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Abstract :  

This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation 
torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of 
voltage and commutation time is estimated by a neural network and optimized with an optimization method 
named particle swarm optimization (PSO) algorithm analysis. The goal of optimization is to minimize the error 
between the command torque and real torque and doesn’t need knowledge of the conduction interval of the three 
phases. It adaptively adjusts the DC link voltage in commutation duration so that commutation torque ripple is 
effectively reduced. In this paper, the performance of the proposed brushless DC (BLDC) control is compared 
with that of conventional BLDC drives without input voltage control. 
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1. Introduction 
The permanent magnet brushless DC (BLDC) machine 
is extensively used in a wide range of applications such 
as electric vehicle, robotics, aerospace, computer and 
household products, because of its high power to 
current ratio and high efficiency. In spite of their 
advantages, they have some drawbacks like stator 
current commutation torque ripples, which occurs due 
to the loss of ideal phase current commutation. Fig. 1 
shows the ideal current and back-EMF of a 120° elec. 
conduction mode in a 3-phase brushless DC machine. 
In the ideal case, the stator currents instantaneously 
reach to their final values. However, in a practical 
BLDC drive, since machine has both inductance and 
resistance, the stator currents are different from the 
ideal case and the currents reach to their final values 
with delay. In other words, circuit has a time constant. 
Therefore, due to machine inductance, the current 
ripple is generated. With a trapezoidal back-EMF 
waveform, the current ripple leads to the torque ripple. 
Several theoretical approaches for analysis of the 
commutation torque ripple have been reported in 
literature [1-2].  
Also, several methods have been introduced for 
mitigating the commutation torque ripple of brushless 
DC machines. A direct torque control (DTC) by 
employing a hybrid 2-phase and 3-phase switching 
mode during the commutation periods is presented in 
[3]. A commutation torque ripple reduction approach is 
reported in [4], which is based on this fact that current  

 
Fig.1. Ideal current and back-EMF waveforms of a single 

phase in a BLDC motor 
 
slopes of the incoming and outgoing phases during the 
commutation interval can be equalized by a proper 
duty-ratio control. An adaptive torque ripple control for 
current shaping during commutation is proposed in [5]. 
A current control method based on Fourier series 
coefficients and space vector PWM is used to reduce 
the torque ripple in a BLDC motor [6]. 
 The previous studies have relatively complicated 
modeling and are not very effective. Almost all the 
previous methods are based on current shaping. These 
current shaping techniques have complex behavior 
during commutation interval because inverter must 
produce difficult current waveforms. On the other 

hand, because of the machine large electrical time 
constant fulfillment of these current waveforms during 
commutation duration is difficult [5]. Another factor 
that reduces the effectiveness of the previous methods 
is the method commutation duration method. As 
mentioned earlier, the current shaping is only applied 
when phase currents are commutating so it is essential 
to know commutation duration. In the previous works, 
this duration was calculated with this assumption that 
machine works in normal condition, i.e. without 
applying commutation torque ripple techniques. This 
may lead to non causal systems since the torque ripple 
methods themselves affect commutation interval.          
We present a simple method which uses variable input 
DC link voltage in order to minimize commutation 
torque ripple. We use an optimum increased input 
voltage during commutation interval to keep the stator 
currents near to ideal case. This method can be 
implemented in practice by a DC chopper or by control 
of firing angles of rectifier switches. If a controlled 
rectifier is used, since rectifier switches must tolerate 
more voltage stress during commutation to increase 
input voltage so their voltage rating is higher than the 
conventional drives. If boost converter is used, an extra 
switch is required that increases the total system cost 
with respect to the conventional BLD drives. Online 
neural network based parameter tuning can be 
implemented in a DSP or microcontroller so it doesn’t 
increase the system cost. It was first presented in [7], 
where the authors used an analytical approach to 
determine the input voltage during commutation 
period. They implemented the drive practically and 
they could reduce the torque ripple from 28%, with a 
fixed input voltage, to 17.9%, by applying variable 
input voltage during commutation period. As discussed 
earlier, this method is not causal because commutation 
interval itself depends on the input voltage and so when 
input voltage is increased it varies. In our work 
duration of application of the optimized voltage is 
adjusted adaptively by a neural network and optimized 
by PSO. Therefore, the knowledge of circuit behavior 
and commutation duration is not necessary.  We use 
the evolutionary computation to obtain the optimum 
values of increased input voltage and the duration that 
the voltage should be applied at different speeds and 
load torques. With our proposed method, the 
commutation torque ripple is reduced to less than 8% 
which is remarkable reduction. The commutation 
torque ripple in the previous works [3-6]  is about 15-
20%.  

2. Analysis of Commutation Torque 
Ripple 
In this section we study the current ripple which is a 
result of commutation events and leads to torque ripple. 
Fig. 2 shows the current paths during commutation 
between phases b and c. It is assumed that the back-
EMF is constant during phase current. However, it is 
clear that this assumption is not valid. Following 
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equations describe performance of the circuit during 
the commutation [8]: 

1 4

3 3
a

dc
s s

di
U E

dt L L
= −                                                 (1) 

1 4

3 3
b

dc
s s

di
U E

dt L L
= +                                                 (2) 

 
2 2

3 3
c

dc
s s

di
U E

dt L L
= − +                                             (3) 

 
where Udc is the DC-link voltage.  
During the commutation, current of phase b rises and 
current of phase c falls. Depending on the rate of 
change of currents in phases b and c, three cases may 
occur  
(a) If 4dcU E= , then: 

1 2 2 2

3 3 3 3dc dc
s s s s

U E U E
L L L L

+ = −                         (4) 

Therefore, from (1-4), we have 

b cdi di

dt dt
= − and 0adi

dt
= , i.e. ai  is constant.  

(b) If 4dcU E< , then: 

 
 

Fig. 2. Current flow during commutation 
 

1 2 2 2

3 3 3 3dc dc
s s s s

U E U E
L L L L

+ > −                             (5) 

Therefore, b cdi di

dt dt
> −  and 0adi

dt
< , i.e. the current of 

phase ‘a’ decreases. 
(c) If 4dcU E> , then: 

 
1 2 2 2

3 3 3 3dc dc
s s s s

U E U E
L L L L

+ < −                             (6) 

Therefore, b cdi di

dt dt
< −  and 0adi

dt
> , i.e. the current of 

phase ‘a’ increases. 
From commutation torque ripple perspective, DC link 
voltage should be equal to four times of the back-EMF 
amplitude during commutation interval to eliminate the 
current ripple and, consequently, commutation torque 
ripple. As mentioned above, assumption of constant 

back-EMF, during commutation interval, is not valid 
and this may lead to a large error.  
Therefore, this analysis is based on approximation and 
can not precisely describe the commutation period. In 
this regard, we propose an evolutionary computing 
based method to estimate the optimum DC link voltage 
and its optimum. This method, does not have 
aforementioned limitations, finds the optimum values 
with trial and error, and does not require the knowledge 
of commutation interval. The next section explains the 
basis of this technique.   

 

3. Proposed Technique 
The major goal of this paper is to find the optimum DC 
link voltage during commutation intervals and the best 
duration which this voltage should be applied, at 
different speeds and load torques, to achieve a high-
performance drive with minimum torque ripple. As it 
can be inferred from (4-6), by regulating Udc in 
commutation period, phase currents can be controlled 
and by choosing appropriate values for applied voltage 
and also duration of applying this voltage, phase 
currents can be appropriately shaped and, 
consequently, commutation torque ripple can be 
effectively reduced. If the current variations of two 
phases, that commutation occurs between them, have 
equal slopes with opposite signs, the current of 3rd 
phase will not be affected. In other words, by adjusting 
input voltage during commutation time, phase currents 
can be regulated in a good manner so that the torque 
ripple reaches its lowest value. Similar approach with 
varying input voltage was implemented in [7], but as 
discussed before, because of weakness and complexity 
in modeling due to variation of back-EMF in 
commutation period, analysis model has some 
limitations.  
An effective approach for voltage control during 
commutation period is to employ an optimization 
algorithm to obtain the best values of input voltage and 
its duration in commutation time. In the conventional 
control, the input dc link voltage is tuned by a PI 
controller and this controller shows the same behavior 
in the commutation and non commutation time. In the 
proposed method, in duration of *T∆ after starting time 
of commutation, the output of PI controller is multiplied 

by a gain of K1. If the values of *T∆ and K1 are 
optimized, the commutation torque ripple reaches to its 
weakest value. 
 The optimal values of K1 and *T∆ depend on the speed 
reference and load torque. Thus, the best values of 
these parameters should be obtained at different speeds 
and torques. These values are used to train an artificial 
neural network offline. This trained neural network is 
employed in voltage control loop to determine the best 
values of *T∆ and K1 at different speeds. 

a 
b 

c 

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

ae
ee

.c
om

 o
n 

20
26

-0
2-

16
 ]

 

                               3 / 8

https://jiaeee.com/article-1-210-fa.html


Jo
ur

na
l o

f I
ra

ni
an

 A
ss

oc
ia

tio
n 

of
 E

le
ct

ric
al

 a
nd

 E
l

ec
tr

on
ic

s E
ng

in
ee

rs
 -

 V
ol

.7
- 

N
o.

2-
 F

al
l &

 W
in

te
r 

20
10

 

 1389پائيز و زمستان  - شماره دوم  - هفتمسال  - مجله انجمن مهندسين برق و الكترونيك ايران  
 

 

18 

For optimization, a powerful intelligent algorithm, 
named particle swarm optimization (PSO) is used. In 
order to achieve minimum commutation torque ripple 
in steady state, the fitness function is defined as the 
difference between maximum and minimum torques in 
steady state.  Following section describes this method. 
 

3.1. Particle swarm optimization method 
PSO is a population-based algorithm that exploits a 
population of individuals to probe promising region of 
the search space. In this context, the population is 
called swarm and the individuals are called particles. 
Each particle moves with an adaptable velocity within 
the search space and retains in its memory the best 
position it ever encountered. The global variant of 
PSO, the best position ever attained by all individuals 
of the swarm is communicated to all the particles [9 - 
10].  
 

 
Fig.3. Flowchart of torque ripple control during current 

commutation 
 
The general principles for the PSO algorithm are stated 
as follows: 
Suppose that the search space is n-dimensional, then 
the i th particle can be represented by a n-dimensional 
vector, Xi=[x i1,xi2,…,xin]

T, and velocity 
Vi=[v i1,vi2,…,vin]

T, where i=1,2,…,N and N is the size 
of the population. 

In PSO, particle i remembers the best position it visited 
so far, referred to as Pi=[p i1,pi2,…,pin]

T, and the best 
position of the best particle in the swarm is referred as 
G=[g1,g2,…,gn]T. Each particle ‘i’  adjusts its position 

in next iteration t+1 with respect to (7-8) [9]: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

1 1

2 2

1i i i iV t t V t c r P t X t

c r G t X t

ω+ = + −

+ −
                 (7)                        

( ) ( ) ( )11 ++=+ tiVtiXtiX χ                                       (8)                                                                                                 

Where ω(t) is inertia coefficient which is employed to 
manipulate the impact of the previous history of 
velocities on the current velocity. χis constriction 
factor which is used to limit velocity, here χ=0.7.  c1 
and c2 denote the cognitive and social parameters and 
r1 and r2 are random real numbers drawn from 
uniformly distributed interval[0, 1]. ω(t)  resolves the 
trade off between the global and local exploration 
ability of the swarm. A large inertia coefficient 
encourages global exploration while small one 
promotes local exploration. Experimental results 
suggest that it is preferable to initialize it to a large 
value (here 1), giving priority to global exploration of 
search space, and gradually decreasing to a small value 
about zero (here 0.1) as to obtain refined solution 

 
Fig.4. Neural network of RBFN 

 
c1 and c2 accelerate the search toward local and global 
best directions respectively. Experiments indicate to 
initialize c1 to 2.5 and decrease it monotonically to 1.5 
during optimization procedure. On the other hand, it is 

better to track c2 on an inverse trajectory. 
In this study, number of population is set to 10 times of 
number of variables, i.e. 20, and for preventing 
explosion of swarm, maximum allowable velocity 
along each dimension is set to 0.5 of its feasible range. 
Results show that, in this application, algorithm 
converges within 60 to 70 iterations. Hence, in a 
conservative manner, the number of iterations is set to 
100. 

3.2. Neural Network of RBFN 
Like most feed forward networks, RBFN has three 
layers, namely, an input layer, a hidden layer, and an 
output layer. A schematic view of the specific RBFN 
with 2 inputs and two outputs is given in Fig. 4. 
Using the results of previous section, an RBFN which 
can map the input variables to the outputs with a 
nonlinear relationship is trained. The input variables 
are speed and load torque, and the outputs of RBFN are 

Subroutine Commutation 

Save the latest and present switching state 

During current 
commutation? 

t<∆T* 

Udc=UPI*K1
Udc=UPI 

Return 

N 

Y 

Y N 

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

ae
ee

.c
om

 o
n 

20
26

-0
2-

16
 ]

 

                               4 / 8

https://jiaeee.com/article-1-210-fa.html


1389پائيز و زمستان  - شماره دوم  - هفتم سال  - مجله انجمن مهندسين برق و الكترونيك ايران  

Journal of Iranian A
ssociation of E

lectrical and E
l

ectronics E
ngineers - V

ol.7- N
o.2- F

all &
 W

inter 20
10

  

 

 
 

19 

the voltage gain of K1 and applying time of *T∆ . The 
trained RBFN is used for on-line tuning of optimum K1   
and *T∆ . 

4. Simulation Results 
The parameters of 500 W BLDC machine are given in 
Table I. The 500 W BLDC machine is simulated in the 
MATLAB SIMULINK environment. The input AC 
voltage is 220 V and rectified DC link voltage is 298V.  
Several tests are carried out to evaluate the proposed 
BLDC drive system in simulation. 
The stator current and torque response are obtained at 
different speeds and load torques. Fig. 5 shows the 
variations of the optimum values of K1 for different 
values of speed and load torque, obtained from 
optimization process and prediction of the neural 
network, trained with optimum values obtained from 
optimization process.  The optimum values are 
obtained when speed varies from  
 
 

Table.1. Parameters of BLDC motor 
Number of poles 8 
Rated speed (rpm) 1500 
Rated torque (N.m) 3 
PM excitation  (Wb) 0.085 
Phase resistance (Ω) 1.875 
Self inductance (mH) 8.5 
Ac input voltage (v) 220 
 
 
150 to 1500 rpm with steps of 150 rpm, and in each 
speed, torque varies from 1 to 3 N.m with step of 1 
N.m. It can be inferred from this figure that *T∆ has an 
incremental characteristic with respect to speed and 
torque. Fig. 6 illustrates the optimum values of 

*T∆ and compares it with neural network prediction. 
This neural network interpolates other optimum values 
of K1 and *T∆ which are not obtained from 
optimization. 
 
In this case, at first an external circuit detects the 
beginning of commutation which occur every 60º elec. 
After detection, the output of PI controller is multiplied 
by a gain of K1 in duration of *T∆ . The parameters K1 
and *T∆ is on-line provided by an artificial neural 
network, depending on the reference speed and load 
torque. As it will be seen, since the input voltage is 
changed to optimum value during commutation, the 
resultant torque ripple is considerably reduced. Phase 
current, and electromagnetic torque waveforms of the 
simulated machine with and without proposed 
technique, when speed is 1500 rpm and load torque is 
equal to 3 N.m (Rated speed and torque), are depicted 
in Fig. 7. Fig. 8 shows similar parameters when 
command speed and load torque are 300 rpm and 1 
N.m, respectively.  

It is seen that for speed of 1500 rpm torque ripple is 
reduced from 1.2 N. to 0.1 N. which shows a 
significant reduction of about 85%. Also, at low speed 
(300 rpm) and low torque (1 N.m), torque ripple is 
reduced from 0.32 N.m to  0.04 N.m.  
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Fig. 5. Variation of K1 (a) results of optimization (b) 

neural network prediction 
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Fig. 6. Variation of *T∆ (elec.deg) (a) results of  

optimization (b) neural network prediction 
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(c) 
 

Fig .7. Simulation results of the proposed method at high 
speed (1500 rpm) and high torque (3 N.m) (a) phase 

current (b) electromagnetic torque (c) command voltage 
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Fig. 8. Simulated performance of the conventional control 
at high speed (1500rpm) and high torque (3N.m) 
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(b) 

Fig. 9. Simulated performance with proposed control at 
low speed and low torque (300 rpm and 1 N.m) 
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(c) 

Fig. 10. Simulated performance when speed changes from 
780 rpm to 1220 rpm. (a) Electromagnetic torque (b) 

current and (c) angular speed (rpm) 
 

Fig.10 shows the results of simulation when a 
disturbance is applied to the system. In this case, 
command speed varies from 780 rpm to 1220 rpm at 
t=0.06 (s) and load torque is equal to 1.75 N.m. When 
command speed changes, neural network senses this 
deviation and produces the new optimum values of K1 

and
*T∆ . It is seen that before the disturbance, the 

electromagnetic torque and current waveforms are near 
to the ideal case. When speed change occurs, after 
some cycles machine reaches to its steady state and 
current and torque again have negligible ripple. This 
diagram verifies effectiveness of the neural network 
performance. 
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5. Conclusion 
In this paper a new method for reducing commutation 
torque ripple with varying input voltage a period of 
∆T*during commutation time is presented and 
optimized offline by PSO algorithm Results of the 
optimization are used to train a neural network and this 
neural network is used for online tuning of K1 and ∆T* 
at different speeds. Results of the simulations validate 
effectiveness of this method. 
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