دوره 22، شماره 4 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 4 1404 )                   جلد 22 شماره 4 صفحات 68-60 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Andi M, Mahmoudi P. Lightweight Bone Fracture Detection in Radiographic Images Using an Optimized MobileNetV3 Approach. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (4) :60-68
URL: http://jiaeee.com/article-1-1852-fa.html
اندی محمدسام، محمودی پیام. تشخیص خودکار شکستگی استخوان در تصاویر رادیوگرافی با رویکرد سبک‌وزن مبتنی بر MobileNetV3 بهینه‌شده. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (4) :60-68

URL: http://jiaeee.com/article-1-1852-fa.html


گروه مهندسی کامپیوتر- دانشکده مهندسی و فناوری ـ دانشگاه مازندران
چکیده:   (479 مشاهده)
شکستگی‌های استخوان از جمله آسیب‌های شایع اسکلتی هستند که در محیط‌های ورزشی پرفشار و اورژانس‌های پرمراجعه تشخیص سریع و دقیق آن‌ها اهمیت ویژه‌ای دارد؛ زیرا تأخیر یا اشتباه در شناسایی می‌تواند به تاخیر در التیام، ناتوانی حرکتی و افزایش هزینه‌های درمانی منجر شود. در این پژوهش سامانه‌ای سبک مبتنی بر نسخه اصلاح‌شده MobileNetV3 معرفی می‌شود که تصاویر رادیوگرافی را با دقت و سرعت بالا در دو گروه شکستگی و غیرشکستگی طبقه‌بندی می‌کند. برای آموزش از ۱۰۵۸۰ تصویر رادیوگرافی مربوط به نواحی مختلف بدن استفاده شد و داده‌ها پس از تغییر اندازه به ۲۲۴×۲۲۴ و نرمال‌سازی به شبکه داده شدند. معماری با به‌کارگیری میانگین‌گیری سراسری، لایه‌های تمام‌متصل و روش‌های کاهش بیش‌برازش بازطراحی شد و در آموزش از AdamW با نرخ یادگیری ۰.۰۰۰۱ استفاده گردید؛ لایه‌های ابتدایی فریز و لایه‌های انتهایی به‌صورت هدفمند تنظیم شدند تا عملکرد مدل بهبود یابد. ارزیابی بر روی ۵۰۶ تصویر آزمون نشان داد دقت 99.21% حاصل شده است و این مقدار با برخی معماری‌های سنگین‌تر قابل رقابت یا برتر است. ماهیت سبک سامانه، اجرای آن را بر روی دستگاه‌های کم‌منبع مانند تلفن هوشمند و تبلت پزشکی ممکن می‌سازد و می‌تواند به‌عنوان دستیار سریع رادیولوژیست‌ها در اورژانس، کلینیک‌ها و محیط‌های شلوغ بالینی به‌کار گرفته شود.
متن کامل [PDF 1053 kb]   (76 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: الکترونیک
دریافت: 1404/5/30 | پذیرش: 1404/8/12 | انتشار: 1404/11/2

فهرست منابع
1. [1] R. M. Jones, A. Sharma, R. Hotchkiss, J. W. Sperling, J. Hamburger, C. Ledig, … & R. V. Lindsey, (2020). Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ digital medicine, 3(1), 144.‌ [DOI:10.1038/s41746-020-00352-w]
2. [2] Y. D. Jeon, K. B. Park, S. H. Ko, J. M. Oh, & S. G. Kim, (2024). Sports-related fractures in the geriatric population at a level I trauma center. BMC geriatrics, 24(1), 464. [DOI:10.1186/s12877-024-05095-x]
3. [3] J. Crim, (2024). Bone radiographs: sometimes overlooked, often difficult to read, and still important. Skeletal Radiology, 53(9), 1687-1698. [DOI:10.1007/s00256-023-04498-y]
4. [4] N. Aghaei, G. Akbarizadeh, & A. Kosarian, (2022). Using ShuffleNet to design a deep semantic segmentation model for oil spill detection in synthetic aperture radar images. Journal of Iranian Association of Electrical and Electronics Engineers, 19(3), 131-144.‌ [DOI:10.52547/jiaeee.19.3.131]
5. [5] M. Kutbi, (2024). Artificial intelligence-based applications for bone fracture detection using medical images: a systematic review. Diagnostics, 14(17), 1879.‌ [DOI:10.3390/diagnostics14171879]
6. [6] Z. Su, A. Adam, M. F. Nasrudin, M. Ayob, & G. Punganan, (2023). Skeletal fracture detection with deep learning: A comprehensive review. Diagnostics, 13(20), 3245.‌ [DOI:10.3390/diagnostics13203245]
7. [7] A. Alam, A. S. Al-Shamayleh, N. Thalji, A. Raza, E. A. Morales Barajas, E. B. Thompson,... & I. Ashraf, (2025). Novel transfer learning based bone fracture detection using radiographic images. BMC Medical Imaging, 25(1), 5.‌ [DOI:10.1186/s12880-024-01546-4]
8. [8] A. Abdusalomov, S. Mirzakhalilov, S. Umirzakova, O. Ismailov, D. Sultanov, R. Nasimov, & Y. I. Cho, (2025). Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures. Diagnostics, 15(3), 271.‌ [DOI:10.3390/diagnostics15030271]
9. [9] P. N. Srinivasu, G. L. A. Kumari, S. C. Ahmed S. Narahari, & A. Alhumam, (2025). Exploring the impact of hyperparameter and data augmentation in YOLO V10 for accurate bone fracture detection from X-ray images. Scientific Reports, 15(1), 9828.‌ [DOI:10.1038/s41598-025-93505-4]
10. [10] T. N. Hoa, L. M. Pham, & Q. H. Vu, (2025). Classify bone fractures in X‑ray images. In Lecture Notes in Computer Science (Vol. 15417, pp. 344-356). Springer. [DOI:10.1007/978-981-96-6389-7_31]
11. [11] M. Cohen, J. Puntonet, J. Sanchez, E. Kierszbaum, M. Crema, P. Soyer, & E. Dion, (2023). Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. European radiology, 33(6), 3974-3983.‌ [DOI:10.1007/s00330-022-09349-3]
12. [12] T. Aldhyani, Z. A. Ahmed, B. M. Alsharbi, S. Ahmad, M. H. Al-Adhaileh, A. H. Kamal,... & J. Nazeer, (2025). Diagnosis and detection of bone fracture in radiographic images using deep learning approaches. Frontiers in Medicine, 11, 1506686. [DOI:10.3389/fmed.2024.1506686]
13. [13] S. Qian, C. Ning, & Y. Hu, (2021, March). MobileNetV3 for image classification. In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) (pp. 490-497). IEEE.‌ [DOI:10.1109/ICBAIE52039.2021.9389905]
14. [14] A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. Tan,... & H. Adam, (2019). Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1314-1324).‌ [DOI:10.1109/ICCV.2019.00140]
15. [15] A. Vanacore, M. S. Pellegrino, & A. Ciardiello, (2024). Fair evaluation of classifier predictive performance based on binary confusion matrix. Computational Statistics, 39(1), 363-383. [DOI:10.1007/s00180-022-01301-9]
16. [16] A. A. Mukhlif, B. Al-Khateeb, & M. A. Mohammed, (2022). An extensive review of state-of-the-art transfer learning techniques used in medical imaging: Open issues and challenges. Journal of Intelligent Systems, 31(1), 1085-1111.‌ [DOI:10.1515/jisys-2022-0198]
17. [17] S. Asadi Amiri, & M. Andi, (2025). Classification of Pistachio Varieties Using MobileNet Deep Learning Model. Journal of Iranian Association of Electrical and Electronics Engineers, 22(1), 133-140. [DOI:10.61186/jiaeee.22.1.133]
18. [18] J. L. Speiser, M. E. Miller, J. Tooze, & E. Ip, (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134, 93-101. [DOI:10.1016/j.eswa.2019.05.028]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb