1. [1] G. Lakshmi, V. U. Sankar, and Y. S. Sankar, "A survey of PCB defect detection algorithms", J. Electron. Test., vol. 39, pp. 541-554, 2023, doi: 10.1007/s10836-023-06091-6. [
DOI:10.1007/s10836-023-06091-6]
2. [2] Q. Ling and N. A. M. Isa, "Printed circuit board defect detection methods based on image processing, machine learning and deep learning: A survey", IEEE Access, vol. 11, pp. 15921-15944, 2023, doi: 10.1109/ACCESS.2023.3245093. [
DOI:10.1109/ACCESS.2023.3245093]
3. [3] X. Wu, Y. Ge, Q. Zhang, and D. Zhang, "PCB defect detection using deep learning methods", in IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2021, pp. 873-876, doi: 10.1109/CSCWD49262.2021.9437846. [
DOI:10.1109/CSCWD49262.2021.9437846]
4. [4] J. Zheng, X. Sun, H. Zhou, C. Tian, and H. Qiang, "Printed circuit boards defect detection method based on improved fully convolutional networks", IEEE Access, vol. 10, pp. 109908-109918, 2022, doi: 10.1109/ACCESS.2022.3214306. [
DOI:10.1109/ACCESS.2022.3214306]
5. [5] Y. D. Austria and A. C. Fajardo, "Defect detection in printed circuit boards using convolutional neural networks", in 2023 2nd International Conference on Edge Computing and Applications (ICECAA), 2023, pp. 1498-1504, doi: 10.1109/ICECAA58104.2023.10212195. [
DOI:10.1109/ICECAA58104.2023.10212195]
6. [6] V. Mankad, N. Bhanvadia, M. I. Patel, and R. Gajjar, "PCB classification using convolutional neural network", in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021, pp. 986-990, doi: 10.1109/ICAC3N53548.2021.9725695. [
DOI:10.1109/ICAC3N53548.2021.9725695]
7. [7] J. Yu, L. Zhao, Y. Wang, and Y. Ge, "Defect detection of printed circuit board based on adaptive key-points localization network", Comput. Ind. Eng., vol. 193, p. 110258, 2024. [
DOI:10.1016/j.cie.2024.110258]
8. [8] G. J. Brindha, S. Athiban, J. Gurumoorthi, and P. Sanjaykrishna, "Printed circuit board defect detection using machine learning", J. Electron Int. Res. J. Educ. Technol., pp. 76-82, 2023, doi: 10.1234/abcd.efghi.
9. [9] A. Bhattacharya and S. G. Cloutier, "End-to-end deep learning framework for printed circuit board manufacturing defect classification", Sci. Rep., vol. 12, p. 12559, 2022, doi: 10.1038/s41598-022-16302-3. [
DOI:10.1038/s41598-022-16302-3]
10. [10] V. A. Adibhatla, H. C. Chih, C. C. Hsu, J. Cheng, M. F. Abbod, and J. S. Shieh, "Defect detection in printed circuit boards using you-only-look-once convolutional neural networks", Electronics, vol. 9, no. 9, p. 1547, 2020, doi: 10.3390/electronics9091547. [
DOI:10.3390/electronics9091547]
11. [11] J. Shen, N. Liu, and H. Sun, "Defect detection of printed circuit board based on lightweight deep convolution network", IET Image Process., vol. 14, pp. 3932-3940, 2020. [
DOI:10.1049/iet-ipr.2020.0841]
12. [12] M. A. Alghassab, "Defect detection in printed circuit boards with pre-trained feature extraction methodology with convolution neural networks", Comput. Mater. Contin., vol. 70, no. 1, pp. 637-652, 2022, doi: 10.32604/cmc.2022.019527. [
DOI:10.32604/cmc.2022.019527]
13. [13] Q. Yang and F. Yu, "Deep learning-based defect detection research on printed circuit boards", Int. J. Adv. Netw. Monit. Control., vol. 9, no. 2, pp. 51-58, 2024, doi: 10.2478/ijanmc-2024-0015. [
DOI:10.2478/ijanmc-2024-0015]
14. [14] V. T. Nguyen and H. A. Bui, "A real-time defect detection in printed circuit boards applying deep learning", EUREKA: Phys. Eng., no. 2, pp. 143-153, 2022, doi: 10.21303/2461-4262.2022.002127. [
DOI:10.21303/2461-4262.2022.002127]
15. [15] Kaggle, "PCB defects dataset", [Online]. Available: https://www.kaggle.com/datasets/akhatova/pcb-defects.
16. [16] C. Wang, G. Huang, Z. Huang, and W. He, "Conditional TransGAN-based data augmentation for PCB electronic component inspection", Comput. Intell. Neurosci., vol. 2023, p. 2024237, Jan. 2023, doi: 10.1155/2023/2024237. [
DOI:10.1155/2023/2024237]
17. [17] H. Kang and Y. Yang, "An enhanced detection method of PCB defect based on D-DenseNet (PCBDD-DDNet)", Electronics, vol. 12, p. 4737, 2023, doi: 10.3390/electronics12234737. [
DOI:10.3390/electronics12234737]
18. [18] X. Yu and Y. He, "PCB defect detection based on GAN data generation with self-attentive mechanism", in 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), Wuhan, China, 2022, pp. 55-60, doi: 10.1109/ICFEICT57213.2022.00018. [
DOI:10.1109/ICFEICT57213.2022.00018]
19. [19] B. Ghosh, M. K. Bhuyan, P. Sasmal, Y. Iwahori, and P. Gadde, "Defect classification of printed circuit boards based on transfer learning", in Proc. 2018 IEEE Applied Signal Process. Conf. (ASPCON), Kolkata, India, 2018, pp. 245-248, doi: 10.1109/ASPCON.2018.8748670. [
DOI:10.1109/ASPCON.2018.8748670]
20. [20] X. Chen, Y. Wu, X. He, and W. Ming, "A comprehensive review of deep learning-based PCB defect detection", IEEE Access, vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561. [
DOI:10.1109/ACCESS.2023.3339561]
21. [21] A. Legon, M. Deo, S. Albin, and M. Audette, "Detection and classification of PCB defects using deep learning methods", in Proc. 2022 IEEE 31st Microelectron. Design Test Symp. (MDTS), Albany, NY, USA, 2022, pp. 1-6, doi: 10.1109/MDTS54894.2022.9826925. [
DOI:10.1109/MDTS54894.2022.9826925]
22. [22] T. T. A. Pham, D. K. T. Thoi, H. Choi, and S. Park, "Defect detection in printed circuit boards using semi-supervised learning", Sensors, vol. 23, no. 6, p. 3246, Mar. 2023, doi: 10.3390/s23063246. [
DOI:10.3390/s23063246]
23. [23] S. Szabó, I. J. Holb, V. É. Abriha-Molnár, G. Szatmári, S. K. Singh, and D. Abriha, "Classification Assessment Tool: A program to measure the uncertainty of classification models in terms of class-level metrics", Applied Soft Computing, vol. 155, p. 111468, 2024, doi: 10.1016/j.asoc.2024.111468. [
DOI:10.1016/j.asoc.2024.111468]
24. [24] M. Krzywicka and A. Wosiak, "Sensitivity of Standard Evaluation Metrics for Disease Classification and Progression Assessment Based on Whole-Body Imaging", Procedia Computer Science, vol. 225, pp. 4314-4323, 2023, doi: 10.1016/j.procs.2023.10.428. [
DOI:10.1016/j.procs.2023.10.428]
25. [25] Z. Dorrani, H. Farsi, and S. Mohamadzadeh, "Deep learning in vehicle detection using ResUNet-a architecture", Jordan Journal of Electrical Engineering, vol. 8, no. 2, pp. 165-178, 2022. [
DOI:10.5455/jjee.204-1638861465]
26. [26] Z. Dorrani, H. Farsi, and S. Mohamadzadeh, "Shadow removal in vehicle detection using ResUNet-a", Iranian Journal of Energy and Environment, vol. 14, no. 1, pp. 87-95, 2023. [
DOI:10.5829/IJEE.2023.14.01.11]
27. [27] N. Aghayan Mashhady and A. Amirkhani, "Improving the Accuracy of Road Damage Detectors Using Traditional Augmentations and Object Bounding Box Augmentation", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 21, no. 3, pp. 139-154, 2024. [
DOI:10.61186/jiaeee.21.3.139]
28. [28] N. Aghaei, G. Akbarizadeh, and A. Kosarian, "Using ShuffleNet to design a deep semantic segmentation model for oil spill detection in synthetic aperture radar images", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 19, no. 3, pp. 131-144, 2022. [
DOI:10.52547/jiaeee.19.3.131]