1. [1] D. K. Villa, A. S. Brandao, M. Sarcinelli-Filho, "A survey on load transportation using multirotor UAVs", Journal of Intelligent & Robotic Systems, vol. 98, no. 2, pp. 267-296, 2020. [
DOI:10.1007/s10846-019-01088-w]
2. [2] Yousefi S A, Kazemi M H. Control of Quadcopter with Suspended Load by Internal Model Control and Input Shaping for Reducing the Load Oscillation. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (3) :215-226. [
DOI:10.52547/jiaeee.19.3.215]
3. [3] Barshooi A H, Amirkhani A. Cooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (1) :153-162. [
DOI:10.52547/jiaeee.20.1.153]
4. [4] W. Zhao, H. Liu, F. L. Lewis, "Data-driven fault-tolerant control for attitude synchronization of nonlinear quadrotors", IEEE Transactions on Automatic Control, vol. 66, no. 11, pp. 5584-5591, 2021. [
DOI:10.1109/TAC.2021.3053194]
5. [5] A. A. Amin, K. M. Hasan, "A review of fault tolerant control systems: advancements and applications", Measurement, vol. 143, pp. 58-68, 2019. [
DOI:10.1016/j.measurement.2019.04.083]
6. [6] C. Liu, B. Jiang, R. J. Patton, K. Zhang, "Decentralized output sliding-mode fault-tolerant control for heterogeneous multiagent systems", IEEE transactions on cybernetics, vol. 50, no. 12, pp. 4934-4945, 2019. [
DOI:10.1109/TCYB.2019.2912636]
7. [7] S. Roshanravan, Sobhani B. Gendeshmin, S. Shamaghdari, "Design of an actuator fault-tolerant controller for an air vehicle with nonlinear dynamics", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 10, pp. 3534-3546, 2019. [
DOI:10.1177/0954410018801254]
8. [8] S. Roshanravan, S. Shamaghdari, "Simultaneous fault detection and isolation and fault-tolerant control using supervisory control technique: asynchronous switching approach", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 234, no. 8, pp. 900-911, 2020. [
DOI:10.1177/0959651819893891]
9. [9] S. Roshanravan, S. Shamaghdari, "Adaptive Fault-Tolerant Tracking Control for Affine Nonlinear Systems With Unknown Dynamics via Reinforcement Learning", IEEE Transactions on Automation Science and Engineering, vol. 21, no. 1, pp. 569-580, 2024. [
DOI:10.1109/TASE.2022.3223702]
10. [10] J.-X. Zhang, G.-H. Yang, "Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions", IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6529-6535, 2017. [
DOI:10.1109/TAC.2017.2705033]
11. [11] G. Liu, N. Sun, T. Yang, Y. Fang, "Reinforcement Learning-Based Prescribed Performance Motion Control of Pneumatic Muscle Actuated Robotic Arms With Measurement Noises", IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022. [
DOI:10.1109/TSMC.2022.3207575]
12. [12] J.-X. Zhang, G.-H. Yang, "Fault-tolerant output-constrained control of unknown Euler-Lagrange systems with prescribed tracking accuracy", Automatica, vol. 111, pp. 108606, 2020. [
DOI:10.1016/j.automatica.2019.108606]
13. [13] H. Zhang, L. Cui, Y. Luo, "Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP", IEEE transactions on cybernetics, vol. 43, no. 1, pp. 206-216, 2012. [
DOI:10.1109/TSMCB.2012.2203336]
14. [14] Z. Wang, L. Liu, H. Zhang, G. Xiao, "Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 5, pp. 611-622, 2015. [
DOI:10.1109/TSMC.2015.2478885]
15. [15] L. Liu, Z. Wang, H. Zhang, "Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters", IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 299-313, 2016. [
DOI:10.1109/TASE.2016.2517155]
16. [16] Z. Wang, L. Liu, Y. Wu, H. Zhang, "Optimal fault-tolerant control for discrete-time nonlinear strict-feedback systems based on adaptive critic design", IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2179-2191, 2018. [
DOI:10.1109/TNNLS.2018.2810138]
17. [17] Q.-Y. Fan, G.-H. Yang, "Active complementary control for affine nonlinear control systems with actuator faults", IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3542-3553, 2016. [
DOI:10.1109/TCYB.2016.2569406]
18. [18] Q. Y. Fan, G. H. Yang, "Adaptive fault‐tolerant control for affine non‐linear systems based on approximate dynamic programming", IET Control Theory & Applications, vol. 10, no. 6, pp. 655-663, 2016. [
DOI:10.1049/iet-cta.2015.1081]
19. [19] H. Jiang, H. Zhang, Y. Liu, J. Han, "Neural-network-based control scheme for a class of nonlinear systems with actuator faults via data-driven reinforcement learning method", Neurocomputing, vol. 239, pp. 1-8, 2017. [
DOI:10.1016/j.neucom.2017.01.047]
20. [20] M. E. Dehshalie, M. B. Menhaj, M. Karrari, "Fault tolerant cooperative control for affine multi-agent systems: An optimal control approach", Journal of the Franklin Institute, vol. 356, no. 3, pp. 1360-1378, 2019. [
DOI:10.1016/j.jfranklin.2018.09.038]
21. [21] S. Zhang, C. Huang, K. Ji, H. Zhang, "Prescribed performance incremental adaptive optimal fault-tolerant control for nonlinear systems with actuator faults", ISA transactions, vol. 120, pp. 99-109, 2022. [
DOI:10.1016/j.isatra.2021.03.011]
22. [22] P. Deptula, Z. I. Bell, E. A. Doucette, J. W. Curtis, W. E. Dixon, "Data-based reinforcement learning approximate optimal control for an uncertain nonlinear system with control effectiveness faults", Automatica, vol. 116, pp. 108922, 2020. [
DOI:10.1016/j.automatica.2020.108922]
23. [23] H. Lin, B. Zhao, D. Liu, C. Alippi, "Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks", IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 954-964, 2020. [
DOI:10.1109/JAS.2020.1003225]
24. [24] K. Li, Y. Li, "Adaptive nn optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems", IEEE Transactions on Neural Networks and Learning Systems, 2021. [
DOI:10.1109/TFUZZ.2021.3094716]
25. [25] H.-J. Ma, L.-X. Xu, G.-H. Yang, "Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems", IEEE transactions on cybernetics, vol. 51, no. 4, pp. 1913-1928, 2019. [
DOI:10.1109/TCYB.2018.2889679]
26. [26] K. Zhang, H. Zhang, Z. Gao, H. Su, "Online adaptive policy iteration based fault-tolerant control algorithm for continuous-time nonlinear tracking systems with actuator failures", Journal of the Franklin Institute, vol. 355, no. 15, pp. 6947-6968, 2018. [
DOI:10.1016/j.jfranklin.2018.07.009]
27. [27] J. Lan, R. J. Patton, "A new strategy for integration of fault estimation within fault-tolerant control", Automatica, vol. 69, pp. 48-59, 2016. [
DOI:10.1016/j.automatica.2016.02.014]
28. [28] F. Sabbghian-Bidgoli, M. Farrokhi, "Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance", IEEE Transactions on Fuzzy Systems, vol. 30, no. 3, pp. 741-754, 2020. [
DOI:10.1109/TFUZZ.2020.3048505]
29. [29] A. Mishra, S. Ghosh, "Simultaneous identification and optimal tracking control of unknown continuous-time systems with actuator constraints", International Journal of Control, vol. 95, no. 8, pp. 2005-2023, 2022. [
DOI:10.1080/00207179.2021.1890824]
30. [30] S. Pakkhesal, S. Shamaghdari, "Sum‐of‐squares‐based policy iteration for suboptimal control of polynomial time‐varying systems", Asian Journal of Control, vol. 24, no. 6, pp. 3022-3031, 2022. [
DOI:10.1002/asjc.2689]
31. [31] T. Dierks, S. Jagannathan, "Optimal control of affine nonlinear continuous-time systems", In Proceedings of the 2010 American control conference, pp. 1568-1573, IEEE, 2010. [
DOI:10.1109/ACC.2010.5531586]
32. [32] X. Yang, D. Liu, Q. Wei, "Robust tracking control of uncertain nonlinear systems using adaptive dynamic programming", In International conference on neural information processing, pp. 9-16. Springer, Cham, 2015. [
DOI:10.1007/978-3-319-26555-1_2]
33. [33] Y.-C. Choi, H.-S. Ahn, "Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests", IEEE/ASME transactions on mechatronics, vol. 20, no. 3, pp. 1179-1192, 2014. [
DOI:10.1109/TMECH.2014.2329945]
34. [34] C. Edwards, T. Lombaerts, and H. Smaili, "Fault tolerant flight control", Lecture notes in control and information sciences, vol. 399, pp. 1-560, 2010. [
DOI:10.1007/978-3-642-11690-2]
35. [35] J. Na, M. N. Mahyuddin, G. Herrmann, X. Ren, P. Barber, "Robust adaptive finite time parameter estimation and control for robotic systems", International Journal of Robust and Nonlinear Control, vol. 25, no. 16, pp. 3045-3071, 2015. [
DOI:10.1002/rnc.3247]
36. [36] H. Modares, F. L. Lewis, Z.-P. Jiang, "${H} _ {{infty}} $ Tracking control of completely unknown continuous-time systems via off-policy reinforcement learning", IEEE transactions on neural networks and learning systems, vol. 26, no. 10, pp. 2550-2562, 2015. [
DOI:10.1109/TNNLS.2015.2441749]
37. [37] H. Modares, F. L. Lewis, "Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning", Automatica, vol. 50, no. 7, pp. 1780-1792, 2014. [
DOI:10.1016/j.automatica.2014.05.011]
38. [38] X. Wang, Q. Wang, C. Sun, "Prescribed performance fault-tolerant control for uncertain nonlinear MIMO system using actor-critic learning structure", IEEE Transactions on Neural Networks and Learning Systems, 2021. [
DOI:10.1109/TNNLS.2021.3057482]