." Journal of optimization theory and applications 78, no. 1 (1993): 59-76. [DOI:10.1007/BF00940700]
3. [3] Staff, F. E. R. C. "Assessment of demand response and advanced metering." Federal Energy Regulatory Commission, Docket AD-06-2-000 (2006).
4. [4] Ouyang, Z., and S. M. Shahidehpour. "An intelligent dynamic programming for unit commitment application." IEEE Transactions on Power Systems 6, no. 3 (1991): 1203-1209. [DOI:10.1109/59.119267]
5. [5] Padhy, Narayana Prasad. "Unit commitment-a bibliographical survey." IEEE Transactions on power systems 19, no. 2 (2004): 1196-1205. [DOI:10.1109/TPWRS.2003.821611]
6. [6] Fisher, Marshall L. "The Lagrangian relaxation method for solving integer programming problems." Management science 27, no. 1 (1981): 1-18. [DOI:10.1287/mnsc.27.1.1]
7. [7] Redondo, N. Jiménez, and A. J. Conejo. "Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem." IEEE Transactions on Power Systems 14, no. 1 (1999): 89-95. [DOI:10.1109/59.744490]
8. [8] Swarup, K. S., and S. Yamashiro. "A genetic algorithm approach to generator unit commitment." International journal of electrical power & energy systems 25, no. 9 (2003): 679-687. [DOI:10.1016/S0142-0615(03)00003-6]
9. [9] Kazarlis, Spyros A., A. G. Bakirtzis, and Vassilios Petridis. "A genetic algorithm solution to the unit commitment problem." IEEE transactions on power systems 11, no. 1 (1996): 83-92. [DOI:10.1109/59.485989]
10. [10] Huang, Shyh-Jier. "Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches." IEEE Transactions on Energy Conversion 16, no. 3 (2001): 296-301. [DOI:10.1109/60.937211]
11. [11] Annakkage, U. D., T. Numnonda, and N. C. Pahalawaththa. "Unit commitment by parallel simulated annealing." IEE Proceedings-Generation, Transmission and Distribution 142, no. 6 (1995): 595-600. [DOI:10.1049/ip-gtd:19952215]
12. [12] Mantawy, A. H., S. A. Soliman, and M. E. El-Hawary. "A new tabu search algorithm for the long-term hydro scheduling problem." In LESCOPE'02. 2002 Large Engineering Systems Conference on Power Engineering. Conference Proceedings, pp. 29-34. IEEE, 2002.
13. [13] Zhao, B., C. X. Guo, B. R. Bai, and Y. J. Cao. "An improved particle swarm optimization algorithm for unit commitment." International Journal of Electrical Power & Energy Systems 28, no. 7 (2006): 482-490. [DOI:10.1016/j.ijepes.2006.02.011]
14. [14] Kamboj, V.K., Bath, S.K. & Dhillon, J.S. Neural Comput & Applic (2017) 28: 1559. [DOI:10.1007/s00521-015-2124-4]
15. [15] Afkousi-Paqaleh, M., M. Rashidinejad, and M. Pourakbari-Kasmaei. "An implementation of harmony search algorithm to unit commitment problem." Electrical Engineering 92, no. 6 (2010): 215-225. [DOI:10.1007/s00202-010-0177-z]
16. [16] Kumar, V. & Kumar, D. Neural Comput & Applic (2018). [DOI:10.1007/s00521-018-3796-3]
17. [17] Shukla, A. & Singh, S.N. INAEL (2016) 1: 21. [DOI:10.1007/s41403-016-0004-6]
18. [18] Kamboj, V.K. Neural Comput & Applic (2016) 27: 1643. [DOI:10.1007/s00521-015-1962-4]
19. [19] Xia, Yu, Muhammad Marwali, and Joe H. Chow. "A two-stage MIP based optimization framework for unit commitment and energy pricing." In 2015 IEEE Power and Energy Conference at Illinois (PECI), pp. 1-6. IEEE, 2015. [DOI:10.1109/PECI.2015.7064890]
20. [20] Li, Tao, and Mohammad Shahidehpour. "Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer programming." IEEE transactions on power systems 20, no. 4 (2005): 2015-2025. [DOI:10.1109/TPWRS.2005.857391]
21. [21] Aalami, H. A., M. Parsa Moghaddam, and G. R. Yousefi. "Demand response modeling considering interruptible/curtailable loads and capacity market programs." Applied Energy 87, no. 1 (2010): 243-250. [DOI:10.1016/j.apenergy.2009.05.041]
22. [22] Sahebi, Mir Mohammadreza, Esmail Abedini Duki, Mohsen Kia, Alireza Soroudi, and Mehdi Ehsan. "Simultanous emergency demand response programming and unit commitment programming in comparison with interruptible load contracts." IET generation, transmission & distribution 6, no. 7 (2012): 605-611. [DOI:10.1049/iet-gtd.2011.0806]
23. [23] Abdollahi, Amir, Mohsen Parsa Moghaddam, Masoud Rashidinejad, and Mohammad Kazem Sheikh-El-Eslami. "Investigation of economic and environmental-driven demand response measures incorporating UC." IEEE transactions on smart grid 3, no. 1 (2011): 12-25. [DOI:10.1109/TSG.2011.2172996]
24. [24] Arasteh, H. R., M. Parsa Moghaddam, M. K. Sheikh-El-Eslami, and A. Abdollahi. "Integrating commercial demand response resources with unit commitment." International Journal of Electrical Power & Energy Systems 51 (2013): 153-161. [DOI:10.1016/j.ijepes.2013.02.015]
25. [25] Tumuluru, Vamsi Krishna, and Danny HK Tsang. "A two-stage approach for network constrained unit commitment problem with demand response." IEEE Transactions on Smart Grid 9, no. 2 (2016): 1175-1183. [DOI:10.1109/TSG.2016.2580578]
26. [26] Tumuluru, Vamsi Krishna, Zhe Huang, and Danny HK Tsang. "Integrating price responsive demand into the unit commitment problem." IEEE Transactions on Smart Grid 5, no. 6 (2014): 2757-2765. [DOI:10.1109/TSG.2014.2331357]
27. [27] Rahmani, M., Hosseinian, S.H., Abedi, M., (2020), Sustainable Energy, Grids and Networks," 22, 2020, https://doi.org/10.1016/j.segan.2020.100348 [DOI:10.1016/j.segan.2020.100348.]
28. [28] Aalami, H. A., M. Parsa Moghaddam, and G. R. Yousefi. "Modeling and prioritizing demand response programs in power markets." Electric Power Systems Research 80, no. 4 (2010): 426-435. [DOI:10.1016/j.epsr.2009.10.007]
29. [29] Schweppe FC, Caramanis MC, Tabors RD, Bohn RE (1989) Spot Pricing of Electricity. Kluwer Academic Publishers. Appendix E [DOI:10.1007/978-1-4613-1683-1]
30. [30] Kirschen, Daniel S., Goran Strbac, Pariya Cumperayot, and Dilemar de Paiva Mendes. "Factoring the elasticity of demand in electricity prices." IEEE Transactions on Power Systems 15, no. 2 (2000): 612-617. [DOI:10.1109/59.867149]
31. [31] Kirschen DS, Strbac G (2005) Fundamentals of Power System Economics. John Wiley & Sons Ltd, 2004C. R. Associates, Primer on demand side management. Report for the World Bank: 6-9 [DOI:10.1002/0470020598]
32. [32] Simopoulos, D. N., Y. S. Giannakopoulos, S. D. Kavatza, and C. D. Vournas. "Effect of emission constraints on short-term unit commitment." In MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference, pp. 973-977. IEEE, 2006.
33. [33] Afkousi-Paqaleh, M., Noory, A.R., Abbaspour, A & Rashidinejad, M. (2010a) Asia-Pacific Power and Energy Engineering Conference, Chengdu, 1-4, https://doi.org/10.1109/APPEEC.2010.5449393 [DOI:10.1109/APPEEC.2010.5449393.]
34. [34] Grigg, C., P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen et al. "A report prepared by the reliability test system task force of the application of probability methods subcommittee. The IEEE reliability test system-1996." IEEE. Trans. Power. Syst 14 (1999): 1010-1020. [DOI:10.1109/59.780914]
35. [35] Y. F. Du, Y. Z. Li, C. Duan, H. B. Gooi, and L. Jiang. "An Adjustable Uncertainty Set Constrained Unit Commitment with Operation Risk Reduced through Demand Response" IEEE Transactions on Industrial Informatics (2020)
36. [36] MA Sadeghi, M Jafari Shahbazzadeh, A Abdollahib, M Eslami, M Alizadeh "Robust flexibility driven security constrained unit commitment under wind uncertainty considering demand response and combined-cycle units" International Journal of Electrical Power & Energy Systems (2021) [DOI:10.1016/j.ijepes.2021.107814]
37. [37] Jiayin Xu, Yinghao Ma, Kun Li, Zhiwei Li "Unit commitment of power system with large-scale wind power considering multi time scale flexibility contribution of demand response" Energy Reports, Volume 7, Supplement 7, Pages 342-352 (2021) [DOI:10.1016/j.egyr.2021.10.025]
38. [38] ابراهیم زارعی، محسن محمدیان علی اکبر قره ویسی"مشارکت پاسخ بار در برنامه‌ریزی تولید نیروگاه‌ها" مجله انجمن مهندسین برق و الکترونیک ایران- سال سیزدهم- شماره سوم - پائیز 1395
39. [39] رضا غفارپور، یاشار هاشمی، حبیب اله اعلمی "برنامه‌ریزی امنیت مقید مشارکت واحدهای تولیدی و ارائه مدل احتمالی دسترسناپذیری نیروگاهها در شرایط اضطراری" مجله انجمن مهندسی برق و الکترونیک ایران- سال چهاردهم- شماره سوم- پائیز 1396
40. [40] حمید کریمی، شهرام جدید "تعیین قیمت بهینه برای برنامه‌های پاسخگویی بار با هدف بهبود هم‌زمان سود مصرف‌کنندگان و ضریب بار شبکه" مجله انجمن مهندسی برق و الکترونیک ایران- سال هفدهم- شماره دوم- تابستان 1399

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb