1. [1] F. Bahrami-Chenaghlou, A. Habibzadeh-Sharif, and A. Ahmadpour, "Design and full-wave analysis of a dual-purpose compact all-optical integrated circuit for ultra-fast signal processing", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 20, no. 3, pp. 59-66, May 2023, doi: 10.52547/jiaeee.20.3.59. [
DOI:10.52547/jiaeee.20.3.59]
2. [2] T. Takemoto, H. Yamashita, T. Yazaki, N. Chujo, Y. Lee, and Y. Matsuoka, "A 25-to-28 Gb/s high-sensitivity (-9.7 dBm) 65 nm CMOS optical receiver for board-to-board interconnects", IEEE J Solid-State Circuits, vol. 49, no. 10, pp. 2259-2276, 2014, doi: 10.1109/JSSC.2014.2349976. [
DOI:10.1109/JSSC.2014.2349976]
3. [3] J. Kim and J. F. Buckwalter, "A 40-Gb/s optical transceiver front-end in 45 nm SOI CMOS", IEEE J Solid-State Circuits, vol. 47, no. 3, pp. 615-626, 2012, doi: 10.1109/JSSC.2011.2178723. [
DOI:10.1109/JSSC.2011.2178723]
4. [4] R. Costanzo and S. M. Bowers, "A 10-GHz Bandwidth Transimpedance Amplifier with Input DC Photocurrent Compensation Loop", IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 673-676, 2020, doi: 10.1109/LMWC.2020.2993726. [
DOI:10.1109/LMWC.2020.2993726]
5. [5] Q. Pan, Y. Wang, and C. P. Yue, "A 42-dB Omega~25 -Gb/s CMOS Transimpedance Amplifier with Multiple-Peaking Scheme for Optical Communications", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 72-76, 2020, doi: 10.1109/TCSII.2019.2901601. [
DOI:10.1109/TCSII.2019.2901601]
6. [6] A. Kari Dolatabadi and M. Jalali, "Power and Area Efficient Transimpedance Amplifier Driving Large Capacitive Loads Based on Modified RGC Structure", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1740-1744, 2020, doi: 10.1109/TCSII.2019.2947413. [
DOI:10.1109/TCSII.2019.2947413]
7. [7] B. Babazadeh Daryan, H. Khalesi, V. Ghods, and A. Izadbakhsh, "Design of Four-Stage OTA CMOS with Low Area", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 18, no. 4, pp. 1-7, Jul. 2021, doi: 10.52547/jiaeee.18.4.1. [
DOI:10.52547/jiaeee.18.4.1]
8. [8] E. Sackinger, "The transimpedance limit", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1848-1856, 2010, doi: 10.1109/TCSI.2009.2037847. [
DOI:10.1109/TCSI.2009.2037847]
9. [9] D. Li, L. Geng, F. Maloberti, and F. Svelto, "Overcoming the Transimpedance Limit: A Tutorial on Design of Low-Noise TIA", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 6, pp. 2648-2653, 2022, doi: 10.1109/TCSII.2022.3173155. [
DOI:10.1109/TCSII.2022.3173155]
10. [10] A. Kari Dolatabadi and M. Jalali, "Power and Area Efficient Transimpedance Amplifier Driving Large Capacitive Loads Based on Modified RGC Structure", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1740-1744, Oct. 2020, doi: 10.1109/TCSII.2019.2947413. [
DOI:10.1109/TCSII.2019.2947413]
11. [11] S. A. Hosseinisharif, M. Pourahmadi, and M. R. Shayesteh, "Utilization of a cascoded-inverter in an RGC structure as a low-power, broadband TIA", Microelectronics J, vol. 99, May 2020, doi: 10.1016/j.mejo.2020.104749. [
DOI:10.1016/j.mejo.2020.104749]
12. [12] S. Zohoori, T. Shafiei, and M. Dolatshahi, "A 274µW, Inductor-less, Active RGC-Based Transimpedance Amplifier Operating at 5Gbps", in 2019 27th Iranian Conference on Electrical Engineering (ICEE), IEEE, Apr. 2019, pp. 1-4. doi: 10.1109/IranianCEE.2019.8786670. [
DOI:10.1109/IranianCEE.2019.8786670]
13. [13] M. H. Taghavi, L. Belostotski, J. W. Haslett, and P. Ahmadi, "10-Gb/s 0.13-μm CMOS Inductorless Modified-RGC Transimpedance Amplifier", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 1971-1980, Aug. 2015, doi: 10.1109/TCSI.2015.2440732. [
DOI:10.1109/TCSI.2015.2440732]
14. [14] C. Li, S. Xie, G. Zhou, L. Mao, and B. Qiu, "A low noise transimpedance amplifier for optical receiver", Review of Scientific Instruments, vol. 92, no. 3, Mar. 2021, doi: 10.1063/5.0031658. [
DOI:10.1063/5.0031658]
15. [15] T. H. Ngo, T. W. Lee, and H. H. Park, "4.1 mW 50 dBΩ 10 Gbps transimpedance amplifier for optical receivers in 0.13 μm CMOS", Microw Opt Technol Lett, vol. 53, no. 2, pp. 448-451, Feb. 2011, doi: 10.1002/mop.25741. [
DOI:10.1002/mop.25741]
16. [16] H. Jung, K. S. Choi, J. Kim, and S. G. Lee, "Analysis and Design of Inductorless Transimpedance Amplifier Employing Nested Feedforward Noise-Canceling Amplifiers", IEEE Trans Microw Theory Tech, vol. 70, no. 8, pp. 3923-3932, Aug. 2022, doi: 10.1109/TMTT.2022.3176872. [
DOI:10.1109/TMTT.2022.3176872]
17. [17] B. Abdollahi, B. Mesgari, S. Saeedi, Z. Sohrabi, and H. Zimmermann, "Low-Noise Modified-RGC Transimpedance Amplifier With Bandwidth Enhancement Using an Intrinsic Negative-RC Network", IEEE Access, vol. 13, pp. 33521-33531, 2025, doi: 10.1109/ACCESS.2025.3543679. [
DOI:10.1109/ACCESS.2025.3543679]
18. [18] Z. Cao, X. Xiao, Z. Dang, and J. He, "A Low-Noise Linear TIA With 42-GHz Bandwidth for Single-Ended Coherent Optical Receivers", IEEE Solid State Circuits Lett, vol. 7, pp. 239-242, 2024, doi: 10.1109/LSSC.2024.3451966. [
DOI:10.1109/LSSC.2024.3451966]
19. [19] M. Haghi Kashani, H. Shakiba, and A. Sheikholeslami, "A Low-Noise High-Gain Broadband Transformer-Based Inverter-Based Transimpedance Amplifier", IEEE Open Journal of Circuits and Systems, vol. 3, pp. 72-81, 2022, doi: 10.1109/OJCAS.2022.3164396. [
DOI:10.1109/OJCAS.2022.3164396]