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Abstract: In this paper, first a great number of inverse 
problems which arise in instrumentation, in computer 
imaging systems and in computer vision are presented. 
Then a common general forward modeling for them is 
given and the corresponding inversion problem is 
presented. Then, after showing the inadequacy of the 
classical analytical and least square methods for these ill 
posed inverse problems, a Bayesian estimation framework 
is presented which can handle, in a coherent way, all these 
problems. One of the main steps, in Bayesian inversion 
framework is the prior modeling of the unknowns. For this 
reason, a great number of such models and in particular the 
compound hidden Markov models are presented. Then, the 
main computational tools of the Bayesian estimation are 
briefly presented. Finally, some particular cases are studied 
in detail and new results are presented. 
 

Key words: Inverse problem, Bayesian framework, 
Large system, Markov model 
 

1. INTRODUCTION 
Inverse problems arise in many applications in 
science and engineering. The main reason is that, 
very often we want to measure the distribution of an 
non-observable quantity )(rf  from the observation 
of another quantity )(sg  which is related to it and 
accessible to the measurement. The mathematical 
relation which gives )(sg when )(rf  is known is 
called forward problem: 
 

)1()())](([)( ssrHfsg ∈+=  
where H  is the forward model. In this relation, r  
and s  may represent either time t , position on a line 
x , position on a surface ),( yxr =  , position in 
space ),,( zyxr =  or any combinations of them. 
    This forward model is often non linear, but it can 
be linearized. So, in this paper, we only consider the 
linear model, which in its general form, can be 
written as 
 

∫ ∈+= )2()()(),()( sdrrfsrhsg  

Where ),( srh  represents the measuring system 
response and )(s∈  all the errors (modeling, 
linearization and the other unmodelled errors often 
called noise). In this paper, we assume that the 
forward model is known perfectly, or at least, known 
excepted a few number of parameters. The inverse 
problem is then the task of going back from the 
observed quantity )(sg  to )(rf . The main difficulty 
is that, very often these problems are ill-posed, in 
position to the forward problems which are well-
posed as defined by Hadamard [1]. A problem is 
mathematically well-posed if the problem has a 
solution (existence), if the solution exists 
(uniqueness), and if the solution is stable (stability). 
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A problem is then called ill-posed if any of these 
conditions are not satisfied [2]. 
     In this paper, we will only consider the algebraic 
methods of inversion where, in a first step the 
forward problem is discretized, i.e.,, the integral 
equation is approximated by a sum and the input f , 
the output g and the errors ∈  are assumed to be well 
represented by the finite dimensional vectors f , g  
and ∈  such that: 

)3(,...,1,
1

∈+=→=∈+= ∑
=

HfgnifHg
n

j
ijiji

 

Where )(),(),( jjiiii rffssgg ==∈∈=  and 

),( ijij srhH =  or in a more general case 

 

∫
∫
∫

=〉〈=

∈=〉∈〈=∈

=〉〈=

drrfrrff

dsssss

dssgssgsg

isji

iii

iii

)()()(,

)4()()()(),(

)()()(),(

)( ψψ

φφ

φφ

 
where )(siφ  and )(sjψ  are appropriate basis 

function in their corresponding spaces which means 
that, we assume 
 

∫ ∫

∑

∑

∑

=〉〈≅

≅

∈≅∈

≅

=

=

=

dsdrsrssH

rfrf

ss
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iijiij
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ij
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i
ii
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i
ii

)()()(),(

)5()()(

)()(

)()(
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1

1

φψψφ

ψ
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But, before going further in details of the inversion 
methods, we are going to present a few examples. 
 
1.1. 1D Signals 
Any instrument such as a thermometer which tries to 
measure a non-directly measurable quantity )(tf   
(here the time variation of the temperature) 
transforms it to the time variation of a measurable 
quantity )(tg  (here the length of the liquid in the 
thermometer). A perfect instrument has be at least 
linear. Then the relation between the output )(tg  
and the input )(tf   is: 
 

∫ ∈+′′= )6()()(),()( tdttftthtg  

where ),( tth ′  the instrument’s response. If this 
response is invariant in time, then we have a 
convolution forward model: 
 

∫ ∈+′′−= )7()()()()( tdttftthtg  

 
and the corresponding inverse problem is called 
deconvolution. 
 

 
Fig.1: Deconvolution of ID signals. 

 
The convolution equation (7) can also be written 
 

∫ ∈+−= )8()()()()( tdtfhtg τττ
 
which is obtained by change of variable τ=′− tt . 
Assuming the sampling interval of hf , and g  to 
be equal to 1, the discretized version of the 
deconvolution equation can then be written: 
 

∑ =∈+−=
k

Tiikifkhig )9(,...,1,)()()()(  

 
which can be written in the general vector-matrix 
form: 
 

)10(∈+= Hfg
 
where g  and f  contains samples of the output  

)(tg  and the input )(tf  and the matrix H  , in this 
case, is a Toeplitz matrix with a generic ligne 
composed of the samples of the impulse response 

)(th . The Toeplitz property is thus identified to the 
time invariance property of the system response 
(convolution forward problem). 
 
1.2. Image Restoration 
In this paper, we consider more the case of bivariate 
signals or images. As an example, when the unknown 
and measured quantities are images, we have: 

∫ ∈+′′′−= )11()()()()( rrdrfrrhrg  

and if the system response is spatially invariant, we 
have 
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∫ ∈+′′−= )12()()()()( rrfrrhrg
 
The case of denoising is the particular case where the 
point spread function (psf) )(rh  is )()( rrh δ= : 
 

)13()()()( rrfrg ∈+=  
 

 
Fig.2: Image restoration as an inverse problem 

 
The discretized version of the 2D deconvolution 
equation can also be written as ∈+= Hfg  where 
g  and f  contains, respectively, the rasterized 
samples of the output  )(rg  and the input )(rf , 
and the matrix H  in this case, is a huge dimensional 
Toeplitz-Bloc-Toeplitz (TBT) matrix with a generic 
bloc-ligne composed of the samples of the point 
spread function (PSF) )(rh . The TBC property is 
thus identified to the space invariance property of the 
system response (2D convolution forward problem). 
For more details on the structure of this matrix refer 
to the book [3] and the papers [4, 5, 6]. 
 
1.3. Image Reconstruction in Computed 
Tomography 
In previous examples, )(sg  and )(rf  where 
defined in the same space. The case of image 
reconstruction in X ray computed tomography (CT) is 
interesting, because the observed data )(sg  and the 
unknown image )(rf  are defined in different 
spaces. The usual forward model in CT is shown in 
Figure (1.3). 
     In 2D case, the relation between the image to be 
reconstructed ),( yxf  and the projection data 

)(),( rgrg φφ =  is given by the Radon transform: 

 
∫ ∫∫ ∈+−−=∈+=
φ

φφφδφφ
,

)14(),()sincos(),(),(),(),(
rL

rdxyyxryxfrdlyxfrg

 

The discretized version of this forward equation can 
also be written as QHfg +=   where 

[ ]kggg ,,1 L=  contains samples of projection 

data ),( krg φ  for different angles kφ , 

Kk ,,1L= , { }Rrrff ∈= ),(  contains the 

image pixels put in a vector and the elements ijH  of 

the matrix H , in this case, represents the length of 
the i-th ray in the j-th pixel. This matrix is a very 
sparse matrix with great number of zero valued 
elements [7, 8]. 
 

 
Fig.3: 2D and 3D ray computed tomography 

 

 
Fig.4: Discretized 2D X ray coputed tomography 

 
Fig.5:Inverse problem of image reconstruction in 

x ray computed tomography 
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1.4 Time varying imaging systems 
When the observed and unknown quantities depend 
on space r   and time t , we have 
 

∫ ∈+′′′′′−′−= )15(),(),(),(),( trtdrdtrfttrrhtrg  

If the point spread function of the imaging system 
does not depend on time, then we have 
 
In this case, t  can also be considered as an index: 
 

∫ ∈+′′′−= )17()()()()( rrdrfrrhrg ttt  

One example of such problem is the video image 
restoration shown in Figure (1-6). 
 

 
Fig.6: inverse problem of video image restoration 

 
The discretized version of this inverse problem can be 
written as 
 

)18(ttt Hfg ∈+=  

Where tg   and tf  contains samples of the ouput 

)(rgt  and the intput )(rft  and the matrix H , in 
this case, is again a Toeplitz-Bloc-Toeplitz (TBT) 
matrix with a generic bloc-ligne composed of the 
samples of the point spread function (PSF) )(rh . 
 
 
 
1.5. Multi Inputs Multi Outputs Inverse 
problems 
Multi Inputs Multi Outputs (MIMO) imaging   
systems can be modeled as: 
 

∑∫
=

=∈+=
N

j
ijiji Nirdrrfrshsg

1
)19(,...,1,)()(),()(  

 
 
 

1.5.1. MIMO Sources Localization and 
Estimation 
One such example is the case where n   radio sources 
{ }njtf j ,,1),( L=  emitting in the same time are 

received by m receivers { }mitgi ,,1),( L=  , 
each one receiving a linear combination of delayed 
and degraded versions of original waves: 
 

∑∫
=

=∈+′−′′−=
N

j
iijjiji Nittdtftthtg

1

)20(,...,1,)()()()( τ  

Where )(thij  is the impulse response of the channel 

between the i-th receiver and the j-th source. The 
discretized version of this inverse problem can be 
written as 
 

)21(, ijjii fHg ∈+=
 
Where ig   and jf  contains samples of the output 

)(tgi   and the input )(tft   and the matrices jiH ,  

are Toeplitz matrices described by the impulse 

responses )(, th ji . 

 
1.5.2. MIMO Deconvolution 
A MIMO image restoration problem is : 
and one such example is the case of color image 
restoration where each color component can be 
considered as an input. 

 
Fig.7: Color image restoration as an example of 

MMO inverse problem 
1.6. Source Separation 
A particular case of a MIMO inverse problem is the 
blind source separation (BSS): 
 

∑∫ ∈+′′′−=
j

ijijiji rrdrfrrhArg )23()()()()(  

and a more particular one is the case of instantaneous 
mixing: 

∫ ∈+′′′−= )16(),(),()(),( trrdtrfrrhtrg

∑∫ ∈+′′′−=
j

ijiji rrdrfrrhrg )22()()()()(
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∑ ∈+=
j

ijiji rrfArg )24()()()(  

The particularity of these problems is that the the 
mixing matrix  { }ijAA =  is also unknown. 

 

 
Fig.8: Blind image separation 

 
 
1.7. Multi Inputs Single Output Inverse 
problems 
A Multi Inputs Single Output (MISO) system is a 
particular case of MIMO when we have only one 
input: 
 

∑∫ ∈+=
j

iii rdrrfrshsg )25()()(),()(

 
 
1.7.1. MIMO sources localization and 
Estimation 
One example of MISO inverse problem is a non 
destructive testing (NDT) for detection and 
evaluation of the defect created due to an impact on a 
surface of an object using microwave imaging where 
two images are obtained when a rectangular 
waveguide scans this surface two times. In the first 
scan the rectangular waveguide is oriented in shorter 
side and in the second case in longer side. By this 
way, two images 2,1),( =irgi  are obtained, each 
has to be considered as the output of a linear system 
with the same input )(rf  and two different 
channels. This is a MISO linear and invariant 
systems. 
 
 
 
 

1.7.2. Image Super-resolution as a MISO 
Inverse Problem 
Another MISO system is the case of Super-
Resolution (SR) imaging using a few Low Resolution 
(LR) images obtained by low cost cameras: 
 

∑∫ ∈+=
j

iii rdrrfrshsg )26()()(),()(  

where ig  are the LR images and f  is the desired 

High Resolution (HR) image. The functions ih  
represent a combination of at least three operations: i) 
a low pass filtering effect, ii) a movement 
(translational or with rotation and zooming effects) of 
the camera and iii) a sub-sampling. 
    The following figure shows one such situation. 
 

 
Fig.9: SR problem where a series of LR image are 

used to construct a HR image 
 
The discretized version of this inverse problem can  
be written as 
 

)27(, ijii fHg ∈+=  

Where ig   and f   contains samples of the output 

gi(t) and the input ft(t) and the matrices  jiH ,  are 

Toeplitz matrices described by the impulse responses 
)(, th ji . 

 
1.8. Multi Modality in CT Imaging Systems 
Using different modalities has become a main tool in 
imaging systems where to explore the internal 
property of a body one can use X rays, ultrasounds, 
microwaves, infra-red, magnetic resonance, etc. As 
an example, in X ray imaging, the observed 
radiographies give some information on the 
voluminal distribution of the material density inside 
the object while the ultrasound echography gives 
information on the changing positions (contours) of 
ultrasound properties inside the object. One can then 
want to use both techniques and use a kind of data 
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fusion to obtain a higher quality of images of the 
body. An example of such situation is given in (1.8). 
 

 
Fig.10: multi modality in CT imaging systems (a) 

Original object, (b) Contours of the different 
homogenous regions, (c) Data geometry in X ray 

tomography, (d) Data acquisition geometry in 
ultrasound echography, (e) Observed data 

(sonogram) in X ray tomography, (f) Observed 
data in ultrasound echography. 

 
1.9. Fusion of X-Ray and Ultrasound 
Echography 
An example of multimodality and data fusion in CT is 
the use of X ray radiographic data and the ultrasound 
echographic data is shown in Figure (11) and for 
more details on this application see [9, 10, 11, 12]. 
 

 
Fig.11: Inverse problem of X ray and ultrasound 

data fusion 
 
 
 

2. Basics of Deterministic Inversion 
Methods 
To illustrate the basics of the inversion methods, we 
start by considering the case of a Single Input Single 
Output (SISO) linear system: 

 
)28(∈+= Hfg

 
The idea can be easily extended to the case of MISO 
or MIMO. For an extend details to these methods 
refer to [13, 14]. 
 
2.1. Match Filtering 
First assume that the errors and measurement noise 
are negligible and that we could choose the basis 
functions iφ  and iψ  could be chosen in such a way 

that the matrix H  is square ( )nm =  and self-djoint 

( )1=′HH  (un unrealistic hypothesis). Then, the 
solution to the problem would be: 
 

)29(ˆ gHf ′=
 
This solution has been used in many cases. For 
example in deconvolution, this solution is called 
Matching filtering. The main reason is that, in a 
deconvolution problem, the matrix H  is a Toeplitz 
matrix, so is its transpose H ′ . The forward matrix 
operation Hf  corresponds to a convolution        

conv ( )fh, . The adjoint matrix operation gH ′  then 

also corresponds to a convolution conv ( )gh,  where 

)(ˆ)(~ thth −= . 
Another example is in computed tomography (CT) 
where the projection data in each angle direction ig  

is related to the image f  through a projecting matrix 

in that direction iH   such that we can write: 
 

)30(
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∈

∈
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

KKK

f
H

H

g

g
MMM

 
 
And the adjoint operation: 
 

∑
=

′=′=
K

k
k gHgHf

1

)31(ˆ

 
corresponds to what is called back-projection. 
  However, as it is mentioned, the hypothesis made 
here are unrealistic. 
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2.2. Direct Inversion 
The next step is just to assume that the forward 
matrix is invertible. Then, one can try to define the 
solution as: 
 

)32(ˆ 1gHf −=  
 
But, in practice, this also is an illusion, because, even 
if the matrix H  is mathematically invertible, it is, 
very often, very ill-conditioned. This means that 
small errors on the data gδ  will generate great errors 
δ  on the solution. This method, in deconvolution, 
corresponds to the analytical method of inverse 
filtering, which is, in general, unstable. 
In other applications, the main difficulty is that, very 
often the matrix H   is even not square, 
i.e., ( )nm ≠ , because the number of the measured 
data m  may not be equal to the number of 
parameters n    describing the unknown function f   
in (5). 
 
2.3. Least Square and Generalized 
Inversion 
For the case where nm〉 , a solution will be the least 
square (LS) defined as: 
 

{ } )33(minargˆ 2Hfgf
f

−=  

which results to the normal equation: 
 
[ ] )34(ˆ gHfHH ′=′  
and if the matrix HH ′  is inversable (rang 
( ) nHH =′ ), then the solution is given by: 
 

[ ] )35(ˆ 1 gHHHf ′′= −  
When nm〈 , the problem may have an infinite 
number of solutions. So, we may choose one of them 
by requesting some particular a priori property, for 
example to have minimum norm. The mathematical 
problem is then: 
  

{ }
{ } 36(minargˆ 2ff

gHf =
=  

 
or written differently 
 

)37(min 2 gHftosubjectfimize =  

 
The solution is obtained via the Lagrange multiplier 
method which, in this case, results to 
 

)38(
0

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ −
g

f
H

HI t

λ
 
 
which gives 
 

)39()(ˆ 1
2 gHHHf tt −=

  
if tHH  is invertible. 
    The main difficulty in these methods is that the 
solution, in general, is too sensitive to the error in the 
data due to the ill conditioning of the matrices to be 
inverted. 
 
2.4. Regularization Methods 
The main idea in regularization theory is that a stable 
solution to an ill-posed inverse problem can not be 
obtained only by minimizing a distance between the 
observed data and the output of the model, as it is for 
example, in LS methods. A general framework is then 
to define the solution of the problem as the minimizer 
of a compound criterion such as: 
 

( ){ } )40(minargˆ fJf
f

=  

with 
 

)41(),(),()( 021 ffHfgfJ ∆+∆= λ  

where 1∆  and 2∆  are two distances, the first defined 
in the observed quantity space and the second in the 
unknown quantity space. λ   is the regularization 
parameter which regulates the compromise with the 
two terms and 0f  is an a priori solution. An example 
of such criterion is:  
 
( ) )42(2

0
2 ffHfgfJ −+−= λ  

which results to 
 

[ ] )43()(ˆ
0

1
0 HfgHIHHff −′+′+= −λ

 
We may note that the condition number of the matrix 
to be inverted here can be controlled by appropriately 
choosing the value of the regularization parameterλ . 
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Even if the methods based on regularization approach 
have been used with success in many applications, 
three main open problems still remains: 
i) Determination of the regularization parameter, ii) 
The arguments for choosing the two distances 1∆  and 

2∆  and iii) Quantification of the uncertainties 
associated to the obtained solutions. Even if there 
have been a lot of works trying to answer to these 
problems and there are effective solutions such as the 
L-curve or the Croos Validation for the first, the two 
others are still open problems. The Bayesian 
estimation framework, as we will see, can give 
answers to them [15]. 
 
3. Bayesian Estimation Framework 
To illustrate the basics of the Bayesian estimation 
framework, let first consider the simple case of SISO 
system ∈+= Hfg  where we assume that H   is 
known. 
In a general Bayesian estimation framework, the 
forward model is used to define the likelihood 
function ( )1,θfgp  and we have to translate our 

prior knowledge about the unknowns f through a 

prior probability law ( )2θfp  and then use the 

Bayes rule to find an expression for ( )θ,gfp  . 
 

( ) ( ) ( )
( ) )44(

,
, 21

θ
θθ

θ
gp

fpfgp
gfp =  

where ( )1,θfgp  is the likelihood whose 

expression is obtained from the forward model and 
assumption on the errors ∈ , ( )21,θθθ =  represents 
all the hyper-parameters (parameters of the likelihood 
and priors) of the problem and  
 
( ) ( ) ( ) )45(, 21 dffpfgpgp ∫= θθθ  

 
is called the evidence of the model. 
   When the expression of ( )θ,gfp  is obtained, we 

can use it to define any estimates for f. Two usual 
estimators are the maximum a posteriori (MAP) 
 

( ){ } )46(,maxargˆ θgfpf
f

=

 
 

and the Mean Square Error (MSE) estimator which 
corresponds to the posterior mean  
 

( )∫= )47(,ˆ dfgfpff θ  

Unfortunately only for the linear problems and the 
Gaussian laws where ( )θ,gfp  is also Gaussian we 

have analytical solutions for these two estimators. For 
almost all other cases, the first one needs an 
optimization algorithm and the second an integration 
one. For example, the relaxation methods can be used 
for the optimization and the MCMC algorithms can 
be used for expectation computations. Another 
difficult point is that the expressions of ( )1,θfgp  

and ( )2θfp  and thus the expression of ( )θ,gfp  

depend on the hyper-parameters θ  which, in 
practical applications, have also to be estimated either 
in a supervised way using the training data or in an 
unsupervised way. In both cases, we need also to 
translate our prior knowledge on them through a prior 
probability )(θp  . 
Thus, one of the main steps in any inversion method 
for any inverse problem is modeling the unknowns. 
In probabilistic methods and in particular in the 
Bayesian approach, this step becomes the assignment 
of the probability law ( )1θfp . This point, as well as 

the assignment of )(θp , are discussed the next two 
subsections. 
 
3.1 Simple case of Gaussian models 
Let consider as a first example the simple case where 
ǫ and f are assumed to be Gaussian: 
( ) ( )

( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−∝

==

⎥
⎦

⎤
⎢
⎣

⎡
∈∈−∝

==

−

∈

∈∈∈

0
1

002

0
2

00
2

2

0
22

2
1exp

)48(,,

2
1exp

,0,

ffPff

PRfNPfp

IRNfgp

t

f

fff

t

σ

σσ

σ

σδ

 
 
Then, it is easy to show that: 
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( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−−−∝

+=

⎥
⎦

⎤
⎢
⎣

⎡
−−−∝

=

−

∈
∈

∈∈

∈

∈∈

0
1

00220
22

00
22

2

0
22

2
1

2
1exp,,,

)49(,,,

2
1exp

),(,

ffPffHfgHfgPfgp

RHHRHfNPgp

HfgHfg

IHfNfgp

t

f

t
f

t
ff

t

σσ
σσ

σσ

σ

σσ

 
and 
 
( ) ( )

( ) ( ) )50(ˆ,ˆ
,,

,,,
,,,

0
22

0
22

0
22 pfN

Pgp
Pfgp

Pgfp
f

f
f ==

∈

∈
∈ σσ

σσ
σσ

 

 
With 
 

)51(

)(

)(ˆ
),(ˆ

)()(ˆ

111

1

0
1

0
1

0

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+=

+−=

−=

−++=

−−−

−

−

−

HRHR

HRRHHRHRRP

HfgRHR

HfgRHHRHRff

e
t

f

fe
t

f
t

ff

e
t

e
t

f
t

f

 

When 00 =f  and noting by 2

2

fσ
σλ ∈=   , these 

relations write: 
 

)52(
)(ˆ

ˆ)(ˆ
11

0
2

11
0

⎪⎩

⎪
⎨
⎧

+=

=+=
−−

−−

PHHP

gHPgHPHHf
t

e

ttt

λσ

λ  

 
It is noted that, in this case, all the point estimators 
such as the MAP, the posterior mean or posterior 
median are the same and can be obtained by:  
 

{ } { } { } )53()(minarg)|(lnminarg)|(maxargˆ fJgfpgfpf
fff

=−==

 
with 
 

)54()()( 1
0

2 fPfHggfJ t −+−= λ

 
Three particular cases are of interest: 
 
•  IP =0 . This is the case where fj are assumed 
centered, Gaussian and i.i.d.: 
 

)55(
2

1exp
2

1exp)( 2

2
2

2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝ ∑ fffp

fj
j

f σσ

 
 

• tCCP =0 . This is the case where fj are assumed 

centered, Gaussian but correlated. The vector f is then 
considered to be obtained by: 
 

)56(ξCf =  
with C  corresponds to a moving average (MA) 
filtering and ( ) ( )1,0Np =ξ . In this case, we have: 

[ ] )57(
2

1exp
2

1exp)( 2

2
2

2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝ ∑ CfCffp

fj
j

f σσ

 
 

• ( ) ( ) 11
0

−−
−== AIDDp t . This is the case 

where jf  are assumed centered, Gaussian and 

autoregressive: 
 

)58(ξ+= Aff
 
with A a matrix obtained from the AR coefficients 

and ( ) ( )1,0Np =ξ . In this case, we have 
 

)59(
2

1exp)( 2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝ Dffp

fσ
 
A particular case of AR model is the first order 
Markov chain 
 

)60(),()|( 2
1 fjjj fNffp σ−=

 
with corresponding A and AID −=   matrices 
 

)61(

110

110
011
001

,

010

010
001
000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= DA

 
 
which give the possibility to write 
 

)62()(
2

1exp
2

1exp)( 2
12

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∝

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝ ∑ −

j
jj

ff

ffDffp
σσ
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These particular cases give us the possibility to 
extend the prior model to other more sophisticated 
non-Gaussian models which can be classified in three 
groups: 
•  Separable: 

)63()(exp)( ⎥
⎦

⎤
⎢
⎣

⎡
−∝ ∑

j
jffp φα

 
where φ  is any positive valued function. 

•  Simple Markovian: 

)64()(exp)( 1 ⎥
⎦

⎤
⎢
⎣

⎡
−∝ ∑ −

j
jj fffp φ

 
where φ  is any positive valued function called 
potential function of the Markovian model. 
•  Compound Markovian: 
 

)65(),(exp)|( 1 ⎥
⎦

⎤
⎢
⎣

⎡
−−∝ ∑ −

j
jjj cffcfp φα

 
where φ  is any positive valued function whose 
expression depends on the hidden variable c. 
Some examples of the φ  expressions used in many 
applications are: 
 

)66(
1

1);1,min(;0,1ln;21,||;)( 2
22

⎭
⎬
⎫

⎩
⎨
⎧

+
−

>+−≤≤=
t

ttttttt βφ β

 
 
These equations can easily be extended for the case 
of multi-sensor case. 
    However, even if a Gaussian model for the noise is 
acceptable, this model is rarely realistic for most real 
word signals or images. Indeed, very often, a signal 
or an image can be modeled locally by a Gaussian, 
but its energy or amplitude can be modulated, i.e.; 
piecewise homogeneous and Gaussian [16, 17, 18]. 
To find an appropriate model for such cases, we 
introduce hidden variables and in particular hidden 
Markov modeling (HMM). In the following, we first 
give a summary description of these models and then 
we will consider the general case of MIMO systems 
with prior HMM modeling. 
 
 
 
 

3.2. Modeling Using Hidden Variables 
 
3.2.1 Signal and Images with Energy 
Modulation 
A simple model which can capture the variance 
modulated signal or images is [19, 17, 20]. 
 

)67(),2/3()|(,)2,0(),|( λςλλ == jjjj dpdNdfp
 
where G is a Gamma distribution. It is then easy to 
show the following relations: 
 

)68(
2

1exp),(

)
4

(exp)|,(

2
2

2

2

⎥
⎦

⎤
⎢
⎣

⎡
−

−
∝

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−∝ ∑

Hfgfgp

d
d
fdfp

e

j
j

j

σ

λλ

 
and 
 

[ ])d,f(Jexp)g|d,f(p −∝                       (69) 

∑ ++−=
j j

j

j

e

d
d
f

HfgdfJ )
4

(
2

1),( 2

2
2

2 λ
σ

 

 
If we try to find the joint MAP estimate of the 
unknowns ( )df ,  by optimization successively with 
respect to f   when d   is fixed and with respect to 
d  when f  is fixed, we obtain the following 
iterative algorithm: 
 

gH)D2HH(f̂ t1t2
e

−− += λσ  

[ ]n...,,1j),d4/(1diagD 2
j ==                     (70) 

2/fd̂ jj =  

 
3.2.2. Amplitude Modulated Signals 
To illustrate this with applications in 
telecommunication signal and image processing, we 
consider the case of a Gaussian signal modulated with 
a two level or binary signal. A simple model which 
can capture the variance modulated signal or images 
is 
 

)/2,z(N),z|f(p jjj λλ =  
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{ }1m,0mz 21j ==∈                                     (71) 

2K...,,1k),2/1()mz(p kj ====  

 
It is then easy to show the following: 
 

[ ]

∑ =
==

+=
K

1k
2
kk

j

)/2,m(N)2/1(

)/2,1(N)/2,0(N)2/1()|f(p

λσ

λλλ  

[ ]∑ −−∝
j

2
jj )zf(exp),z|f(p λλ      

[ ]2
jjjj )zf(exp),z|f(p −−∝ λλ  

[ ]∑ −−∝
j

2
jj )fz(exp),f|z(p λλ       (72) 

[ ]2
jjjj )fz(),f|kz(p −−∝= λλ  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
∝ 2

2
e

2
e Hfg

2
1exp),f|g(p

σ
σ  

and 
 

[ ])z,f(Jexp),,g|z,f(p 2
e −∝λσ  

∑ ∑ −+

−+−=

k j kj

22
2
e

)mz()2/1ln(

zfHfg
2

1)z,f(J

δ

λ
σ     (73) 

 

where [ ] .,,1
′= Nzzz L   

Again, trying to obtain the JMAP estimate ( )zf ˆ,ˆ  by 

optimizing successively ( )zfJ ,  with respect to f  
and z  we obtain: 
 

[ ]zgH)IHH(f̂ t1t2
e λλσ ++= −−  

⎪⎩

⎪
⎨
⎧

<

>
=

af0

zf1
ẑ

j

j
j                                      (74) 

where the threshold a is a function of λ . 
 
3.2.3. Gaussians Mixture Model 
The previous model can be generalized to the general 
mixture of Gaussians. We then have the following 
relations: 
 

)/2,m(N),m,kz|f(p kkkkkjj λυυ ===  

{ }K...,,1z)kz(p jkj ∈== π  

∑ =
=

K

1k kkkkkkj ),m(N),m,|f(P υπυπ             

∑=
==

K

1k kkj ),m(N)kz(p υ                             (75) 

{ }[ ]∑ ∑ =
−−∝

k kz:j
2

kjk
j

)mf(exp),m,z|f(p λλ  

[ ]∑ ∑ −−−∝
j k

2
kjjk )mf)(kz(exp δλ  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
∝ 2

2
e

2
e Hfg

2
1exp)m,,f|g(p
σ

σ  

 
and thus 

Ck

)kz(
k

j j),m,z|f(p),m,f|z(p ∑ −
∝

δ
πλλ  

[ ][ ]∑ ∑ +−−−∝
j k k

2
kjjk ln)mf)(kz(exp πδλ  

[ ]k
2

kjkj ln)mf(),m,f|kz(p πλλ +−−∝=     (76) 

[ ])z,f(Jexp),m,,g|z,f(p 2
e −∝λσ  

and 
[ ])z,f(Jexp),m,,g|z,f(p 2

e −∝λσ  
with 
 

{ }∑ ∑ =
−+−=

k kz,j
2

kjk
2

2
e

j
)mf(Hfg

2
1)z,f(J λ
σ

 

∑ ∑ −+
k j kjk )mz()ln( δπ  

∑ −+−=
k

2
kkk

2

2
e

1mfHfg
2

1 λ
σ

 

∑+ k kk )ln(n π                                          (77) 

 
where { }kmmm ,,1 L= , { }kλλλ ,,1 L= , 

( )kzpn jjk −= δ  is the number of samples fj 

which are in the class kz j =  and 

{ }kzff jjk == : . For more details and 

applications of such modeling see [21, 22, 23, 24]. 
 
3.2.4. Mixture of Gauss-Markov Model 
In the previous model, we assumed that the samples 
in each class are independent. Here, we extend this to 
a Markovian model: 
 

),m(N),m,f,kz,kz|f(p kkkk1j1jjj υυ =≠= −−  

),f(N),m,f,kz,kz|f(p k1jkk1j1jjj υυ −−− ===

{ }K...,,1z)kz(p jkj ∈== π                        (78) 
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which can be written in a more compact way if we 
introduce ( )11 −−−= jjj zzq δ   by 

 
k1jjkjkk1jjj ,f)q1(mq(N),m,f,g|f(p υυ −− −+=    (79) 

 
which results in: 
 

[ ][ ]∑ ∑ −−+−−−∝
j k

2
1jjkjjjk )f)g1(mq(f)kz(exp),m,z|f(p δλλ

[ ][ ]∑ ∑ −+−−−−−∝ −j k
2

kjj
2

1jjijjjk )mf(q)ff)(gf)(q1()kz([ex δλ   (80) 

and when combined with 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
∝ 2

2
e

2
e Hfg

2
1exp),f|g(p

σ
σ  

gives: 
[ ])z,f(Jexp),m,,g|z,f(p 2

e −∝λσ  
with 
 

2

2
e

Hfg
2

1)z,f(J −=
σ

 

[ ]∑ ∑ −−+−−+
j k

2
1jjkjjjk )f)q1(mq(f)kz(δλ  

∑+ k kk )ln(n π                                              (81) 

∑ ∑+−−+−= −j k kk
2

1jjj
2

2
e

)ln(n)f~f~)(q1(Hfg
2

1 π
σ

 

∑++−=
k kk

22

2
e

)ln(nf~GDHfg
2

1 π
σ

 

 
where ( )jjjj zmfzf −= λˆ , D is the first order 

finite difference matrix and Q is a matrix with iq  as 
its diagonal elements. 
    A particular case of this model is of great interest: 

kmk ∀= ,0  and kk ∀= ,λλ . Then, we have: 
 

),f)g1((N),m,f,q|f(p k1jjkk1jjj υυ −− −=
[ ][ ]∑ −−−−∝

j
2

1jjj )f)q1(fexp),m,q|f(p λλ  

[ ][ ]∑ +−−−∝ −j
2
jj

2
1jjj fq)ff)(q1(exp λ   (82) 

and  
 

[ ])q,f(Jexp),m,,g|q,f(p 2
e −∝λσ  

with 
 

[ ]

∑

∑

++−=

+−+−= −

k kk
22

2
e

j
2
jj

2
1jj

2

2
e

)ln(nQDfHfg
2
1

fq)f)(q1(Hfg
2
1)q,f(J

αλ
σ

λ
σ   (83) 

Where ∑= j jk qn  is the number of discontinuities 

(length of the contours in the case of an image) 
( )1== ik qpα  and ( )01 ==− jk qPα . 

   In all these mixture models, we assumed jz  

independent with ( ) kkzP ∏== . However, jz  

corresponds to the label of the sample jf  . It is then 

better to put a Markovian structure on it to capture the 
fact that, in general, when the neighboring samples of 

jf  have all the same label, then it must be more 

probable that this sample has the same label. This 
feature can be modeled via the Potts-Markov 
modeling of the classification labels jz . In the next 

section, we use this model, and at the same time, we 
extend all the previous models to 2D case for 
applications in image processing and to MIMO 
applications. 
 
3.3. Mixture and Hidden Markov Models 
for Images 
In image processing applications, the notions of 
contours and regions are very important. In the 
following, we note by ),( yxr =  the position of a 
pixel and by )(rf  its gray level or by 

{ })(),...,()( 1 rfrfrf N=  its color or spectral 
components. In classical RGB color representation 
 N = 3, but in hyper-spectral imaging N may be more 
than one hundred. When the observed data are also 
images we note them by 

{ })(),...,()( 1 rgrgrg M= . For any image )(rf j  

we note by )(rq j , a binary valued hidden variable, 

its contours and by )(rz j , a discrete value hidden 

variable representing its region labels. We focus here 
on images with homogeneous regions and use the 
mixture models of the previous section with an 
additional Markov model for the hidden 
variable )(rz j . 

 
 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

ae
ee

.c
om

 o
n 

20
26

-0
2-

18
 ]

 

                            12 / 19

https://jiaeee.com/article-1-273-en.html


 

15 

Jo
ur

na
l o

f I
ra

ni
an

 A
ss

oc
ia

tio
n 

of
 E

le
ct

ric
al

 a
nd

 E
le

ct
ro

ni
cs

 E
ng

in
ee

rs
 - 

V
ol

.3
- N

o2
.F

al
l a

nd
 W

in
te

r 2
00

6 

1385   پاييز و زمستان–  دوم شماره-سوم سال -  مجله انجمن مهندسين برق و الكترونيك ايران

3.3.1 Homogeneous regions modeling 
In general, any image Rrrf j ∈),(  is composed of 

a finite set jk  of homogeneous regions jkR  with 

given labels jj kKKkz ,...,1,)( ==  such 

that { }KkzrR jjk == )(: , jkkj RUR =  and the 

corresponding pixel values 
{ }jkjjk Rrrff ∈= :)(  and jkkj fUf = . The 

Hidden Markov modeling (HMM) is a very general 
and efficient way to model appropriately such 
images. 
The main idea is to assume that all the pixel values 

{ }jkjjk Rrrff ∈= :)(  of a homogeneous region 

k  follow a given probability law, for example a 
Gaussian ∑ jkjkmN ),1(  where 1 is a generic 

vector of ones of the size jkn  the number of pixels in 

region k . 
     In the following, we consider two cases: 
   •  The pixels in a given region are assumed iid: 
 

j
2

k,jjkjj K...,,1k),,m(N)k)r(z|)r(f(p === σ   (84) 

  
and thus 
 

)I,1m(N)Rr),r(f(p)k)r(z|f(p 2
k,jjkjkjjjk σ=∈==       (85) 

 
This corresponds to the classical separable and 
monovariate mixture models. 
•  The pixels in a given region are assumed to be 
locally dependent: 
 

∑=∈==
jkjkjkjjjk ),1m(N)Rr),r(f(p)k)r(z|f(p       (86) 

 
where ∑ jk

is an appropriate covariance matrix. 

This corresponds to the classical separable but 
multivariate mixture models. 
In both cases, the pixels in different regions are 
assumed to be independent: 
 

∏ ∑∏
==

==
jj K

1k
jkjk

K

1k
jkj ),1m(N)f(p)f(p    (87) 

 
Fig.12: mixture and hidden Markov models for 

images 
 
3.3.2. Modeling the Labels 
Noting that all the models (84), (85) and (86) are 
conditioned on the value of krz j =)( , they can be 

rewritten in the following general form 
 

∑ ∑==
k

jkjkjjk ),m(N)k)r(z(P)f(p    (88) 

where either∑ jk
 is a diagonal matrix 

∑ =
jk jk I2σ   or not. Now, we need also to model 

the vector variables { }Rrrzz jj ∈= ),( . Here 

also, we can consider two cases: 
•  Independent Gaussian Mixture model (IGM), 

where { }Rrrz j ∈),(   are assumed to be 

independent and 
 

∏∑ ====
k

j
k

j pk)z(p,1pkwith,pk)k)r(z(P   (89) 

•  Contextual Gaussian Mixture model (CGM), 

where { }Rrrzz jj ∈= ),(  are assumed to be 

Markovian: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−∝ ∑ ∑

∈ ∈Rr )r(vr
jjj ))s(z)r(z(exp)z(p δα    (90) 

 
which is the Potts Markov random field (PMRF). The 
parameter α  controls the mean value of the regions’ 
sizes. 
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3.3.3. Hyper-parameters Prior Law 
The final point before obtaining an expression for the 
posterior probability law of all the unknowns, i.e., 
( )gfp θ,  is to assign a prior probability law ( )θp  

to the hyper-parametersθ . Even if this point has been 
one of the main discussing points between Bayesian 
and classical statistical research community, and still 
there are many open problems, we choose here to use 
the conjugate priors for simplicity. The conjugate 
priors have at least two advantages: 1) they can be 
considered as a particular family of a differential 
geometry based family of priors [25, 26, 27] and 2) 
they are easy to use because the prior and the 
posterior probability laws stay in the same family. In 
our case, we need to assign prior probability laws to 
the means jkm , to the variances 2

jkσ  or to the 

covariance matrices ∑ jk
and also to the covariance 

matrices of the noises i∈  of the likelihood functions. 

The conjugate priors for the means jkm  are in 

general the Gaussians ( )2
,0 kok jjmN σ  , those of 

variances 2
jkσ  are the inverse Gammas 

( )00 , βαIG  and those for the covariance matrices 

∑ jk
are the inverse Wishart’s ),( 00 ΛαIw . 

 
3.3.4. Expressions of Likelihood, Prior and 
Posterior Laws 
We now have all the elements for writing the 
expressions of the posterior laws. We are going to 
summarizes them here: 
 •  Likelihood: 

( ) ( ) ( )∏ ∏ ∑∑= = ∈∈
−==

M

i

M

i ii
fgNfgpfgp

1 1
,,,θ

 where we assumed that the noises i∈  are 
independent, centered and Gaussian with covariance 
matrices∑∈i

 which, hereafter, are also assumed to 

be diagonal∑∈ ∈=
i i I2σ . 

•  HMM for the images: 

( ) ( )∏ ∑=
=

N

j jjjj mzfpzfp
1

,,,θ  where we 

used { }Njzz j ,...,1, ==  and where we assumed 

that jj zf  are independent. 

•  PMRF for the labels:  

( ) ( )( )[ ]∏ ∑∑= ∈∈
−∝

N

j rvs jjRr
szrzzp

1
)()(exp δα

where we used the simplified notation 
( ) ( )( )RrrzrZPzp jj ∈== ,)(   and where we 

assumed { }Njz j ,...,1, =   are independent. 

•  Conjugate priors for the hyper-parameters: 
 

),,()(p),,m(N)m(p 0j0j
2
jk

2
0jk0jkjk βατςσσ ==  

),()(p),,(W)(p 0j0jei0j0jjk
βατςσΛατ ==∑  

•  Joint posterior law of f , z  and θ . 

 
)(p)|z(p),z|f(p),f|g()g|,z,f(p 221 θθθθθ ∝  

 
3.4. Bayesian Estimators and 
Computational Methods 
The expression of this joint posterior law is, in 
general, known up to a normalization factor. This 
means that, if we consider the Joint Maximum A 
Posteriori (JMAP) estimate: 
 

{ })g|,z,f(pmaxarg)ˆ,f̂,f̂(
),z,f(

θθ
θ

=          (91) 

we need a global optimization algorithm, but if we 
consider the Minimum Mean Square Estimator 
(MMSE) or equivalently the Posterior Mean (PM) 
estimates, then we need to compute this factor which 
needs huge dimensional integrations. There are 
however three main approaches to do Bayesian 
computation: 
• Laplase approximation: When the posterior law is 
unimodal, it is reasonable to approximate it with an 
equivalent Gaussian which allows then to do all 
computations analytically. Unfortunately, very often,  
( )gzfp θ,,  as a function of f  only may be 

Gaussian, but as a function of  z  or θ   is not. So, in 
general, this approximation method can not be used 
for all variables. 
•  Variational and mean field approximation: The 
main idea behind this approach is to approximate the 
joint posterior ( )gzfp θ,,  with another simpler 

distribution ( )gzfq θ,,  for which the computations 

can be done. A first step simpler distribution 
( )gzfq θ,,  is a separable ones: 
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)(q)z(q)f(q)g|,z,f(q 321 θθ =             (92) 
In this way, at least reduces the integration 
computations to the product of three separate ones. 
This process can again be applied to any of these 
three distributions, for example 

∏= j jj fqfq )()( 11 . With the Gaussian 

mixture modeling we proposed, )(1 fq  can be chosen 

to be Gaussian, )(2 zq  to be separated to two parts 

)(1 zq B  and )(1 zq W  where the pixels of the images 
are separated in two classes B and W as in a checker 
board. This is thanks the properties of the proposed 
Potts-Markov model with the four nearest 
neighborhood which gives the possibility to use 

)(1 zq B  and )(1 zq W  separately. For )(3 θq  very 
often we also choose a separable distribution which 
use the conjugate properties of the prior distributions. 
•  Markov Chain Monte Carlo (MCMC) sampling 
which gives the possibly to explore the joint posterior 
law and compute the necessary posterior mean 
estimates. In our case, we propose the general 
MCMC Gibbs sampling algorithm to estimate f  , 

z  and θ  by first separating the unknowns in two 

sets ( )gzfp ,, θ  and ( )gzfp ,,θ . Then, we 

separate again the first set in two subsets 
( )gzfp ,,θ  and ( )gzp ,θ . Finally, when 

possible, using the separability along the channels, 
separate these two last terms in ( )jjjj gzfp ,,θ  

and ( )jjj gzp ,θ . The general scheme is then, using 

these expressions, to generates samples ( )nf  , ( )nz , 
( )nθ  from the joint posterior law ( )gzfp θ,,  and 

after the convergence of the Gibbs samplers, to 
compute their mean and to use them as the posterior 
estimates. 
In this paper we are not going to detail these methods. 
However, in the following we propos to examine 
some particular cases through a few case studies in 
relation to image restoration, image fusion and joint 
segmentation, blind image separation.] 
 
 
 

4. Case Studies 
 
4.1. Single Channel Image Denoising and 
Restoration 
The simplest example of inversion is a single channel 
image denoising and restoration when the PSF of the 
imaging system is given. The forward model for this 
problem is  
 

eHfgorRr),r(e)r(f*)r(h)r(g +=∈+=    (93) 
 
where the denoising case corresponds to the case 
where )()( rrh σ=  and 1=H . Assuming the 
noise to be centered, white and Gaussian with known 
variance 2

∈σ , we have 
 

Iwith),Hf(N)f|g(p 2
eee σΣΣ ==      (94) 

The priors for this case can be summarized as 
follows: 
 

K...,,1k),,m(N)k)r(z|)r(f(p 2
kk == σ  (95) 

⎥
⎦

⎤
⎢
⎣

⎡
−∝∈= ∑ ∑

∈ ∈Rr )r(vr

))s(z)r(z()Rr),r(z(p)z(p δα    (96) 

where  
{ } { }k)r(z:rR,Rr:)r(ff kkk ==∈=  

∑ ===
k k

2
kkkkk Iwith),1m(N)k)r(z|f(p σΣ

∏ ∑ ==
k zzkkk with),m(N),1m(N)z|f(p Σ  

[ ] [ ]∑∑=′′′= K1zKK11z ...,,diag,1m...,,1mm Σ  

),m(N)m(p 2
0k0kk σ=      (97) 

),()(p),,()(p e
0

e
0

2
e0k0k

2
k βατςσβατςσ ==  

and the posterior probability laws we need to 
implement an MCMC like algorithm are: 
 

)ˆ,f̂(N)g,,z|f(p Σθ =  

With   11
z

1
e

t )HH(ˆ −−− += ΣΣΣ                 (98) 

And   )mgH(ˆf̂ z
1

z
1

e
t −− += ΣΣΣ  

 
)z(p),z|g(p),g|z(p θθ ∝                    (99) 

)HHwith),Hm(N),z|g(p e
t

zggz ΣΣΣΣθ +==  

and the posterior probabilities of the hyper-
parameters are: 
 

)
mfn

(,)1n
(with),(N)f,z|m(p 2

k

k
2
k

kk2
kk

1
2
k

2
k

k2
k

2
kkk

0

0

0
σσ

υµ
σσ

υυµ +=+== −
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2
sn

and
2
n

with),()z,f|(p kk
kk

k
kkk

2
k 00

+=+= ββαβατςσ  

∑∑
∈∈

−==
kk Rr

2
kk

Rr
i

k
k )m)r(f(s,)r(f

n
1fwhere  

e
0

2e2
0

eee2
e Hfg

2
1and

2
nwith),()g,f|(p ββααβατςσ +−=+==

 

=kn number of pixels in kR  and n = total number 

of pixels.  
Here, we show two examples of simulations: the first 
in relation with image denoising and the second in 
relation with image deconvolution. In both cases, we 
have chosen the same input image ( )rf . In the first 
case, we only has added a Gaussian noise and in the 
second case, we first blurred it with box car PSF of 
size 7×7 pixels and added a Gaussian noise. Fig. (13) 
shows the original image, its contours and its regions. 
Fig. (14) shows the observed noisy image and the 
results obtained by the proposed method. Remember 
that, in this method, we have also the estimated 
contours and region labels as byproducts. Fig. (15) 
shows the observed blurred and noisy image and the 
results obtained by the proposed restoration method. 
For other inverse problems which can be modeled as 
a SISO model and where such Bayesian approach has 
been used refer to [28]. 

 
Fig.13: Original image, its contour and its region 
labels used for image denoising and image 
restoration 

 
Fig.14: Observed noisy image and the results of 

the proposed denoising method. 

 
Fig.15: Observed noisy image and the results of 

the proposed restoration method. 
 

4.2. Registered Images Fusion and Joint 
Segmentation 
Here, each observed image )(rgi  (or 

equivalently ig ) is assumed to be a noisy version of 

the unobserved real image )(rfi  (or equivalently if ) 
 

M...,,1i,efgor,Rr),r(e)r(f)r(g iiiiii =+=∈+=    (100) 
which gives 
 

Iwith),f(N)f|g(p 2
eieieiiii σΣΣ ==   (101) 

 
and 
 

∏=
i

ii with)f|g(p)f|g(p                (102) 

 
and all the unobserved real 
images Mirfi ,...,1),( =  are assumed to have a 

common segmentation ( )rz  (or equivalently z ) 
which is modeled by a discrete value Potts Random 
Markov Field (PRMF). Then, using the same 
notations as in previous case, we have the following 
relations: 
 

K...,,1k,),m(N)k)r(z)r(f(p 2
ikiki === σ  

{ } { }k)r(z:rR,Rr:)r(ff kkiik ==∈=  

k
2
ikikikkikik Iwith),1m(N)k)r(z|f(p σΣΣ ===  

[ ]))s(z)r(z(exp)Rr),r(z(p)z(p )r(vsRr −∝∈= ∈∈ δΣΣα  

with),m(N)z|f(p zizii Σ=  

[ ] [ ]iK1iziKiK11izi ...,,diag,1m...,,1mm ΣΣΣ =′′′=

),m(N)m(p 2
0ik0ikik σ=  

),()(p),,()(p e
0i

2
0i

2
ei0i0i

2
ik βατςσβατςσ ==  

∏= i i )z|f(p)z|f(p  

 
 
and all the conditional and posterior probability laws 
we need to implement the proposed Bayesian 
methods are summarized here: 
 

)ˆ,f̂(N)g,,z|f(p iiiii Σθ =  
With  

)mg(ˆf̂,)(ˆ
zi

1
zii

1
eiii

11
z

1
eii

−−−−− +=+= ΣΣΣΣΣΣ  
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with)Rr),r(z(p)),z|g(p(),g|z(p
i ii ∈∝ ∏ θθ  

eizigigiziii with),m(N),z|g(p ΣΣΣΣθ +==  

),(N),z,f|m(p 2
ikik

2
ikiik υµσ =  

1
2
ik

k
2
0i

2
ik2

ik

ikk
2
0i

0i2
ikik )

n1(,)
fnm

( −+=+=
σσ

υ
σσ

υµ  

2
s

,
2
n

with),()z,f|(p i
0iik

k
0iikikiki

2
ik +=+== ββσαβατςσ  

2
ikiRriiRr

k
ik )m)r(f(s),r(f

n
1fwhere

kk
−== ∈∈ ΣΣ  

e
0i

2
ii

e
i

e
0i

e
i

e
i

e
iii

2
ei fg

2
1,

2
nwith),()g,f|(p ββααβατςσ +−=+==

 

 
For more details on this model and its application in 
medical image fusion as well as in image fusion for 
security systems see [29, 30]. 
 

 
Fig.16: Image fusion and segmentation of two 
images from a security system measurement. 

4.3. Joint Segmentation of Hyper-spectral 
Images 
The proposed model is the same as the model of the 
previous section except for the last equation of the 
forward model which assumes that the pixels in 
similar regions of different images are independent. 
For hyper-spectral images, this hypothesis is not valid 
and we have to account for their correlations. This 
work is under consideration. 
 
4.4. Segmentation of a Video Sequence of 
Images 
Here, we can not assume that all the images in the 
video sequence have the same segmentation labels. 
However, we may use the segmentation obtained in 
an image as an initialization for the segmentation of 
next image. For more details on this model and to see 
a typical result see. 
 
4.5. Joint Segmentation and Separation of 
Instantaneous Mixed Images 
Here, the additional difficulty is that we also have to 
estimate the mixing matrix A. For more details on this 
model and to see some typical result in joint 
segmentation and separation of images see [27, 31, 
32, 33, 34, 35]. 

5. Conclusion 
In this paper we first showed that many image 
processing problems can be presented as inverse 
problems by modeling the relation of the observed 
image to the unknown desired features explicitly. 
Then, we presented a very general forward modeling 
for the observations and a very general probabilistic 
modeling of images through a hidden Markov 
modeling (HMM) which can be used as the main 
basis for many image processing problems such as: 1) 
simple or multi channel image restoration, 2) simple 
or joint image segmentation, 3) multi-sensor data and 
image fusion, 4) joint segmentation of color or hyper-
spectral images and 5) joint blind source separation 
(BSS) and segmentation. Finally, we presented 
detailed forward models, prior and posterior  
probability law expressions for the implementation of 
MCMC algorithms for a few cases of those problems 
showing typical results which can be obtained using 
these  methods. 
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