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Abstract: In this paper, first a great number of inverse
problems which arise in instrumentation, in computer
imaging systems and in computer vision are presented.
Then a common general forward modeling for them is
given and the corresponding inversion problem is
presented. Then, after showing the inadequacy of the
classical analytical and least square methods for these ill
posed inverse problems, a Bayesian estimation framework
is presented which can handle, in a coherent way, all these
problems. One of the main steps, in Bayesian inversion
framework is the prior modeling of the unknowns. For this
reason, a great number of such models and in particular the
compound hidden Markov models are presented. Then, the
main computational tools of the Bayesian estimation are
briefly presented. Finally, some particular cases are studied
in detail and new results are presented.
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1. INTRODUCTION

Inverse problems arise in many applications in
science and engineering. The main reason is that,
very often we want to measure the distribution of an

non-observable quantity f(r) from the observation
of another quantity g(S) which is related to it and
accessible to the measurement. The mathematical
relation which gives g(S)when f(r) is known is
called forward problem:

g(s) =[Hf (N1(s)+ € (s) @
where H is the forward model. In this relation, r
and S may represent either time t, position on a line

X, position on a surfacer =(X,Yy) , position in
space I = (X, Y, Z) or any combinations of them.

This forward model is often non linear, but it can
be linearized. So, in this paper, we only consider the
linear model, which in its general form, can be
written as

g(s):jh(r,s)f(r)dr+e(s) (2)
Where h(r,s) represents the measuring system

response and € (S) all the errors (modeling,

linearization and the other unmodelled errors often
called noise). In this paper, we assume that the
forward model is known perfectly, or at least, known
excepted a few number of parameters. The inverse
problem is then the task of going back from the

observed quantity g(S) to f (r). The main difficulty

is that, very often these problems are ill-posed, in
position to the forward problems which are well-
posed as defined by Hadamard [1]. A problem is
mathematically well-posed if the problem has a
solution  (existence), if the solution exists
(uniqueness), and if the solution is stable (stability).
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A problem is then called ill-posed if any of these
conditions are not satisfied [2].

In this paper, we will only consider the algebraic
methods of inversion where, in a first step the
forward problem is discretized, i.e.,, the integral

equation is approximated by a sum and the input f
the output g and the errors € are assumed to be well

represented by the finite dimensional vectors f , g
and € such that:

gi:zHijfj+ei ,i=1.,n—>g=Hf+e (3)
j=1

Where g; =g(s;),€;=€(s;), f; = f(r;) and

H; =h(r;,s;) orinamore general case

g, =(4,(5), 9(s)) = [ 4, (5)g(s) ds
e =(4(5).e(5)=[4,(s) e (5)ds @)
fo= Wy, F) = [y () f(r)dr

where ¢,(S) and w;(S) are appropriate basis

function in their corresponding spaces which means
that, we assume

9523415

©=2 <40

f@sgnmm )
Hy =(6,(8)y; () = [ [wi(r) 6 (s) dr s

But, before going further in details of the inversion
methods, we are going to present a few examples.

1.1. 1D Signals
Any instrument such as a thermometer which tries to
measure a non-directly measurable quantity f (t)

(here the time variation of the temperature)
transforms it to the time variation of a measurable

quantity g(t) (here the length of the liquid in the
thermometer). A perfect instrument has be at least
linear. Then the relation between the output g(t)

and the input f (t) is:

g(t) =[h(t.t) f (t')dt+ e () (6)

4

where h(t,t") the instrument’s response. If this

response is invariant in time, then we have a
convolution forward model:

g(t)=J.h(t—t')f(t’)dt+e(t) (7)

and the corresponding inverse problem is called
deconvolution.

A

Flgl Decon"volution of I"D signals. o

The convolution equation (7) can also be written
g(t):_fh(r)f(t—r)dﬁe(t) (8)

which is obtained by change of variable t —t' =17 .
Assuming the sampling interval of f, h and g to

be equal to 1, the discretized version of the
deconvolution equation can then be written:

g() =Y h() fi-K)+e(), i=1..,T 9)

which can be written in the general vector-matrix
form:

g=Hf+e (10)

where g and f contains samples of the output

g(t) and the input f (t) and the matrix H , in this
case, is a Toeplitz matrix with a generic ligne
composed of the samples of the impulse response
h(t) . The Toeplitz property is thus identified to the

time invariance property of the system response
(convolution forward problem).

1.2. Image Restoration

In this paper, we consider more the case of bivariate
signals or images. As an example, when the unknown
and measured quantities are images, we have:

g(r):Ih(r—r')f(r')dr'+e(r) 11

and if the system response is spatially invariant, we
have
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g(r) :jh(r—r’)f(r’)+e () (12)

The case of denoising is the particular case where the
point spread function (psf) h(r) is h(r) = o(r):

g(r) = f(+e(n) (13)

Fig.2: Image restoration as an inverse problem

The discretized version of the 2D deconvolution
equation can also be written as g = Hf + € where

g and f
samples of the output g(r) and the input f(r),

and the matrix H in this case, is a huge dimensional
Toeplitz-Bloc-Toeplitz (TBT) matrix with a generic
bloc-ligne composed of the samples of the point
spread function (PSF) h(r). The TBC property is

thus identified to the space invariance property of the
system response (2D convolution forward problem).
For more details on the structure of this matrix refer
to the book [3] and the papers [4, 5, 6].

contains, respectively, the rasterized

1.3. Image Reconstruction in Computed
Tomography

In previous examples, g(S) and f(r) where
defined in the same space. The case of image
reconstruction in X ray computed tomography (CT) is
interesting, because the observed data g(S) and the
unknown image f(r) are defined in different

spaces. The usual forward model in CT is shown in
Figure (1.3).

In 2D case, the relation between the image to be
reconstructed f(X,y) and the projection data

g(r,¢) =g,(r) is given by the Radon transform:

9= [ F0cy)dk(r )= [[ (¢ y) S —xcosp—ysing) dxy-< (r,¢)
Ly

149

The discretized version of this forward equation can

also be written as g=Hf +Q where
g :[gl,-~-,gk] contains samples of projection
data  g(r,¢,) for different angles g,

k=1--- K, f ={f(r), re R} contains  the
image pixels put in a vector and the elements Hij of

the matrix H , in this case, represents the length of
the £th ray in the fth pixel. This matrix is a very

sparse matrix with great number of zero valued
elements [7, 8].

3D D

Frojeciors
P
,./
i _.-K\
R

y gl
|
1
| /

gglry,ra) = / flo y, 2

ydl gulr) = [ Fle,g)dl
Lry,ra,s v

Forward probelm: f{r o) or flr y, =

| — ga(r) or galri, r2)
Inverse problem: gg(r) or ga(ri.re) — flry) or flo, gy, 2)
Fig.3: 2D and 3D ray computed tomography
Y Hi

a ™~

alr, o) = f fle.u)dl vi :iHu
Ly =1
Fig.4: Discretized 2D X ray coputed tomography

] w w [ C 3 20 =0

Fig.5:Inverse problem of image reconstruction in
X ray computed tomography
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1.4 Time varying imaging systems
When the observed and unknown quantities depend
onspace I' andtime t, we have

a(r,t)= jh(r —r',t—t)f(r',t")drdt'+ e (r,t) (15)
If the point spread function of the imaging system
does not depend on time, then we have

In this case, t can also be considered as an index:

g.(n) = [h(r=r)f(rdr+e () A7)

g(r,0)= [h(r—r) f(r’,t)ydr'+  (r,1) (16)

One example of such problem is the video image
restoration shown in Figure (1-6).

Fig.6: inverse problem of video image restoration

The discretized version of this inverse problem can be
written as

g, = Hf + ¢ (18)
Where g, and f, contains samples of the ouput

g,(r) and the intput f,(r) and the matrix H , in

this case, is again a Toeplitz-Bloc-Toeplitz (TBT)
matrix with a generic bloc-ligne composed of the
samples of the point spread function (PSF) h(r).

1.5. Multi Inputs Multi Outputs Inverse

problems
Multi Inputs Multi Outputs (MIMO) imaging
systems can be modeled as:

gi(s)zijhij(s,r)fj(r)dw g (r), i=L.,N (19

2 YYAD (bnoj 9 maly— 093 0 lowd —@gus Jlow =l Sig 53U 9 (32 (e (ool oo ==

15.1. MIMO Sources Localization and
Estimation
One such example is the case where N radio sources

{fj(t), j :1,-~-,n} emitting in the same time are
received by m receivers {gi(t), i=1,~--,m} '

each one receiving a linear combination of delayed
and degraded versions of original waves:

gi(t)=i]hij(t—t')f,.(t'—rij)dturei ® ,i=1..,N (20)
=1
Where hy (t) is the impulse response of the channel

between the £th receiver and the jfth source. The

discretized version of this inverse problem can be
written as

g, = Hi'jfj+ 3

(21)

Where ¢; and fj contains samples of the output

g;(t) and the input f (t) and the matrices H, ;
are Toeplitz matrices described by the impulse

g:(r) =th,- (r-r)f;(r)dr+< () (22

responses h; ; (t) .

1.5.2. MIMO Deconvolution

A MIMO image restoration problem is :

and one such example is the case of color image
restoration where each color component can be
considered as an input.

- o k i - 24 B
Fig.7: Color image restoration as an example of
MMO inverse problem

1.6. Source Separation
A particular case of a MIMO inverse problem is the
blind source separation (BSS):

gi(r) = X [ Ay (r =) ,(r) dr'+ & (1) (23)

and a more particular one is the case of instantaneous
mixing:
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g;(r)= ZAU f,(r)+e () (24)

The particularity of these problems is that the the
mixing matrix A= {A\,} is also unknown.

YA .
U i S

F|g.8: Blind image separation

1.7. Multi Inputs Single Output Inverse
problems

A Multi Inputs Single Output (MISO) system is a
particular case of MIMO when we have only one
input:

9,() =2 [hsnfndr+e () (25

1.7.1. MIMO sources localization and
Estimation

One example of MISO inverse problem is a non
destructive testing (NDT) for detection and
evaluation of the defect created due to an impact on a
surface of an object using microwave imaging where
two images are obtained when a rectangular
waveguide scans this surface two times. In the first
scan the rectangular waveguide is oriented in shorter
side and in the second case in longer side. By this

way, two images @, (r), i =12 are obtained, each
has to be considered as the output of a linear system
with the same input f(r) and two different

channels. This is a MISO linear and invariant
systems.

1.7.2. Image Super-resolution as a MISO
Inverse Problem

Another MISO system is the case of Super-
Resolution (SR) imaging using a few Low Resolution
(LR) images obtained by low cost cameras:

g,(s)= X [h(s,)F(r)dr+e, () (26)

where @; are the LR images and f is the desired

High Resolution (HR) image. The functions hi

represent a combination of at least three operations: i)
a low pass filtering effect, ii) a movement
(translational or with rotation and zooming effects) of
the camera and iii) a sub-sampling.

The following figure shows one such situation.

B N .1
b 1
B [k duk 3

Fig.9: SR problem where a series of LR image are
used to construct a HR image

>
Y

The discretized version of this inverse problem can
be written as

9, =H,f+e (27)
Where Q; and f contains samples of the output

g{d and the input fi(t) and the matrices H. . are

0]
Toeplitz matrices described by the impulse responses

h,; ().

1.8. Multi Modality in CT Imaging Systems
Using different modalities has become a main tool in
imaging systems where to explore the internal
property of a body one can use X rays, ultrasounds,
microwaves, infra-red, magnetic resonance, etc. As
an example, in X ray imaging, the observed
radiographies give some information on the
voluminal distribution of the material density inside
the object while the ultrasound echography gives
information on the changing positions (contours) of
ultrasound properties inside the object. One can then
want to use both techniques and use a kind of data
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fusion to obtain a higher quality of images of the
body. An example of such situation is given in (1.8).

h™ . —d /= fr T —

Fig.10: multi modality in CT imaging systems (a)
Original object, (b) Contours of the different

homogenous regions, (c) Data geometry in X ray
tomography, (d) Data acquisition geometry in

ultrasound echography, (e) Observed data
(sonogram) in X ray tomography, (f) Observed
data in ultrasound echography.

1.9. Fusion of X-Ray and Ultrasound
Echography

An example of multimodality and data fusion in CT is
the use of X ray radiographic data and the ultrasound
echographic data is shown in Figure (11) and for
more details on this application see [9, 10, 11, 12].

|'@l
St ¥

£ g = £ =

Fig.11: Inverse problem of X ray and ultrasound
data fusion

2. Basics of Deterministic Inversion

Methods

To illustrate the basics of the inversion methods, we
start by considering the case of a Single Input Single
Output (SISO) linear system:

8

g=Hf+e (28)

The idea can be easily extended to the case of MISO
or MIMO. For an extend details to these methods
refer to [13, 14].

2.1. Match Filtering
First assume that the errors and measurement noise
are negligible and that we could choose the basis

functions ¢ and y/; could be chosen in such a way
that the matrix H is square (m = n) and self-djoint
(H’H :l) (un unrealistic hypothesis). Then, the

solution to the problem would be:

f=Hy (29)

This solution has been used in many cases. For
example in deconvolution, this solution is called
Matching filtering. The main reason is that, in a

deconvolution problem, the matrix H is a Toeplitz
matrix, so is its transpose H'. The forward matrix
operation Hf  corresponds to a convolution

conv (h, f). The adjoint matrix operation H'g then
also corresponds to a convolution conv (h, g) where
h(t) = h(-t).

Another example is in computed tomography (CT)
where the projection data in each angle direction Q;

is related to the image f through a projecting matrix
in that direction H, such that we can write:

9, H, Sl
o=t | f 4 (30)
9k Hy Sk
And the adjoint operation:
R K
f=Hg=>Hg (31)

corresponds to what is called back-projection.
However, as it is mentioned, the hypothesis made
here are unrealistic.
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2.2. Direct Inversion

The next step is just to assume that the forward
matrix is invertible. Then, one can try to define the
solution as:

f=H"g (32)

But, in practice, this also is an illusion, because, even

if the matrix H is mathematically invertible, it is,
very often, very ill-conditioned. This means that

small errors on the data &g will generate great errors
O on the solution. This method, in deconvolution,
corresponds to the analytical method of inverse

filtering, which is, in general, unstable.
In other applications, the main difficulty is that, very

often the matrix H is even not square,
i.e., (m # n), because the number of the measured
data M may not be equal to the number of
parameters N describing the unknown function f
in (5).

2.3. Least Square and Generalized
Inversion

For the case where m)n, a solution will be the least
square (LS) defined as:

o . 2
f =arg mfln{||g — Hf|| } (33)

which results to the normal equation:

[HH]f =HY (34)
and if the matrix HH is inversable (rang
(H H ) = N ), then the solution is given by:

f =[HH]"HY (35)
When m(n, the problem may have an infinite

number of solutions. So, we may choose one of them
by requesting some particular a priori property, for
example to have minimum norm. The mathematical
problem is then:

f =arg min i|f||2} (36

{Hf=g}
or written differently

min imize Hsz subject to Hf =g (37)

The solution is obtained via the Lagrange multiplier
method which, in this case, results to

o GG <38>

which gives
f,=H'(HH")g (39)

if HH' is invertible.

The main difficulty in these methods is that the
solution, in general, is too sensitive to the error in the
data due to the ill conditioning of the matrices to be
inverted.

2.4. Regularization Methods

The main idea in regularization theory is that a stable
solution to an ill-posed inverse problem can not be
obtained only by minimizing a distance between the
observed data and the output of the model, as it is for
example, in LS methods. A general framework is then
to define the solution of the problem as the minimizer
of a compound criterion such as:

f —arg min{J(f )} (40)
with
J(f)=A,(g,Hf)+ A, (T, f,) (41

where A, and A, are two distances, the first defined
in the observed quantity space and the second in the

unknown quantity space. A is the regularization
parameter which regulates the compromise with the

two terms and f, is an a priori solution. An example
of such criterion is:

I(f)=[g - Hf|" +A|f - f|’ (42)
which results to

f=f,+[HH+A]"H'(g—Hf,) (43)
We may note that the condition number of the matrix

to be inverted here can be controlled by appropriately
choosing the value of the regularization parameter A .
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Even if the methods based on regularization approach
have been used with success in many applications,
three main open problems still remains:

i) Determination of the regularization parameter, ii)

The arguments for choosing the two distances A, and

A, and iii) Quantification of the uncertainties

associated to the obtained solutions. Even if there
have been a lot of works trying to answer to these
problems and there are effective solutions such as the
L-curve or the Croos Validation for the first, the two
others are still open problems. The Bayesian
estimation framework, as we will see, can give
answers to them [15].

3. Bayesian Estimation Framework
To illustrate the basics of the Bayesian estimation
framework, let first consider the simple case of SISO

system @ = Hf + € where we assume that H s

known.
In a general Bayesian estimation framework, the
forward model is used to define the likelihood

function p(g|f,t91) and we have to translate our
prior knowledge about the unknowns £ through a

prior probability law p(f|€2) and then use the
Bayes rule to find an expression for p(f |g , 6’) .

PGS, )
plal6)

where  p(g|f,6,) is the likelihood whose

expression is obtained from the forward model and

assumption on the errors €, & = (6,6, ) represents

all the hyper-parameters (parameters of the likelihood
and priors) of the problem and

plgle)=[ plg

is called the evidence of the model.
When the expression of p(f |g, 6’) is obtained, we

p(f

t.0,)p(f(6,)df (45)

can use it to define any estimates for f. Two usual
estimators are the maximum a posteriori (MAP)

f =arg mfax{p(f 9, 49)} (46)

= VYAD (i 5 sl 039 8 lond gt s ~ ol Seig S 3 32 o el e = 10

and the Mean Square Error (MSE) estimator which
corresponds to the posterior mean

f =[f p(flg,0)df (47)
Unfortunately only for the linear problems and the
Gaussian laws where p(f |g, 0) is also Gaussian we

have analytical solutions for these two estimators. For
almost all other cases, the first one needs an
optimization algorithm and the second an integration
one. For example, the relaxation methods can be used
for the optimization and the MCMC algorithms can
be used for expectation computations. Another

difficult point is that the expressions of p(g| f, 6?1)
and p(f |02) and thus the expression of p(f |g,0)

depend on the hyper-parameters & which, in
practical applications, have also to be estimated either
in a supervised way using the training data or in an
unsupervised way. In both cases, we need also to
translate our prior knowledge on them through a prior
probability p(&) .

Thus, one of the main steps in any inversion method
for any inverse problem is modeling the unknowns.
In probabilistic methods and in particular in the
Bayesian approach, this step becomes the assignment

of the probability law p(f |491). This point, as well as

the assignment of P(€), are discussed the next two
subsections.

3.1 Simple case of Gaussian models
Let consider as a first example the simple case where

Q and f are assumed to be Gaussian:
olg f.67)=NO.R. =0.%1,)

o

xeXp-—F €€

20,

p(f‘o_fz’%): N(fO’Rf :UfZRJ) (48

o ex;{— : (=T R(f- fo)}

20,

Then, it is easy to show that:
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dglf,o?) = N(Hf,c1,)
]
20,
dgo’.oR)  =NHE,HRH +R) 49

1 1 4
dofloto’p) = ex{w(ng)‘(ng)hz(f —fR(f - fo)}

and

o202 P P
)-SR
With

f = f,+RH'(HR,H' + R ) (g — Hf,)
= RH'R;}(g —Hf,),

P=R, —R,H'(HR,H'+R,) 'HR,
=R +H'RH)™?

1)

2
o
When f, =0 and noting by 4 =—=5 , these
O

relations write:

P=c2(H'H + AP, 1)! (52)
e 0

{f =(H'H + AP, ") *H'g = PH g

It is noted that, in this case, all the point estimators
such as the MAP, the posterior mean or posterior
median are the same and can be obtained by:

f =argmax{p(f | 9)}=argmin {-In p(f | g)}=arg min{d (1)} (53)
with

J(f)=|g-Hg |+ A(f'P*F) (54)
Three particular cases are of interest:

« P, =1. This is the case where £ are assumed
centered, Gaussian and i.i.d.:

p(f)ocexp{—z1 > ff}cexp{—zizfz} (5)

N

o

- B = CC'. This is the case where f£are assumed

centered, Gaussian but correlated. The vector f is then
considered to be obtained by:

f=Cé& (56)
with C corresponds to a moving average (MA)
filtering and p(&) = N(0,1). In this case, we have:

p(f)ocexp{— 1 z [cf ]f}ocexp[— ! [t Hz} (57)

20! 202

. p0=(DtD)_1=(I —A)_l. This is the case

where fj are assumed centered, Gaussian and

autoregressive:

f=Af+& (58)

with A a matrix obtained from the AR coefficients
and p(&)=N(0,1). In this case, we have

1
202

p(f) o exp| — |Df || 2 (59)

A particular case of AR model is the first order
Markov chain

p(f; 1 f;)=N(f,,07) (60)
with corresponding Aand D = | — A matrices
00 0 1 0 0
10 0 -1 1 0
A=l0 1 0 , D=0 -11 (61)
0 10 0 -1 1

which give the possibility to write

1

20°

p(f) e expli— |Df 2} oc exp{—&i2  (f; - fjl)z} (62)
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These particular cases give us the possibility to
extend the prior model to other more sophisticated
non-Gaussian models which can be classified in three
groups:

» Separable:

p(f) o exp{— ay #(f, )} (63)
i
where ¢ is any positive valued function.
» Simple Markovian:
p(f) o exp{Z #(f; - fj_l)} (64)
i

where ¢ is any positive valued function called
potential function of the Markovian model.
» Compound Markovian:

p(f |c)ocexp{—a2¢(fj—fj_l,cj)} (65)

where ¢ is any positive valued function whose
expression depends on the hidden variable c.

Some examples of the ¢ expressions used in many
applications are:

¢(t):{t2;|t|ﬁ, 1<f<2; —tint+1t>0; min(tz,l);%} (66)

These equations can easily be extended for the case
of multi-sensor case.

However, even if a Gaussian model for the noise is
acceptable, this model is rarely realistic for most real
word signals or images. Indeed, very often, a signal
or an image can be modeled locally by a Gaussian,
but its energy or amplitude can be modulated, i.e.;
piecewise homogeneous and Gaussian [16, 17, 18].
To find an appropriate model for such cases, we
introduce hidden variables and in particular hidden
Markov modeling (HMM). In the following, we first
give a summary description of these models and then
we will consider the general case of MIMO systems
with prior HMM modeling.

S AYAD iase 5 = g3 o a3 L5l S 7S 5 30 s cyol oo mm 12

3.2. Modeling Using Hidden Variables

3.2.1 Signal
Modulation
A simple model which can capture the variance
modulated signal or images is [19, 17, 20].

and Images with Energy

p(f;1d;, A)=N(©,2d,) . p(d;|2)=5(3/2.2) (67)

where G is a Gamma distribution. It is then easy to
show the following relations:

p(f,d |/’t)ocexp{—/12( P +dj)}

4d?
-1 2
f _ Hf 68
p(g )ocexpLUezllg II} (68)
and
p(f,d]g)ecexp[-I(f,d)] (69)
1 2 f?
HEd) =5 slg - R+ 23 (ﬁﬂh)

If we try to find the joint MAP estimate of the
unknowns (f ,d) by optimization successively with

respect to f when d

d when f s fixed, we obtain the following
iterative algorithm:

is fixed and with respect to

f=(0,?H'H +24D)"H'g
D =diag[1/(4d?), j=1,...n] (70)
d;=f,/2

3.2.2. Amplitude Modulated Signals

To illustrate  this  with  applications in
telecommunication signal and image processing, we
consider the case of a Gaussian signal modulated with
a two level or binary signal. A simple model which
can capture the variance modulated signal or images
is

p( fj |Zj1/1)= N(ZJ,Z/E)
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z,e{m, =0, m, =1} (71)
p(z;=m )=(1/2),k=1,.,K=2

It is then easy to show the following:

p(f,12)=(172)[N(0,2/4)+ N(1,2/24)]
=3 (LI2)N(m,, 0t =2/1)

p(flza)wexpl- 2 (f,-2,)?]

p(f,12,,4)cc expl-A(f, -z, )?]

p(z| f,/”t)ocexp[—/izj(zj - fj)ZJ (72)

p(z, =k| f,,2)ec|-A(z, - f,)?]

-1
p(g|f,a§>ocexp{ ||9—Hf||2}

20!
and
p(f.z|9.02,4)cexp[-I(f,2)]
1
2= lg—Hf|*+2)f -2

Uez (73)

+In(1/2)y, Y 8(z;-m,)

!

where Z =[Zl,~-,ZN].

Again, trying to obtain the JMAP estimate (1?, 2) by

optimizing successively J (f : Z) with respect to f
and Z we obtain:

f=(c,?H'H+ A1) [H'g + 4z]

1 fj>z
| = (74)
0 fj<a

N>

where the threshold a is a function of A .

3.2.3. Gaussians Mixture Model

The previous model can be generalized to the general
mixture of Gaussians. We then have the following
relations:

p(f;lz; =k.m,v, )=N(m v, =2/ 4,)
p(z, =k)=rz2; e{l,..K}

P(f 17 .m0 )= 7 N(m . 0,)
=>7 p(z; =kN(m,.u,) (75)
p(flz,mA)ec EXp[_ZkZ{j;zj:k};tk( f; —m, )2J
wexpl- > >, A8(z, —K)(f; -m, )]

-1
p(g| f,af,m)ocexp{ ; ||g—Hf||2}

20

and thus

8(z5-k)
p(z| f.m.A)e p(f[z.mA)] ] 7"
Ocexp[_zj‘zk[j‘ké(zj _k)( fj - my )2 +|n7z'k]_|
p(z, =k|f.mA)e|[-4,(f,-m )2 +Inz ] (76)

p(f.zlg.02m,a)ecexp[-3(F,2)]
and

p(f.z]g,62,mA)cexp[-J(f,2)]

with

1
I(f.z)= 252 Hg_Hsz +Zk2{j,z1:k}ﬂ’k( fj —mq )

+>, In(z, )Zj&(zj -m,)

1
= —llo - Hf" + X, At -m]”
+>. .0 In(z, ) (77)

Z’:{ﬂ‘l""’ﬂ“k}’

n, = pj5(zj —k) is the number of samples fj

where m:{ml,--.,mk},

which are in the class z;=k and
f, = {fj 'z, = k}. For more details and
applications of such modeling see [21, 22, 23, 24].

3.2.4. Mixture of Gauss-Markov Model

In the previous model, we assumed that the samples
in each class are independent. Here, we extend this to
a Markovian model:

p(f;lz; =k,z;, =k, f, .m0, )=N(m 0, )
p( fj |Zj :k’zj—l =k, fj—l'mk'Uk): N(fj—l’uk)
p(z, =k)=r2; e{l,..K} (78)
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which can be written in a more compact way if we
introduce g =1—5(Zj -7, —1) by

( fj |gj 'fj—l’mk W)= N(qunk +(1_qj )fj—lluk (79)
which results in;

n( f |z,m,i)ocexpl—zjz 280z, —K)[f, =(a,m, +(1-9,)f,F]

cod- XS, Az —kl(1-a,)(F—-g,)(F; = )7 +a,(F, -m, | (80)
and when combined with

-1
p(g|f,a§>ocexp{ ||9—Hf||2}

20!
gives:
p(f.,z]g,02,m,A)cexp[-J(f,2)]

with

1

I(f.2)= ik

(f,z) 2Ue2||g ||

+zizklk5(zi_k)[fj_(qjmk+(1—qj)fj—1)]2

+>, N In(z,) (81)

:éug_HfHZ-kzj(l_qj)(Fj—Fj71)2+zknk|n(ﬂ-k)
1 -

- 207 ”g N anz +HGDf Hz +Zk n In(7z, )

where fj =/12j(fj —mzj), D is the first order

finite difference matrix and Q is a matrix with Q; as

its diagonal elements.
A particular case of this model is of great interest:

m, =0,Vk and 4, =4, VK. Then, we have:

p( fj |qj ’ fj—l'mk'Uk)= N((l_gj )fj—l’Uk )
p(flgq.m,A) e exp[—zjl[fj -(1-q;)f, )]2J
mexpl—iz,-[(l—qj (=T +a, 7] @2
and

p(f.qlg,02,m,1)ecexp[-JI(f.,q)]

with

S AYAD (i s 093 o —pogms Jas — 5l S S 3 5 52 comnin (300 e — 144

1
207

1
Sla—Hfl" + QDA + Y n, In(ey, )

I(E.9) =5 o-HHl" + 23 [1-a,)(f,,) +q; 7]

(83)

20,
Where n, = Zj q; is the number of discontinuities

(length of the contours in the case of an image)
o, =p(g =1 and1l-a, = P(qj :0).

In all these mixture models, we assumed Z;

independent with P(Z = k)z [1,. However, Z;

corresponds to the label of the sample fj . It is then
better to put a Markovian structure on it to capture the
fact that, in general, when the neighboring samples of
fj have all the same label, then it must be more
probable that this sample has the same label. This
feature can be modeled via the Potts-Markov
modeling of the classification labels z;. In the next
section, we use this model, and at the same time, we
extend all the previous models to 2D case for

applications in image processing and to MIMO
applications.

3.3. Mixture and Hidden Markov Models

for Images
In image processing applications, the notions of
contours and regions are very important. In the

following, we note by r = (X, Yy) the position of a
pixel and by f(r) its gray level or by
f(r)= {fl(r),..., fy (r)} its color or spectral
components. In classical RGB color representation

N =3, but in hyper-spectral imaging A/ may be more

than one hundred. When the observed data are also
images we note them by

g(r) = {g,(r),....g,, (r)}. For any image f.(r)
we note by ;(r), a binary valued hidden variable,

its contours and by Z;(r), a discrete value hidden

variable representing its region labels. We focus here
on images with homogeneous regions and use the
mixture models of the previous section with an
additional Markov model for the hidden

variable Z; (1) .
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3.3.1 Homogeneous regions modeling
In general, any image f(r), r € R is composed of

a finite set kj of homogeneous regions Rjk with

given labels Zj(k):K, K:l,...,kj such

thatR, = 1{r : 2;(k) = K|, R, =U,R;, and the
corresponding pixel values
fu :{fj(r) 're Rjk} and f; =U, f, . The
Hidden Markov modeling (HMM) is a very general
and efficient way to model appropriately such
images.

The main idea is to assume that all the pixel values
fo = {fj (N:re Rjk} of a homogeneous region
k follow a given probability law, for example a
Gaussian N(mjkl,zjk) where 1 is a generic

vector of ones of the size N the number of pixels in

region K .
In the following, we consider two cases:

* The pixels in a given region are assumed iid:
p(f,(r)z;(r)=k)=N(m, .07, ), k=1..K, (84)
and thus
B(f, 12;(r)=k)=p(f,(r),reR;)=N(m,1c%,1)  (85)

This corresponds to the classical separable and
monovariate mixture models.

» The pixels in a given region are assumed to be
locally dependent:

p(fjk|Zj(r):k):p(fj(r)vreRjk):N(mjkl’Zk) (86)

where ij is an appropriate covariance matrix.

This corresponds to the classical separable but
multivariate mixture models.
In both cases, the pixels in different regions are
assumed to be independent:

K; K,
p( fj ):H p( fjk):H N(mjkl’zjk) (87)
k=1 k=1

4

=

4

z(r) qir)

F
= |
Fir): Mixture of 1id Gaussian  f(r): Mixture of Gauss-Markov
Fig.12: mixture and hidden Markov models for

images

3.3.2. Modeling the Labels
Noting that all the models (84), (85) and (86) are

conditioned on the value of z;(r) =k, they can be
rewritten in the following general form

p( fjk):zp(zj(r):k)N(mjk’zjk) (88)

where eitherzjk is a diagonal matrix

2
zjk =0 I or not. Now, we need also to model

the vector variables z; = {zj(r), re R}. Here
also, we can consider two cases:
* Independent Gaussian Mixture model (IGM),

where {Zj (r),re R} are assumed to be
independent and

P(z,(r)=k)=pk, with Y pk=1, p(z;)=]]pk (89)

+ Contextual Gaussian Mixture model (CGM),
where Z; = {zj(r), re R} are assumed to be
Markovian:

p(z )ocexp{az > 8(z,(r)-z,(s))| (90)
reRrev(r)
which is the Potts Markov random field (PMRF). The

parameter a controls the mean value of the regions’
sizes.
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3.3.3. Hyper-parameters Prior Law
The final point before obtaining an expression for the
posterior probability law of all the unknowns, i.e.,

p(i, Q‘Q) is to assign a prior probability law p(Q)

to the hyper-parameters & . Even if this point has been
one of the main discussing points between Bayesian
and classical statistical research community, and still
there are many open problems, we choose here to use
the conjugate priors for simplicity. The conjugate
priors have at least two advantages: 1) they can be
considered as a particular family of a differential
geometry based family of priors [25, 26, 27] and 2)
they are easy to use because the prior and the
posterior probability laws stay in the same family. In
our case, we need to assign prior probability laws to

the meansm, , to the variances ajkz or to the

covariance matrices ij and also to the covariance

matrices of the noises €; of the likelihood functions.

The conjugate priors for the means my, are in
general the Gaussians N(miko,o-jkoz) , those of

- 2 -
variances o~ are the inverse Gammas

IG(t,, 3,) and those for the covariance matrices

ij are the inverse Wishart’s IW(er,, A,).

3.3.4. Expressions of Likelihood, Prior and

Posterior Laws

We now have all the elements for writing the
expressions of the posterior laws. We are going to
summarizes them here:

Likelihood:

;)(Q\LQFH-Ml oo, >, J=IT.No-1.3, )

where we assumed that the noises €; are

independent, centered and Gaussian with covariance
matrices Zei which, hereafter, are also assumed to

be diagonal ) = c.’l.
*  HMM for the images:
N
DQ‘Z’Q): HH p(fj ‘Zj M ’Z,— )Where we
used Z = {Zj , J=1..,N }‘ and where we assumed

that f, ‘Zj are independent.

S AYAD iese 5 = g3 o g L= 5l S 7S 5 30 csits cyol oo = 16

*  PMREF for the labels:

p(Z) oc H,j\lzl expl.aZreR Zsev(r)5(zj (r) - Zj (S))J

where  we used the simplified notation
p(zj ): P(Zj (r)= z(r), re R) and where we
assumed {Zj, j=1.., N} are independent.

» Conjugate priors for the hyper-parameters:

p(mjk):N(mjkO’o-jsz)! p(o-jzk):z-g(ajolﬂjo)!
p(zjk )=W(a;p,4;),  P(og)=15(j0,B;0)

« Joint posterior law of f,Z and 6.

p(f,z,01g9)<(glf.0,)p(flz.6,)p(z]6,)p(E)

3.4. Bayesian Estimators and
Computational Methods

The expression of this joint posterior law is, in
general, known up to a normalization factor. This
means that, if we consider the Joint Maximum A
Posteriori (JMAP) estimate:

(f.7.0)=arg max {p(f.2819)f o

we need a global optimization algorithm, but if we
consider the Minimum Mean Square Estimator
(MMSE) or equivalently the Posterior Mean (PM)
estimates, then we need to compute this factor which
needs huge dimensional integrations. There are
however three main approaches to do Bayesian
computation;

* Laplase approximation: When the posterior law is

unimodal, it is reasonable to approximate it with an
equivalent Gaussian which allows then to do all
computations analytically. Unfortunately, very often,

pQ,Z,Q‘g) as a function of f only may be

Gaussian, but as a function of Z or @ isnot. So, in

general, this approximation method can not be used
for all variables.

» Variational and mean field approximation: The
main idea behind this approach is to approximate the

joint posterior pﬁ, Z,Q‘g with another simpler
distribution q(L Z, Q‘g) for which the computations
can be done. A first step simpler distribution
q(j, Z, Q‘g) is a separable ones:
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q( f.z,819)=0,(f)a,(z)q;(8) (92)
In this way, at least reduces the integration
computations to the product of three separate ones.
This process can again be applied to any of these
three distributions, for example

q,(f) = Hj q,;(f;). Wwith the Gaussian
mixture modeling we proposed, ¢, () can be chosen

to be Gaussian, (,(Z) to be separated to two parts

0,5 (2) and q,, (z) where the pixels of the images

are separated in two classes B and W as in a checker
board. This is thanks the properties of the proposed
Potts-Markov  model with the four nearest
neighborhood which gives the possibility to use

Ois (2) and q, (2) separately. For g,(@) very

often we also choose a separable distribution which
use the conjugate properties of the prior distributions.

* Markov Chain Monte Carlo (MCMC) sampling

which gives the possibly to explore the joint posterior
law and compute the necessary posterior mean
estimates. In our case, we propose the general

MCMC Gibbs sampling algorithm to estimate f

Z and @ by first separating the unknowns in two

sets p(i,;‘Q,g) and p(Qu;g) Then, we
separate again the first set in two subsets
pﬁ‘;,g,g) and p(g|Q,g). Finally, when
possible, using the separability along the channels,
separate these two last terms in p(fj‘zj,Hj, gj)

and p(zj‘ﬁj ) gj). The general scheme is then, using

these expressions, to generates samples f(n) , ;(n),

Q(”) from the joint posterior law p(i,;, Q‘g) and

after the convergence of the Gibbs samplers, to
compute their mean and to use them as the posterior
estimates.

In this paper we are not going to detail these methods.
However, in the following we propos to examine
some particular cases through a few case studies in
relation to image restoration, image fusion and joint

segmentation, blind image separation.]

4, Case Studies

4.1. Single Channel Image Denoising and
Restoration

The simplest example of inversion is a single channel
image denoising and restoration when the PSF of the
imaging system is given. The forward model for this
problem is

g(r)=h(r)* f(r)+e(r), reRor g=Hf+e (93)

where the denoising case corresponds to the case
where h(r)=o(r) and H =1. Assuming the
noise to be centered, white and Gaussian with known

. 2
variance o_ , we have

p(g| f)=N(Hf,%,) with X, =521 (94)

The priors for this case can be summarized as
follows:

p(f(r)lz(r)=k)N(m,,67), k=1,..K (95)
p(z)=p(zr)reR)ec|ad. > 5(z(r)-z(s))| (96)

reRrev(r)

where

fo={f(r):reR.}, R, ={r:z(r)=k}
p( i z(r)=k)=N(m1 2\ ) with Zkzo_kzlk
p(flz)=] [ N(ML.D, )=N(m,,%,) with

m, =[m,1,...m, 1} ]' , 2z, :diag[z Y K]
p(m,)=N(m,.0%) (97)
p(oy ) =16(g.Bro ) P(ol)=15(0x5.f5 )

and the posterior probability laws we need to
implement an MCMC like algorithm are:

p(f12.6.9)=N(f.5)
with Y =(H'Z'H+X,')™ (98)
And f=3(H'Z g+ 'm,)

p(z]9.0)c p(g|z.0)p(z) (99)
p(glz,0)=N(Hm, 2 )with ¥ =HZ H'+%,)
and the posterior probabilities of the hyper-
parameters are:

) n 1. nf, K
p(m, |2, )= N0 ) with of =(F5+—5)", gy =0 (Z5+—)
Oy Oy Oy Oy,
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P(o 1 1.2) = rc(a, B, ) With @+ and f, =+
where fk:iZfi(r), 5.=> (f(r)-m,)?

nk reRy reRy

(7 11.9) = rs(a A ) with a* =+ af and p° =g — Hf|* +
N, =number of pixels in R, and n = total number

of pixels.

Here, we show two examples of simulations: the first
in relation with image denoising and the second in
relation with image deconvolution. In both cases, we

have chosen the same input image f(r). In the first

case, we only has added a Gaussian noise and in the
second case, we first blurred it with box car PSF of

size 7x7 pixels and added a Gaussian noise. Fig. (13)

shows the original image, its contours and its regions.
Fig. (14) shows the observed noisy image and the
results obtained by the proposed method. Remember
that, in this method, we have also the estimated
contours and region labels as byproducts. Fig. (15)
shows the observed blurred and noisy image and the
results obtained by the proposed restoration method.

For other inverse problems which can be modeled as
a SISO model and where such Bayesian approach has

been used refer to [28].

SR )

fir) zir) gqlv)
Fig.13: Original image, its contour and its region
labels used for image denoising and image
restoration

-

g(r) fir) 2(r) glr)
Fig.14: Observed noisy image and the results of
the proposed denoising method.

L g

olr) fir) 2r) qir)
Fig.15: Observed noisy image and the results of
the proposed restoration method.
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4.2. Registered Images Fusion and Joint
Segmentation
Here, each observed image

g;(r) (or
equivalently g;) is assumed to be a noisy version of

the unobserved real image f,(r) (or equivalently f;)

6(n)=f(r)+a(r), reRor g =f+, i=1.M (100)
which gives

p(g;| f.)=N(f,2,) with X, =c21 (101)
and

p(glf)=T] p(g;f;)with (102)
and all the unobserved real
images f,(r), i=1...,M are assumed to have a

common segmentation z(r) (or equivalently z)

which is modeled by a discrete value Potts Random
Markov Field (PRMF). Then, using the same
notations as in previous case, we have the following
relations:

p(f.(r)z(r)=k)=N(m,,c2), k=1,..,K
f={f(r):reR}, R, ={r: z(r)=k}
p( fy 12(r)=k)=N(m, 1,2, ) with &, =oil,
p(z)=p(2(r), 1 e R)x expla,  Zoo )8 2(r) - 2(s))]
p(f]1z)=N(m,,2 ) with

m, =[m,1,...m, 1 ]' . X, =diag[Z,,... 2]
p(m, )= N(my, 10—5(0 )

p(oi ) =1c(ay. By ) Plog)=1s(aiy,fry)
p(t12)=]T. p(f,12)

and all the conditional and posterior probability laws
we need to implement the proposed Bayesian
methods are summarized here:

p(f12,6,,9; )= N( fi ’Si )
With A
S=(Zl )t G =3(Se +2my)
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p(z19,0) (I, p(9;12.6,) p(z(r).,r e R) with
p(g| |Z'9i ): N(mziizgi ) with Zgi z‘\jzi +2ei

p(my | f; 'Ziaii )= N 'Uii

m, n f 1 n
2 0 k Tik 2 K y-1
ty =0 (—+—57) U =(—F+—7)
i0 Ok Oip O
. n 5
p(o-ii [ fi,2) = g( ey . By ) With @ = oy +?kr P = B +E
1

where  f, :FZrGRk fi(r), & =2 (fi(r)-m)°
k

. 1
P(od 1 1,0) = velat B ) with of =Zvary, B = o1 + 45

For more details on this model and its application in
medical image fusion as well as in image fusion for
security systems see [29, 30].

_ 5

92 }2 \ -

Fig.16: Image fusion and segmentation of two
images from a security system measurement.
4.3. Joint Segmentation of Hyper-spectral
Images
The proposed model is the same as the model of the
previous section except for the last equation of the
forward model which assumes that the pixels in
similar regions of different images are independent.
For hyper-spectral images, this hypothesis is not valid
and we have to account for their correlations. This
work is under consideration.

4.4, Segmentation of a Video Sequence of
Images

Here, we can not assume that all the images in the
video sequence have the same segmentation labels.
However, we may use the segmentation obtained in
an image as an initialization for the segmentation of
next image. For more details on this model and to see
a typical result see.

4.5. Joint Segmentation and Separation of
Instantaneous Mixed Images

Here, the additional difficulty is that we also have to
estimate the mixing matrix A. For more details on this

model and to see some typical result in joint
segmentation and separation of images see [27, 31,
32, 33, 34, 35].

5. Conclusion

In this paper we first showed that many image
processing problems can be presented as inverse
problems by modeling the relation of the observed
image to the unknown desired features explicitly.
Then, we presented a very general forward modeling
for the observations and a very general probabilistic
modeling of images through a hidden Markov
modeling (HMM) which can be used as the main
basis for many image processing problems such as: 1)
simple or multi channel image restoration, 2) simple
or joint image segmentation, 3) multi-sensor data and
image fusion, 4) joint segmentation of color or hyper-
spectral images and 5) joint blind source separation
(BSS) and segmentation. Finally, we presented
detailed forward models, prior and posterior
probability law expressions for the implementation of
MCMC algorithms for a few cases of those problems
showing typical results which can be obtained using
these methods.
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