

# A New Hybrid Heuristic Technique for Unit Commitment and Generation Scheduling

**M. Pourakbari-Kasmaei<sup>1</sup>**      **M. Rashidi-Nejad<sup>2</sup>**      **S. Piltan<sup>3</sup>**

<sup>1</sup>Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran  
[Mahdi.pourakbari@gmail.com](mailto:Mahdi.pourakbari@gmail.com)

<sup>2</sup> Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran  
[mrashidi@mail.uk.ac.ir](mailto:mrashidi@mail.uk.ac.ir)

<sup>3</sup>Department of Electrical and Computer Engineering, Islamic Azad University of Lahijan  
[Sahar\\_duncan@yahoo.com](mailto:Sahar_duncan@yahoo.com)

## **Abstract:**

This paper proposes a novel technique for solving generation scheduling and ramp rate constrained unit commitment. A modified objective function associated with a new start-up cost term is introduced in this paper. The proposed method is used to solve generating scheduling problem satisfying SRR, minimum up and down time as well as ramp rate constraints. Two case studies are conducted to implement and show the effectiveness of the proposed method. One is a conventional 10-unit system and its multiples while the other is a 26-unit system with 24-h scheduling horizon. A comparison between the results of the proposed technique with those of some methods demonstrates a significant improvement.

**Keywords:** Unit commitment, Generation scheduling, Spinning reserve, Economic dispatch, Metahuristic.

---

**Submission date:** Feb. 21, 2009

**Acceptance date:** Nov. 22, 2010

**Corresponding author:** Masoud Rashidi-Nejad

**Corresponding author's address:** 22 Bahman Blvd., Electrical Eng. Dept., Shahid Bahonar University of Kerman, Kerman, Iran



## 1. Introduction

Fast growing load in power systems associated with a large gap between heavy load and light load periods, generating scheduling and unit commitment problem has become a crucial issue in operation time horizon [1]. In a vertically integrated power system the unit commitment determines when to start-up or shut-down units and how to dispatch online generators over a given scheduling horizon in order to minimize the operating costs, satisfying the forecasted load considering operating constraints. These constraints are: generation limits, system spinning reserve requirement (SRR), ramp rate limits and minimum up and down time limits [1-6].

Since unit commitment is a highly non-linear, non-convex in a form of mixed-integer problem, in literature lots of solution techniques have been proposed. Exhaustive enumeration that gives an exact optimal solution but it is time consuming, while priority list may have a fast solution that sometimes lead to a non-optima [7]. Dynamic programming (DP) is a well-known solution technique for unit commitment problem that needs more computational efforts [8]. Lagrangian relaxation (LR) technique is a suitable method for large-scale power systems in which both demand and SRR can be satisfied through lagrangian multipliers. An inappropriate method for updating lagrangian multipliers may cause a non optimal solution [9, 10]. In some studies the researchers has been used decommitment method, this method is work such that a unit with highest relative cost will be decommitted at a time until there is no excessive spinning reserve or minimum up time or ramp down rate constraints prevent the rest of units from decommitting [11, 12]. Application of heuristic optimization algorithms may have some advantages to solve such a complicated optimization problem, while the main drawback of heuristic methods is that they cannot guarantee the optimal solution [13]. Recently, some metaheuristic methods have been addressed like genetic algorithm (GA), ant colony (AC), tabu search (TS) as well as simulated annealing (SA) [14-18]. Since there exist a need for more improvement to the existing unit commitment solution techniques the hybrid models such as fuzzy dynamic programming [19], genetic based neural network [20], hybrid model between lagrangian relaxation and genetic algorithm [21], and annealing genetic algorithm [22] are experienced.

This paper presents a new method considering the next hours demand by minimizing the operating costs. The benefit of considering next hours demand can be facilitated for online units in the time horizon that is not optimal to be turned off. On the other hand, in the new formulation of unit commitment, generating units with higher start-up cost may have a chance to be

turned on in order to minimize total scheduling horizon costs. Exactly the contributions of this paper are: 1- modifying the objective function that will be used in GA and 2- considering the next  $T_{off}$  hours of a unit that just has been off.

This paper is organized as follows: Section II presents unit commitment mathematical formulation. In section III the problem is decomposed to different stages.. Section IV presents case studies and results analysis, while finally concluding remarks are driven in section V.

## 2. Problem Formulation

Unit commitment involves determining generation outputs of all units from an initial hour to satisfy load demands associated with a start-up and shut-down schedule over a time horizon. The objective is to find the optimal schedule such that the total operating costs can be minimized while satisfying the load demand, SRR as well as other operational constraint.

### 2.1. Objective Function

The objective function of a unit commitment problem is a function that comprises the fuel costs of generating units, the start-up cost of the committed units and shut-down cost of decommitted units. The start-up cost is available in two common forms: exponentially and constant. Moreover start-up cost is presented in two forms: hot start-up cost and cold start-up cost, while the shut-down cost is assumed to be fixed. Nevertheless the objective function of UC problem is formulated as:

$$\begin{aligned} \text{Minimize} \quad & \{ \sum_{t=1}^T \sum_{i=1}^N F_{i,t}(p_{it}) * u_{i,t} \\ & + \sum_{t=1}^T \sum_{i=1}^N SUC_{i,t} * u_{i,t} * (1 - u_{i,t-1}) \\ & + \sum_{t=1}^T \sum_{i=1}^N SDC_{i,t} * u_{i,t-1} * (1 - u_{i,t}) \} \end{aligned} \quad (1)$$

Fuel costs of generating units and the major component of the operating costs for thermal units, is generally given in a quadratic form as it is shown in Eq. (2). Operating cost coefficients can be given or they estimated using bidding strategies [23, 24].

$$F_{it}(P_{it}) = a_i + b_i P_{i,t} + c_i (P_{i,t})^2 \quad (2)$$

Start-up cost is defined as follow:

$$SUC_{i,t} = \begin{cases} HSC_i, & \text{if } T_{i,t}^D \leq MD_i^{ON} \leq T_{i,t}^D + CST_i \\ CSC_i, & \text{if } MD_i^{ON} > T_{i,t}^D + CST_i \end{cases} \quad (3)$$

or

$$SUC_{i,t} = \alpha_i + \beta_i [1 - e^{-\frac{MD_i^{OFF}(t)}{\tau_i}}]$$

### 2.2. Constraints

Minimization of the objective function is subjected to a number of system and unit constraints such as: power





balance, spinning reserve capacity of generating units, unit ramp-up rate and unit ramp-down rate constraints, minimum up/down time limit as well as SRR. Initial condition needed to be considered in scheduling problem.

### 2.2.1. Initial Conditions

Initial conditions of generating units include number of hours that a unit consequently has been on-line or off-line and its generation output at an hour before the scheduling will be started.

### 2.2.2. Power balance constraints

Real power generated must be sufficient to meet the load demand which is hard as an equality constraint. This constraint is given by Eq. (4)

$$\sum_{i=1}^N (P_{i,t}) * u_{i,t} = D_t \quad 1 \leq t \leq T, i \in N \quad (4)$$

### 2.2.3. Unit output limits

The real power output of unit  $i$  at hour  $t$  can be varied within the range of unit power outputs due to unit ramp rate constraints.

$$P_{i,t}^{\min} * u_{i,t} \leq P_{i,t}^o * u_{i,t} \leq P_{i,t}^{\max} * u_{i,t} \quad 1 \leq t \leq T, i \in N \quad (5)$$

### 2.2.4. Unit ramp-up constraints

According to Eq. (5) real power output must be less than  $P_i^{\max}$  and the unit output at hour  $t$  cannot be more than the unit output at hour  $t-1$  plus ramp-up rate.  $P_{i,t}^{\min}$  can be given by Eq. (6).

$$P_{i,t}^{\min} = \text{Min}\{P_{i,t-1}^o + RUR_i, P_i^{\max}\} \quad 1 \leq t \leq T, i \in N \quad (6)$$

### 2.2.5. Unit ramp-down constraints

According to Eq.(5) real power output must be more than  $P_i^{\min}$  and the unit output at hour  $t$  cannot be less than the unit output at hour  $t-1$  minus ramp-down rate.  $P_{i,t}^{\min}$  can be given by Eq. (7).

$$P_{i,t}^{\min} = \text{Max}\{P_{i,t-1}^o - RDR_i, P_i^{\min}\} \quad 1 \leq t \leq T, i \in N \quad (7)$$

### 2.2.6. Minimum up time limit

Minimum number of hours that a unit must be on-line since it has been turned on.

$$MU_i^{ON} \geq T_i^U \quad (8)$$

### 2.2.7. Minimum down time limit

Minimum number of hours that a unit must be off-line since it has been turned off.

$$MD_i^{OFF} \geq T_i^D \quad (9)$$

### 2.2.8. Spinning reserve requirement

Spinning reserve is the total amount of real power generation available from all synchronized units minus the present load plus the losses. SRR is usually a pre-specified amount or equal to the largest unit or a given percentage of the forecasted load demand. It must be sufficient enough to maintain the desired reliability in a power system that is shown by Eq. (10).

$$\sum_{i=1}^N (P_{i,t}^{\max} * u_{i,t}) - D_t = SRC_t \quad (10)$$

$1 \leq t \leq T, i \in N$

## 3. Optimization Method

The proposed optimization method consists of six stages that are shown in Fig. 1. In each stage some of constraints are taken into consideration and in stage 6, the objective function is minimized via genetic algorithm (GA). These six stages are explained in details as follows.



Figure 1. Flowchart of the proposed optimization method

### 3.1. Ramp Rate & Spinning Reserve Requirement

This stage considers two main constraints such as SRR and unit ramp rate constraint. In order to generate an initial feasible population only those chromosomes that can satisfy the SRR constraint will be selected while ramp rate constraint is taken into consideration afterwards. As it is known, ramp rate constraints may impose the upper and lower bounds of the output of generating units in conjunction with their outputs at previous hour. It can be said that, at this stage both ramp rate and spinning reserve constraints should be satisfied.

### 3.2. Up time & Down time Satisfaction

In this stage minimum up time (MUT) and minimum down time (MDT) constraints are taken into consideration. Only the status of those units that can satisfy MUT/ MDT constraints may be changed, while the status of other units kept constant. In this regard, there would not be any problem if a unit is turned on but when a unit is turned off the feasible solution may not be achieved. In the later case, feasibility must be checked and when it is not feasible a modified chromosome that can satisfy the MDT constraint is needed to be generated.

### 3.3. Next $T_i^D$ Hours Checking

After satisfying some constraints like spinning reserve, ramp rate, minimum up time and minimum down time, the demands of next  $T_i^D$  hours are taken into account, if any unit that is required to be turned off. When a unit became off, its status cannot be changed for  $T_i^D$  hours, then the feasibility of satisfying the next  $T_i^D$  hours load demand without including this unit will be checked. If the condition is not feasible for one of the next  $T_i^D$  hours the time of scheduling get back to the previous hour and the scheduling of this hour is done again in which the later unit is kept online. This process guarantees the scheduling of unit commitment at all hours during the time horizon.

### 3.4. Economic Dispatch

Unit commitment and economic dispatch, when combined together, is a useful tool to find the most economical generation schedule. The economic dispatch determines the output of all online units with an objective of a minimum total operating cost at a given hour, which is subjected to the power balance constraint Eq. (4) and output limits Eq. (5). A lambda iteration method is applied in this paper to determine the optimal unit commitment and economic dispatch.

### 3.5. GA Implementation

By determining the output of all online units economically the fitness of all chromosomes should be calculated and the best chromosomes will be selected. Since in scheduling problems the objective is to minimize the cost function Eq. (1), the units with more expensive start-up costs have no chance to be turned on before they must be, while they may cause less total operation costs. In this paper a modified objective function is defined in order to select the best chromosomes for crossover and mutation to generate new chromosomes and finally get a better generation scheduling. After crossover and mutation processes for achieving feasible chromosomes two following task will be handled.

#### 3.5.1. Chromosomes elimination:

Infeasible chromosomes that can not satisfy the SRR constraint will be eliminated as redundant.

#### 3.5.2. Chromosome modification:

Since the number of chromosomes must be remained constant, chromosomes with the best fitness are replaced instead of eliminated chromosomes.

In order to accelerate the convergence of the proposed method the fitness function is adopted as follows:

$$\text{adopted fitness function} = \frac{A}{1 + \text{Cost}(\text{chr}, \text{itr})}$$

where,  $A$  is a big positive number (assumed 1E+4),  $\text{chr}$  and  $\text{itr}$  are chromosomes and iteration counter respectively.

A modified objective function is shown by Eq. (12, 13).

$$\begin{aligned} \text{Min} \sum_{i=1}^T \sum_{t=1}^N F_{i,t}(p_{i,t}) * u_{i,t} \\ + SUC_{i,t} * u_{i,t} * (1 - u_{i,t-1}) \end{aligned} \quad (12)$$

where,

$$SUC_{i,t} = \begin{cases} CSC_{i,t} & \text{if } MD_i^{OFF} > T_i^D + CST_{i,t} \\ (1 + \frac{MD_i^{OFF}}{T_i^D + CST_{i,t}})HSC & \text{if } T_i^D \leq MD_i^{OFF} \leq T_i^D + CST_{i,t} \end{cases} \quad (13)$$

At this paper the cold start-up cost (CSC) is twice of hot start-up cost (HSC).

### 3.6. Chromosome Cost Management

In this stage the chromosome with the least cost is selected and the scheduling of current hour according to the latest selected chromosome is implemented.

By using Eq.(12) as a new objective function associated with the same constraints Eq. (2-10) the unit status will be determined while the operating costs of units will be calculated using the objective function expressed by Eq.(1).



## 4. CASE STUDIES & RESULTS ANALYSIS

In this section two case studies are presented, where case 1 is a commonly used unit commitment problem

based on ten-unit test system and case 2 is a 26-unit for considering ramp rate constraints.

**Table 1. Load demand of 10-unit base problem**

| hour | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| load | 700  | 750  | 850  | 950  | 1000 | 1100 | 1150 | 1200 | 1300 | 1400 | 1450 | 1500 |
| hour | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   |
| load | 1400 | 1300 | 1200 | 1050 | 1000 | 1100 | 1200 | 1400 | 1300 | 1100 | 900  | 800  |

**Table 2. Comparison of total production cost for 10-unit based system**

| Total cost of different methods |                 |                |                  |                  |                    |                |                  |
|---------------------------------|-----------------|----------------|------------------|------------------|--------------------|----------------|------------------|
| Methods<br>No. of units         | SPL[26]<br>[26] | EP[27]<br>[27] | PSO[28]<br>[28]  | BPSO[29]<br>[29] | PSO-LR[30]<br>[30] | LR[30]<br>[30] | LRGA[31]<br>[31] |
| 10                              | 564950          | 565352         | 574153           | 565804           | 565869             | 566107         | 564800           |
| 20                              | 1123938         | 1127256        | 1125983          | —                | 1128072            | 1128362        | 1122622          |
| 40                              | 2248645         | 2252612        | 2250012          | —                | 2251116            | 2250223        | 2242178          |
| 60                              | 3371178         | 3376255        | 3374174          | —                | 3376407            | 3374994        | 3371079          |
| 80                              | 4492909         | 4505536        | 4501538          | —                | 4496717            | 4496729        | 4501844          |
| 100                             | 5615530         | 5633800        | 5625376          | —                | 5623607            | 5620305        | 5613127          |
| Total cost of different methods |                 |                |                  |                  |                    |                |                  |
| Methods<br>No. of units         | ALR[32]<br>[32] | GA[15]<br>[15] | BCGA[33]<br>[33] | ICGA[33]<br>[33] | DP[15]<br>[15]     | MA[34]<br>[34] | PM               |
| 10                              | 565508          | 565825         | 567367           | 566404           | 565825             | 565827         | 564703           |
| 20                              | 1126720         | 1126243        | 1130291          | 1127244          | —                  | 1128192        | 1125998          |
| 40                              | 2249790         | 2251911        | 2256590          | 2254123          | —                  | 2249589        | 2247026          |
| 60                              | 3371188         | 3376625        | 3382913          | 3378108          | —                  | 3370820        | 3369508          |
| 80                              | 4494487         | 4504933        | 4511438          | 4498943          | —                  | 4494214        | 4490013          |
| 100                             | 5615893         | 5627437        | 5637930          | 5630838          | —                  | 5616314        | 5616096          |

**Table 3. Comparison of CPU time for 10-unit based system**

| Total cost of different methods |                 |                |                  |                  |                    |                |                  |
|---------------------------------|-----------------|----------------|------------------|------------------|--------------------|----------------|------------------|
| Methods<br>No. of units         | SPL[26]<br>[26] | EP[27]<br>[27] | PSO[28]<br>[28]  | BPSO[29]<br>[29] | PSO-LR[30]<br>[30] | LR[30]<br>[30] | LRGA[31]<br>[31] |
| 10                              | 7.24            | 100            | -                | -                | 42                 | 257            | 518              |
| 20                              | 16.32           | 340            | -                | -                | 91                 | 514            | 1147             |
| 40                              | 46.32           | 1176           | -                | -                | 213                | 1066           | 2165             |
| 60                              | 113.85          | 2267           | -                | -                | 360                | 1594           | 2414             |
| 80                              | 215.77          | 3584           | -                | -                | 543                | 2122           | 3383             |
| 100                             | 374.03          | 6120           | -                | -                | 730                | 2978           | 4045             |
| Total cost of different methods |                 |                |                  |                  |                    |                |                  |
| Methods<br>No. of units         | ALR[32]<br>[32] | GA[15]<br>[15] | BCGA[33]<br>[33] | ICGA[33]<br>[33] | DP[15]<br>[15]     | MA[34]<br>[34] | PM               |
| 10                              | 3.2             | 221            | 3.7              | 7.4              | -                  | 290            | 12.62            |
| 20                              | 12              | 733            | 15.9             | 22.4             | -                  | 538            | 41.8             |
| 40                              | 34              | 2697           | 63.1             | 58.3             | -                  | 1032           | 78               |
| 60                              | 67              | 5840           | 137              | 117.3            | -                  | 2740           | 157              |
| 80                              | 111             | 10036          | 257              | 176              | -                  | 3159           | 233              |
| 100                             | 167             | 15733          | 397              | 242.5            | -                  | 6365           | 418              |

### 4.1. 10-unit based system

The proposed method has been applied to solve a commonly used 10-unit based system that can be

extended to a group of unit commitment problems. At first the proposed method apply to a 10-unit base system and then to 20-unit, 40-unit, 60-unit, 80 unit and 100-unit respectively [25]. The spinning reserve in

this problem held as 10% of the load demand at each hour. The load demand of 10-unit base problem is illustrated in Table 1. The results of the total costs by implementing the proposed technique to different cases for 24-h is shown in Table 2. This table includes a comparison between the outcomes of the proposed technique and other methods. Table 4 presents the 24-h generating 10-unit outputs. The characteristic and cost

coefficients of 10-unit problem are shown in Table 5. For 10-unit system 70 chromosomes with 100 iterations are used while the probability of crossover and mutation are assumed to be 0.9 and 0.002, respectively. With a comparison of the obtained results shown in Table 2 **Error! Reference source not found.**, it can be seen that PM may create a better outcomes than the other methods.

**Table 4. Units output power for 10-unit system**

| H<br>U | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1      | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 455 |
| 2      | 245 | 295 | 370 | 455 | 455 | 455 | 455 | 430 | 455 | 455 | 455 | 455 | 455 | 455 | 455 | 315 | 260 | 360 | 455 | 455 | 455 | 455 | 425 | 344 |
| 3      | 0   | 0   | 0   | 0   | 0   | 0   | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 0   | 0   | 0   |
| 4      | 0   | 0   | 0   | 0   | 0   | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 0   | 0   | 0   |
| 5      | 0   | 0   | 25  | 40  | 70  | 40  | 90  | 25  | 85  | 162 | 162 | 162 | 162 | 85  | 30  | 25  | 25  | 25  | 30  | 162 | 85  | 145 | 0   | 0   |
| 6      | 0   | 0   | 0   | 0   | 20  | 20  | 20  | 20  | 20  | 33  | 68  | 80  | 33  | 20  | 0   | 0   | 0   | 0   | 0   | 33  | 20  | 20  | 20  | 0   |
| 7      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 25  | 25  | 25  | 25  | 25  | 0   | 0   | 0   | 0   | 0   | 0   | 25  | 25  | 25  | 0   | 0   |
| 8      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 10  | 43  | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 0   | 0   |
| 9      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 10     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**Table 5. Unit characteristic and cost coefficients for 10-unit based system**

| Unit No | $P_{max}$ | $P_{min}$ | a    | b     | C       | $T^U$ | $T^D$ | HSC   | CSC  | CST | Init condition |
|---------|-----------|-----------|------|-------|---------|-------|-------|-------|------|-----|----------------|
| 1       | 455       | 150       | 1000 | 16.19 | 0.00048 | 8     | 8     | 9000  | 4500 | 5   | 8              |
| 2       | 455       | 150       | 970  | 17.26 | 0.00031 | 8     | 8     | 10000 | 5000 | 5   | 8              |
| 3       | 130       | 20        | 700  | 16.6  | 0.002   | 5     | 5     | 1100  | 550  | 4   | -5             |
| 4       | 130       | 20        | 680  | 16.5  | 0.00211 | 5     | 5     | 1120  | 560  | 4   | -5             |
| 5       | 162       | 25        | 450  | 19.7  | 0.00398 | 6     | 6     | 1800  | 900  | 4   | -6             |
| 6       | 80        | 20        | 370  | 22.26 | 0.00712 | 3     | 3     | 340   | 170  | 2   | -3             |
| 7       | 85        | 25        | 480  | 27.74 | 0.00079 | 3     | 3     | 520   | 260  | 2   | -3             |
| 8       | 55        | 10        | 660  | 25.92 | 0.00413 | 1     | 1     | 60    | 30   | 0   | -1             |
| 9       | 55        | 10        | 665  | 27.27 | 0.00222 | 1     | 1     | 60    | 30   | 0   | -1             |
| 10      | 55        | 10        | 670  | 27.79 | 0.00173 | 1     | 1     | 60    | 30   | 0   | -1             |

#### 4.2. 26-unit system

In this section a 26 thermal units from IEEE RTS [35] is studied. For 26-unit system, 15-min spinning reserve response time is assumed for all units. Spinning reserve is calculated based upon the unit reserve contribution within 15 min, which is set to 4%

of the total load demand [5]. Two different load demands that are employed, is shown in Table 6, while Table 7 presents the characteristic and cost coefficient of 26-unit system. Table 8 shows a comparison between the derived results from the proposed method (PM) and the other methods from literature [36- 37], for both loads.

**Table 6. Load demand for 26-unit system**

| Hourly load demand |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Hour               | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
| Load 1             | 1700 | 1730 | 1690 | 1700 | 1750 | 1850 | 2000 | 2430 | 2540 | 2600 | 2600 | 2590 |
| Load 2             | 1430 | 1450 | 1400 | 1350 | 1350 | 1470 |      |      |      |      |      |      |
| Hourly load demand |      |      |      |      |      |      |      |      |      |      |      |      |
| Hour               | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   |
| Load 1             | 2590 | 2550 | 2620 | 2650 | 2550 | 2530 | 2500 | 2550 | 2600 | 2480 | 2200 | 1840 |
| Load 2             | 2290 | 2260 | 2190 | 2130 | 2190 | 2200 | 2300 | 2340 | 2300 | 2180 | 1910 | 1650 |

For example units output for satisfying load 1 is presented in Table 9. For 26-units system, 130 chromosomes with 150 iterations are used while the probability of crossover and mutation are 0.9 and 0.002, respectively. With a comparison of the obtained results shown in Table 8, it can be seen that PM may

create a better outcomes than the other methods. Also it can be seen that the PM make 7799.8\$ (1.08%) and 2869.3\$ (0.5%) saving in comparison with best results from literature for the first and second load pattern respectively.

**Table 7. Unit characteristic and cost coefficients for 26-unit system**

| Unit | $P_{min}$ | $P_{max}$ | $a_i$    | $b_i$   | $c_i$   | $T^U$ | $T^D$ | RUR  | RDR | Init condition |
|------|-----------|-----------|----------|---------|---------|-------|-------|------|-----|----------------|
| 1    | 2.4       | 12        | 24.3891  | 25.5472 | 0.02533 | 0     | 0     | 48   | 60  | -1             |
| 2    | 2.4       | 12        | 24.4110  | 25.6753 | 0.02649 | 0     | 0     | 48   | 60  | -1             |
| 3    | 2.4       | 12        | 24.6382  | 25.8027 | 0.02801 | 0     | 0     | 48   | 60  | -1             |
| 4    | 2.4       | 12        | 24.7605  | 25.9318 | 0.02842 | 0     | 0     | 48   | 60  | -1             |
| 5    | 2.4       | 12        | 24.8882  | 26.0611 | 0.02855 | 0     | 0     | 48   | 60  | -1             |
| 6    | 4         | 20        | 117.7551 | 37.5510 | 0.01199 | 0     | 0     | 30.5 | 70  | -1             |
| 7    | 4         | 20        | 118.1083 | 37.6637 | 0.01261 | 0     | 0     | 30.5 | 70  | -1             |
| 8    | 4         | 20        | 118.4576 | 37.8896 | 0.01359 | 0     | 0     | 30.5 | 70  | -1             |
| 9    | 4         | 20        | 118.8206 | 13.8896 | 0.01433 | 0     | 0     | 30.5 | 70  | -1             |
| 10   | 15.2      | 76        | 81.1364  | 13.3272 | 0.00876 | 3     | 2     | 38.5 | 80  | 3              |
| 11   | 15.2      | 76        | 81.2980  | 13.3538 | 0.00895 | 3     | 2     | 38.5 | 80  | 3              |
| 12   | 15.2      | 76        | 81.4641  | 13.3805 | 0.00910 | 3     | 2     | 38.5 | 80  | 3              |
| 13   | 15.2      | 76        | 81.6259  | 13.4073 | 0.00932 | 3     | 2     | 38.5 | 80  | 3              |
| 14   | 25        | 100       | 217.8952 | 18.0000 | 0.00623 | 4     | 2     | 51   | 74  | -3             |
| 15   | 25        | 100       | 218.3350 | 18.1000 | 0.00612 | 4     | 2     | 51   | 74  | -3             |
| 16   | 25        | 100       | 218.7752 | 18.2000 | 0.00598 | 4     | 2     | 51   | 74  | -3             |
| 17   | 54.25     | 155       | 142.7348 | 10.6940 | 0.00463 | 5     | 3     | 55   | 78  | 5              |
| 18   | 54.25     | 155       | 143.0288 | 10.7154 | 0.00473 | 5     | 3     | 55   | 78  | 5              |
| 19   | 54.25     | 155       | 143.3179 | 10.7367 | 0.00481 | 5     | 3     | 55   | 78  | 5              |
| 20   | 54.25     | 155       | 143.5972 | 10.7583 | 0.00487 | 5     | 3     | 55   | 78  | 5              |
| 21   | 68.95     | 197       | 259.1310 | 23.0000 | 0.00259 | 5     | 4     | 55   | 99  | -4             |
| 22   | 68.95     | 197       | 259.6490 | 23.1000 | 0.00260 | 5     | 4     | 55   | 99  | -4             |
| 23   | 68.95     | 197       | 260.1760 | 23.2000 | 0.00263 | 5     | 4     | 55   | 99  | -4             |
| 24   | 140       | 350       | 177.0575 | 10.8616 | 0.00153 | 8     | 5     | 70   | 120 | 10             |
| 25   | 100       | 400       | 310.0021 | 7.4921  | 0.00194 | 8     | 5     | 50.5 | 100 | 10             |
| 26   | 100       | 400       | 311.9102 | 7.5031  | 0.00195 | 8     | 5     | 50.5 | 100 | 10             |

**Table 8. Comparison of total production costs for 26-unit system with 15 min SR response time**

| Load | Method      | CPU time | Total cost |
|------|-------------|----------|------------|
| 1    | ILR [36]    | 161.5    | 720641.9   |
|      | IPL-ALH [5] | 2.17     | 718642.1   |
|      | PM          | 109.21   | 710842.3   |
| 2    | ILR [36]    | 122      | 576625.7   |
|      | IPL-ALH [5] | 1.71     | 570116.5   |
|      | PM          | 103.97   | 567247.2   |

## 5. CONCLUSIONS

In this paper a reliable and efficient method using hybrid heuristic technique for unit commitment problem is presented. By introducing a new formulation for generating unit scheduling the performance of unit commitment may increase. On the other hand, by implementing the next  $T_i^D$  hours load checking may improve the reliability as well as the economics of scheduling problem in power systems.

The proposed method is successfully applied to a 10-unit based system and a 26-unit system, while the significant results are compared with the other methods. The results for 26-unit system show the cost effectiveness technique that lead to saving cost and may also improve the reliability of power systems. The results also can prove the usefulness of the proposed method which is capable of solving both small-scale and large-scale power systems scheduling problem.

**Table 9. Units output power of 26-unit system for load demand1**

| H<br>U | 1      | 2      | 3      | 4      | 5      | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13      | 14      | 15      | 16    | 17     | 18     | 19     | 20    | 21    | 22    | 23    | 24     |
|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|---------|---------|---------|-------|--------|--------|--------|-------|-------|-------|-------|--------|
| 1      | 0      | 0      | 0      | 2.4    | 0      | 0     | 0     | 0     | 0     | 2.4   | 0     | 0     | 2.4     | 0       | 0       | 2.4   | 2.4    | 2.4    | 0      | 0     | 2.4   | 0     | 0     |        |
| 2      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0     | 2.4    | 2.4    | 2.4    | 2.4   | 0     | 0     | 0     | 0      |
| 3      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 2.4     | 0       | 0     | 2.4    | 2.4    | 2.4    | 2.4   | 2.4   | 0     | 0     | 0      |
| 4      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 2.4     | 0     | 2.4    | 2.4    | 0      | 2.4   | 0     | 0     | 0     | 0      |
| 5      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 2.4     | 0     | 2.4    | 0      | 0      | 0     | 0     | 0     | 0     | 0      |
| 6      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0     | 4      | 4      | 0      | 0     | 0     | 0     | 0     | 0      |
| 7      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0     | 4      | 0      | 0      | 0     | 0     | 0     | 0     | 0      |
| 8      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0     | 4      | 0      | 0      | 0     | 0     | 0     | 0     | 0      |
| 9      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0     | 0      | 0      | 0      | 4     | 0     | 0     | 0     | 0      |
| 10     | 15.2   | 15.2   | 15.2   | 0      | 0      | 28.67 | 55    | 76    | 76    | 76    | 76    | 76    | 76      | 76      | 76      | 76    | 76     | 76     | 76     | 76    | 76    | 76    | 76    | 0      |
| 11     | 0      | 0      | 0      | 0      | 15.2   | 26.6  | 52.4  | 76    | 76    | 76    | 76    | 76    | 76      | 76      | 76      | 76    | 76     | 76     | 76     | 76    | 76    | 76    | 76    | 74.89  |
| 12     | 0      | 0      | 0      | 0      | 0      | 24.7  | 50    | 76    | 76    | 76    | 76    | 76    | 76      | 76      | 76      | 76    | 76     | 76     | 76     | 76    | 76    | 76    | 76    | 72.19  |
| 13     | 15.2   | 15.2   | 15.2   | 0      | 0      | 0     | 47.45 | 76    | 76    | 76    | 76    | 76    | 76      | 76      | 76      | 76    | 76     | 76     | 76     | 76    | 76    | 76    | 76    | 69.04  |
| 14     | 0      | 0      | 0      | 0      | 0      | 0     | 25    | 76    | 100   | 100   | 100   | 100   | 100     | 100     | 100     | 100   | 100    | 100    | 100    | 100   | 100   | 100   | 94.97 |        |
| 15     | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 100   | 100   | 100   | 100   | 100   | 100     | 100     | 100     | 100   | 100    | 100    | 100    | 100   | 100   | 100   | 88.51 |        |
| 16     | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 100   | 100   | 100   | 100   | 100   | 100     | 100     | 100     | 100   | 100    | 100    | 100    | 100   | 100   | 100   | 82.22 |        |
| 17     | 136.9  | 144.62 | 134.35 | 144.1  | 153.67 | 155   | 155   | 155   | 155   | 155   | 155   | 155   | 155     | 155     | 155     | 155   | 155    | 155    | 155    | 155   | 155   | 155   | 155   | 145.26 |
| 18     | 131.76 | 139.3  | 129.2  | 138.8  | 148.16 | 155   | 155   | 155   | 155   | 155   | 155   | 155   | 155     | 155     | 155     | 155   | 155    | 155    | 155    | 155   | 155   | 155   | 155   | 139.84 |
| 19     | 127.35 | 134.77 | 124.88 | 134.28 | 143.48 | 155   | 155   | 155   | 155   | 155   | 155   | 155   | 155     | 155     | 155     | 155   | 155    | 155    | 155    | 155   | 155   | 155   | 155   | 135.39 |
| 20     | 123.56 | 130.89 | 121.12 | 130.41 | 139.49 | 155   | 155   | 155   | 155   | 155   | 155   | 155   | 155     | 155     | 155     | 155   | 155    | 155    | 155    | 155   | 155   | 155   | 155   | 131.5  |
| 21     | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 92.79 | 88.1  | 117.7 | 78.1  | 78.1  | 102.251 | 130.461 | 111.791 | 152.1 | 142.41 | 118.81 | 95.851 | 0     | 0     | 0     | 0     |        |
| 22     | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 80    | 73.2  | 68.95 | 98    | 68.95 | 68.95   | 0       | 110.7   | 92.13 | 0      | 0      | 0      | 122   | 68.95 | 68.95 | 68.95 |        |
| 23     | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 68.95 | 77.88 | 68.95 | 68.95 | 68.95   | 0       | 72.07   | 0     | 0      | 0      | 68.95  | 101.6 | 68.95 | 68.95 |       |        |
| 24     | 350    | 350    | 350    | 350    | 350    | 350   | 350   | 350   | 350   | 350   | 350   | 350   | 350     | 350     | 350     | 350   | 350    | 350    | 350    | 350   | 350   | 350   | 350   |        |
| 25     | 400    | 400    | 400    | 400    | 400    | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400     | 400     | 400     | 400   | 400    | 400    | 400    | 400   | 400   | 400   | 400   |        |
| 26     | 400    | 400    | 400    | 400    | 400    | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400     | 400     | 400     | 400   | 400    | 400    | 400    | 400   | 400   | 400   | 400   |        |

**NOMENCLATURE**

|                          |                                                                    |
|--------------------------|--------------------------------------------------------------------|
| $a_i$ , $b_i$ , $a_i$ :  | Fuel cost coefficients for unit $i$                                |
| $u_{i,t}$ :              | On or off status of unit $i$ at hour $t$                           |
| $SUC_{i,t}$ :            | Start-up cost of unit $i$ at hour $t$                              |
| $SDC_{i,t}$ :            | Shut-down cost of unit $i$ at hour $t$                             |
| $P_{i,t}^o$ :            | Power output of unit $i$ at hour $t$                               |
| $HSC_i$ :                | Hot start-up cost of unit $i$                                      |
| $CSC_i$ :                | Cold start-up cost of unit $i$                                     |
| $T_{i,t}^u$ :            | Minimum up-time of unit $i$                                        |
| $T_{i,t}^d$ :            | Minimum down-time of unit $i$                                      |
| $MU_i^{ON}$ :            | Duration during which the $i^{\text{th}}$ unit is continuously on  |
| $MD_i^{OFF}$ :           | Duration during which the $i^{\text{th}}$ unit is continuously off |
| $CST_i$ :                | Cold start time of unit $i$                                        |
| $N$ :                    | Number of units                                                    |
| $T$ :                    | Unit commitment horizon                                            |
| $\tau_i$ :               | Time constant in the start-up cost function for unit $i$           |
| $\alpha_i$ , $\beta_i$ : | Coefficient of start-up cost function                              |
| $D_t$ :                  | Demand during hour $t$                                             |
| $R_t$ :                  | Reserve requirement during hour $t$                                |
| $RUR_i$ :                | Ramp up rate limit of unit $i$                                     |
| $RDR_i$ :                | Ramp down rate limit of unit $i$                                   |

**References**

- [1] Tsung-Ying Lee, Chun-Lung Chen, "Unit commitment with probabilistic reserve, An IPSO approach". EC&M. vol. 48, pp. 486-493, 2006.
- [2] K. Afshar, M. Ehsan, M. Fotuhi-firuzabad, A. Ahmadi-khatir and N. Bigdeli, "A new approach for reserve market clearing and cost allocating in a pool model", IJST, vol. 31/B3, pp. 593-602, 2007.
- [3] H. Y. Yamin, Q. E1-Dwairi, S. M. Shahidehpour, "A new approach for Gen-Cos profit based unit commitment in day-ahead competitive electricity markets considering reserve uncertainty", EP&ES. Vol. 29. Pp. 609-616, 2007.
- [4] C. Wang, S.M. Shahidehpour, "Effect of ramp-rate limits on unit commitment and economic dispatch", IEEE Trans. on Power Syst., vol. 8, No. 3, pp. 1341-1350, 1993.
- [5] V. Ngoc Dieu, Weerakorn Ongsakul, "Ramp rate constrained unit commitment by improved priority list and augmented Lagrange Hopfield network", EPSR, vol. 78, No. 3, pp. 291-301, 2008.
- [6] M. Shahidehpour, H. Yamin, Z.Li, "Market operations in electric power systems", John Wiley and Sons. Inc. New York, 2002, pp.115-160.
- [7] N. P. Padhy, "Unit commitment-A bibliographical Survey", IEEE Trans. on Power Syst., vol. 19, No. 2, pp. 1196-1205, 2004.
- [8] Z. Ouyang, S. M. Shahidehpour, "An Intelligent Dynamic Programming for Unit Commitment Application", IEEE Trans. on Power Syst. Vol. 6, No. 3, pp. 1203-1209, 1991.

[9] M. L. Fisher, "The Lagrangian Relaxation Method for Solving Integer Programming Problems", *Management Science*, vol. 27, No. 1, pp. 1-18, 1981.

[10] N. R. Jimenez and A. J. Conjo, "Short-term hydro thermal coordination by Lagrangian Relaxation: Solution to the dual problem", *IEEE Power Eng.* 1998.

[11] C. L. Tseng, C. A. Li, S. S. Oren, "Solving the Unit commitment Problem by a Unit Decommitment Method". *Journal of Optimization Theory and Applications*, vol. 105, No. 3, pp. 707-730, 2000.

[12] C. A. Li, R. B. Johnson, A. J. Svoboda, "A new unit commitment method", *IEEE Trans. On power syst.* Vol. 12, No.1, pp. 113-119, 1997.

[13] S. O. Ororo and M. R. Irving, "A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling", *IEEE Trans. on Power Syst.* Vol. 13, No. 2, pp. 501-516, 1998.

[14] K. S. Swarup and S. Yamashiro, "A genetic algorithm approach to generator unit commitment", *IJEPES*, vol. 25, pp. 679-687, 2003.

[15] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, "A genetic algorithm solution to the unit commitment problem", *IEEE Trans. Power Syst.*, vol. 11, No. 1, pp. 83-92, 1996.

[16] S. J. Huang, "Enhancement of hydroelectric generation scheduling using ant colony system based optimization approach", *IEEE Trans. Energy conversion*, vol. 6, pp.296-301, 2001.

[17] A. H. Mantawy, S. A. Soliman, and M. E. El-Hawari, "Anew tabu search algorithm for the long-term hydro scheduling problem", In Proc. Large Eng. Syst. Conf. Power Eng., pp. 29-34, 2002.

[18] U. D. Annakkage, T. Nummonda, and N. C. Pahalawatha, "Unit commitment by parallel simulated annealing", *Proc. Inst. Elect. Eng., Gen Tansm. Dist.* pp. 595-600, 1995.

[19] C. C. Su and Y. Y. Hsu, "Fuzzy dynamic programming: an application to unit commitment", *IEEE Trans. Power syst.*, vol.6, pp. 1231-1237, 1991.

[20] S. J. Huang and C. L. Huang, "Application of genetic-based neural network to thermal unit commitment", *IEEE Trans. Power syst.*, vol. 12, pp. 654-660, 1997.

[21] H.Y Yamin, S.M. Shahidehpour, "Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets", *EPSR*, vol. 68, pp. 83-92, 2004.

[22] C. P Cheng, C. W. Liu and G. C. Liu, "Unit commitment by annealing-genetic algorithm", *IJEPES*, vol. 24, pp. 149-158, 2000.

[23] A. Badri, S. Jadid, M. Rashidinejad, and M. P. Moghaddam, "Optimal bidding strategies in oligopoly markets considering bilateral contracts and transmission constraints", *EPSR*, vol. 78, No.6, pp. 1089-1098, 2008.

[24] A. Badri, S. Jadid, M. P. Moghaddam, and Rashidinejad, "The impact of generators' behaviors on Nash equilibrium considering transmission constraints", *ETEP*, vol. 9, pp. 765-777, 2008.

[25] S. H. Hosseini, A. Khodaei and F. Aminifar, "A Novel Straightforward Unit Commitment method for Large-Scale Power Systems", *IEEE Trans. On Power Syst.*, vol. 22, No.4, pp. 2134-2143, 2007.

[26] T. Senju, T. Miyagi, A. Y. Saber, N. Urasaki, and T. Funabashi, "Emerging solution of large-scale unit commitment problem by stochastic priority list", *EPSR*, vol. 76, pp. 283-292, 2006.

[27] K. A. Juste, H. Kita, E. Tanaka, J. Hasegawa, "An evolutionary programming to the unit commitment problem". *IEEE Trans. Power Syst.*, vol. 14, pp. 1452-1459, 1999.

[28] B. Zhao, C. X. Guo, B. R. Bai, and Y. J. Cao, "An improved particle swarm optimization algorithm for unit commitment", *IJEPES*, vol. 28, pp. 482-490, 2006.

[29] Z. Gaing, "Discrete particle swarm optimization algorithm for unit commitment". *IEEE Power Eng. Soc. General Meeting*, pp. 418-424, 2003.

[30] H. H. Balci and J. F. Valenzuela. Scheduling electric power generators using particle swarm optimization combined with the lagrangian relaxation method. *IJAMCS*, vol. 14, No.3, pp. 411-421, 2004.

[31] C. P. Cheng, C. W. Liu, and G. C. Liu, Unit commitment by lagrangian relaxation and genetic algorithms, *IEEE Trans. Power Syst.*, vol. 15, No. 2, pp. 707-714, 2000.

[32] W. ongsakul and N. Petcharak, "Unit commitment by enhanced adaptive Lagrangian relaxation", *IEEE Trans. Power Syst.*, vol. 19, No.1, pp. 620-628, 2004.

[33] I. G Damusis, A. G. Bakirtzis, and P.S. Dokopoulos, "A solution to the unit commitment problem using integer-coded genetic algorithm", *IEEE Trans. Power Syst.*, vol. 19, No. 2, pp. 1165-1172, 2004.

[34] J. Valenzuela and A. E. Smith, "A seeded memetic algorithm for large unit commitment problems", *J. Heurist.* vol. 8, pp. 173-195, 2002.

[35] IEEE Reliability Test System Task Force, *IEEE Reliability Test system*. *IEEE Trans. Power Systems PAS-98*, pp. 2047-2054, 1979.

[36] W. Ongsakul, N. Petcharak, "Ramp rate constraint unit commitment by improved adaptive Lagrangian relaxation". *Proceeding of the Electricity Supply Industry in Transition: Issues and Prospect for Asia*, AIT, pp. 428-446, 2004.

[37] حسين عسکریان ابیانه، حسين شریعتی دهقان، محمد حسين جاویدی دشت بیاض، فرزاد رضوی "برنامه ریزی توسعه شبکه انتقال تحت شرایط بازار برق با در نظر گرفتن هزینه برقراری امنیت" *مجله انجمن مهندسین برق و الکترونیک ایران*، سال ششم، شماره دوم، پاییز و زمستان 88