دوره 12، شماره 3 - ( مجله مهندسی برق و الکترونیک ایران - جلد 12 شماره 3 1394 )                   جلد 12 شماره 3 صفحات 110-101 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghipour-GorjiKolaie M, Miri I, Razavi S, Sadri J. Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network. Journal of Iranian Association of Electrical and Electronics Engineers 2016; 12 (3) :101-110
URL: http://jiaeee.com/article-1-103-fa.html
Taghipour-GorjiKolaie Mehran، Miri Ismaeil، Razavi Seyyed-Mohammad، Sadri Javad. Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network. نشریه مهندسی برق و الکترونیک ایران. 1394; 12 (3) :101-110

URL: http://jiaeee.com/article-1-103-fa.html


چکیده:   (4839 مشاهده)

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 Persian handwritten digit images, has been used to evaluate our proposed classifier. Obtained results show that PNN is a powerful classifier and excellent choice for classification of Persian handwritten digits. Correct recognition rate when training and testing data have been used directly (without clustering) for training data is 100% and for testing data is 96%, but when k-means has been used as cluster tool and clusters' center have been used as training data, in this case, correct recognition rate for training data is 100% and for testing data is 96.16%. In addition, when Particle Swarm Optimization (PSO) has been used to find optimum clusters for each class of Persian handwritten digits, correct recognition rate in training data is 100% and for the testing data it reaches to 98.18%.

متن کامل [PDF 8963 kb]   (1612 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: مخابرات
دریافت: 1395/11/15 | پذیرش: 1395/11/15 | انتشار: 1395/11/15

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb