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Abstract :

Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to
the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the
image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine
map is obtained. Almost all image processing methods, developed by using self-affine maps, take advantage of either
the attracting or repelling behaviors which have been, only, experimentally investigated. In this paper, we analytically
study the properties of self-affine maps and prove their attracting and repelling behaviors. Furthermore, the new
corner/edge pointing behavior is also proposed for contractive self-affine maps. We show that the conventional cost
function of self-affine maps may cause critical uncertainty due to providing multiple equivalent optimal translation
vectors. Thus, a new cost function is suggested to effectively tackle this problem. For evaluation, it is used with the self-
affine snake (SAS) for contour extraction. Experimental results demonstrated that the enhanced SAS provides better
performance compared to a number of different active contour methods in terms of both solution quality and CPU time.
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1. Introduction

Patch-based techniques are widely used in image
analysis, image processing, and image synthesis.
Although patches are simply defined as local
neighborhoods centered at image components, they
have intrinsic capabilities to maintain large-scale
structures and textures of natural images. Furthermore,
patch-based methods may be intuitively similar to
those human vision tasks which compare semi-local
image neighborhoods. Despite outstanding
performance, they are often simple to implement.

For example, estimation of the displacement field
between two images is a well-known classical problem
which can be addressed by the frequently-used block
matching algorithm [1-3]. In this approach, every patch
of one image is compared to all candidate patches of
the other one to find the best similarity. Another
example is the sophisticated problem of synthesizing a
texture similar to a specified model [4-6]. Tt was
effectively tackled by an iterated copy-paste procedure
of different patches given from the model. Some
variants of such techniques were also employed by
texture transferring [7-8], textured-inpainting [9-11],
and image completion [12-13].

It is also worth citing recent patch-based denoising
methods [14-20]. The conventional denoising
algorithms generally restore each component value by
computing a weighted average of neighboring
components values [21-24]. Buades et al [14]
explained that comparing only components values is
not robust enough. They proposed the non-local means
(NL-means) algorithm which iteratively evaluates the
photometric  similarity of patches centered at
neighboring components to obtain  weighting
coefficients. Kervrann and Boulanger [25] extended
NL-means by employing adaptive neighborhoods
which balance both approximation accuracy and
stochastic error at each spatial position. Besides,
Gilboa and Osher [26] defined the variational
formulation of NL-means by using a non-local partial
differential equation. Recently, Azzabou et al. [15] and
Tschumperlé-Brun [27] incorporated spatial and
photometric similarities through different variational
formulations. The former used scale adaptive kernels
while the later defined a new patch space.

Non-local region-based active contours (RBACs)
are other elegant instances of patch-based approaches.
Conventionally, RBACs (e.g. region competition [28],
geodesic active region [29], and piecewise constant
model [30]) use statistical descriptors and homogeneity
conditions for specifying each region of interest to
guide evolution of the curve [31]. Despite promising
results, they may fail to segment images with texture,
inhomogeneous intensity, or heterogeneous objects.
Recently, patch-based variational formulations were
proposed as a solution to this problem [32-34]. They
compute statistical descriptors of each region by using
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image patches instead of exact values of its
components. For example, Li e al. [32, 33] employed
the image patches defined by Gaussian kernels to
locally approximate image intensities on each side of
the contour. In another work, Lankton and
Tannenbaum [34] proposed a local region-based
framework based on ball-shaped patches. They
integrated the framework with the uniform modeling
[30], mean separation [35], and histogram separation
[36] energies to provide considerable improvements.

Texture classification [37], background estimation
[38], compression artifacts removal [39], and medical
image indexing and retrieval [40] are some other
examples of patch-based image processing and analysis
methods proposed by researchers.

However, self-affine maps naturally differ from the
aforementioned methods. Generally, each self-affine
map is defined by a pair of the domain and range
patches in the image domain. The parameters of a self-
affine map are obtained by maximizing a similarity
measure between its patches. Self-affine maps provided
promising results in different applications such as
producing fractal figures [41, 42] and fractal image
coding [43]. Furthermore, Ida and Sambonsugi [44]
showed that image edges can attract the components
which are iteratively mapped through contractive self-
affine maps (CSAMs) while expanding self-affine
maps (ESAMs) repel them from edges. They employed
the above phenomena to provide a number of image
processing algorithms such as edge detection and
image segmentation. In another work, they used
CSAMs for contour extraction in order to closely fit
self-affine curves to the desired object boundaries [45].
However, the curve sometimes abnormally deformed
due to the fractal behavior. The authors tackled this
problem by defining the contour as a primary
parametric curve [46]. Recently, they progressed to the
self-affine snake (SAS) which integrates self-affine
maps, wavelet transform, and parametric active
contours [47, 48]. However, all of the above promising
methods were mainly developed based on Ida and
Sambonsugi’s primary work (about the attracting and
repelling behaviors of self-affine maps) with no
analytical justification.

In this paper, we analytically study properties of
self-affine maps by providing five lemmas and two
theorems. It is proved that CSAMS/ESAMs usually
provide optimal translation vectors which support the
attracting/repelling behavior. Furthermore, we establish
the new corner/edge pointing (CEP) behavior. It states
that every optimal translation vector of a CSAM
usually points toward a corner or an edge in the image.
All of these consequences further justify the image
processing  algorithms previously proposed by
researchers based on experimentally-validated self-
affine maps’ properties. Besides, the traditional cost
function of self-affine maps suffers the problem of
non-unique optimal solution. We propose a new cost
function to effectively tackle it. According to
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experimental results, the performance of SAS was
improved by using the proposed cost function.

The paper is organized as follows. In Section 2,
analytical principles of self-affine maps are
exhaustively stated. Furthermore, the new corner/edge
pointing behavior is also proposed in this section.
Experimental results on enhanced SAS performance is
presented in Section 3. Finally, Section 4 is devoted to
conclusion remarks.

The notations used in this paper are fairly standard.
Matrices are shown by upper-case Iletters while
boldface symbols are used for vectors in lower-case
letters. We also have the following notations:

I(x) Gray-level of the image at the position x

M The domain patch of a self-affine map

w The range patch of a self-affine map

m(.) Contractive affine mapping function

) Expanding affine mapping function

I Scaling coefficient of CSAM

o Scaling coefficient of ESAM

X, A component of W

X A component of M

X, The center point of M

X, The center point of W

ew Self-affine cost function defined over W

em Dual of the seclf-affine cost function
defined over M

T A translation vector

T Optimal translation vector

V. Gradient operator with respect to x

V. Gradient operator with respect to 7

L; The ith edge-segment

T; The locus line of locally optimal
translation vectors corresponding to L;

C The locus line of locally optimal W-centers

corresponding to L;
Furthermore, we use the following abbreviations:

ACWE Active contour without edges

CEP Corner/edge pointing

CSAM Contractive self-affine map

ES Edge-segment

ESAM Expanding self-affine map

GOTV Globally optimal translation vector

with zero cost value
GOWC Globally optimal W-center with zero

cost value
GOTV Globally optimal translation vector
GOWC Globally optimal W-center
GVF Gradient vector flow
GGVF Generalized gradient vector flow
LLT The locus-line of optimal translation
vectors
LLW The locus-line of optimal W-centers
LOTV Locally optimal translation vector
LOWC Locally optimal W-center
PC Piecewise constant
SAS Self-affine snake

va

2. Analytical Principles

In this section, we exhaustively analyze the
performance of self-affine maps. In more detail, first,
the fundamentals of self-affine maps are briefly
introduced (Subsection 2.1). Then, the relationship
between the self-affine cost function and Mumford-
Shah functional is stated (Subsection 2.2). Next, the
obvious solution of the cost function is obtained
(Subsection 2.3). Afterwards, the global zero-minima
of the cost function are computed (Subsection 2.4).
Then, some important local minima of the cost function
are obtained (Subsection 2.5). Finally, we proposed a
novel cost function for self-affine maps based on the
new corner/edge pointing behavior (Subsection 2.6).

2.1. Self-Affine Maps

Consider an image having the domain QR with the
gray-level I(x)e[0,1] for all x=(x,y)eQ. The CSAM
m:M—W is defined as follows:
x, =m(x)=r,(x—Xx,)+X,, 1,<l (1)
where X,, =(¥,,,X,,) and X, =(y,.X,) are center
points of the domain-patch M and range-patch W
(bothcQ), respectively, such that:
)_Cw = fm +7T )
where 7=(s,#) is a translation vector. In other words, the
CSAM of Eqn. (1) contracts M by the scaling
coefficient r,, and translates it by the vector 7=(s,?) to
make W=m(M) as illustrated in Fig. 1.a.

Similarly, an ESAM is defined by o=m"' (W—M),
such that:
X, =o(x)=r,(x—-Xx,)+X, (3)
where r, is the scaling coefficient of was follows:
Ty =Tyl >1 )
Obviously, the inverse of each CSAM is an ESAM and
vice versa.

W =m (flff )
(a) (b)
Fig. 1. (a) An example of a CSAM and (b) five optimal
CSAMs allocated in a CT image of the human lunge.

From among parameters of self-affine map, only s
and ¢ are usually optimized by minimizing a distance
function while r,, and r, are kept constant to reduce the
computation burden [44-46, 48]. In more detail, the
process of allocating self-affine maps includes two
steps. First, some patches (M or W) are specified based
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on the problem demands. Then, in each step of the
matching algorithm, the value of every parameter is
changed to compute the following cost function [41]:

ew(® = [[(10)-10x,)P vy )
xeW

After checking all possible situations, the globally

optimal translation vector (GOTV) of ey, is obtained as

follows:

Foindex|_min_(ew () k=4 ©)

where the possible values of s and ¢ are chosen in the
range of [k k], u indicates the size of square domain-
patches, and 7 =(5,7) is the optimal translation
vector.

The dual of ey can be obtained by substituting x
with m(x) as follows:

1 )
em(®) = [[(1(x)~1(x,)) dvay )
xeM
such that,
en(t) =, ey (7) ®)
Obviously, both ey and ey include the same

extremums.

Fig. 1 illustrates five CSAMs with r,=0.5. As
shown, the texture of each larger domain-patch is
almost similar to that of the corresponding smaller
range-patch. Furthermore, five benchmark domain
patches that we used in this paper to analytically study
the properties of self-affine maps are shown in Fig. 2.

Hereafter, the paper is mostly focused to study
CSAM properties. Similar results can be obtained for
ESAMs in the same manner, by replacing M, W, m, o,
and r,, with W, M, @, m, and r,, respectively.

2.2. Relation to Mumford-Shah Functional

The Mumford-Shah functional for image segmentation
[49] is defined by:

f,) =4 j ‘I(x) - i(x)|2 dxdy +
Q

J|Vf(x)‘2dxdy+

Q-

A, -Length(I") )
where 4, and 4, are positive parameters. By minimizing
this functional, the piecewise smoothed image
[:Q—>[0]] (QcQ) is obtained which includes
smoothed regions separated by sharp boundaries
(indicated by I'). For more details, in the above

equation, the first term ensures / to stay close to 1
while the second term smoothes the solution. Finally,
the last term minimizes the total length of boundaries.

Assume that we define Q=W and [(x)= I(x,,)
for a CSAM. Therefore, according to the above
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equation, 7 should be optimized such that (W)
provides the best approximation of /(W) . However, M
does not depend on 7; because it is initially allocated
and remains unchanged during the matching process
(see Section 2). Accordingly, /and I" are also fixed
due to [(W)=I(w(W)) = I(M). Hence, the second
and last terms of Eqn. (9) are independent of 7 and the
above functional can be simplified as follows:

f@=c+ 4 [[|1x)-1x,,)| dxdy (10)
xeW

Obviously, the positive constants ¢ and 4; do not affect

the extremums of f. Thus, for CSAMs, the Mumford-

Shah functional can be further simplified to the cost

function of Eqn. (5).

2.3. Obvious Solution

The gradient of ey with respect to T is given by:

Vew (2) =1, [[(1(x)=1I(x,))VI(x,,)dxdy
xeW
an
where vzi and @zi are two gradient operators.
ox or
Local minima of ey can be obtained by solving the
following equation:

||@ew (T )H =0 (12)

T =(5,1) a LOTV of ey
(Obviously, each GOTYV is a root of the above equation

as well). As maintained by the triangular inequality
[50], we have:

where indicates

0<|Vew (@ <ry [[l1G)=10x,)|- VI (x,,)| dxdy
xeW
(13)

where H . ” is Minkowski’s distance of the second rank

[51]. According to the sandwich theorem [49], the
roots of the right term of Eqn. (13) are also the
solutions of Eqn. (12). Therefore, we can obtain some
solutions of Eqn. (12) by solving the following
equation:

jj 1(x) — 1(x,)| | VI (x,,)|dxdy = 0 (14)
xeW

The optimal answers of the above equation should
satisfy the following conditions:
@D |VI(x,)]|=0

VxeW: §or (15)
() I(x,,) =1(x)

The first condition usually is fulfilled in the smoothed

regions of the image. Therefore, each translation vector

which observes the following constraint for every edge
component of M determines a LOTV:
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Fig. 2. Five benchmark domain patches used to analytically study properties of self-affine maps. M includes (a) only one edge-
segment (i.e. L), (b) two intersecting edge-segments (i.e. L, and L,); (¢) four convergent edge-segments (i.e. L, to L,); and (d),
(e) three non-convergent edge-segments (i.e. L; to L;) with »=0.5 and =0.2, respectively.

Vx,, eM, 5<|VI(x,)|: 1(x)=1(x,) (16)

where & is a small positive threshold and
x =m(x,,) € W. A general solution of Eqn. (6) can

be given by:

Vx,eM: x=x,
=>x=r,(x-X,)+X,-T (17)

=>7=r,(1-r,)(x-X,)
Because T should be independent of x, we can write:

Py =1y =1=7=0 (18)
However, this obvious solution is disadvantageous
because of reducing the self-affine map to the identical
map.

Computing the solutions of Eqn. (6) in the general
form is too complicated and may be useless. Thus, let
the domain-patch of any CSAM be PC [29]. Thus, it
consists of distinct smoothed regions separated by
sharp boundaries (e.g. step edges). These constraints
are usually observed when the size of M is small
enough although we will lessen them in the sequel.

2.4. Global Zero-Minima

This section exhaustively studies global minima of the
self-affine cost function with ew=0 (phrasally, referred
to as the global zero-minima). First, for a domain-patch

A

with only one edge-segment, the locus of global zero-
minima is obtained and the attracting and repelling
behaviors are investigated. Next, results are extended
the domain patch with some convergent edge-
segments. Finally, we sum all consequences up in
Theorem 1.

2.4.1. One Edge-Segment

Suppose that in a CSAM, M includes only one edge-
segment as follows:

Liz{xeh/qyzaix+bi}, i=12,...,ny (19)
where ny is the total number of edge-segments within
M (here, ny=1). This line divides M into two separate
regions (e.g. see Fig. 2.a). For all components of M
except those on L;, we have:

vx, ¢L;: ||VI(x,)|=0

(20)

In this case, the constraint of Eqn. (16) will take
place if, and only if, both the original and mapped
components are located on the same edge-segment as
follows:

(x)el y=ax+b
x,,x=m(x,)el, =
" " l Ym =aixm+bi (21)

where x=(x,y) and x,=(x,,»,). Hence, by using Eqns.
(1) and (2), we can write:
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Fig. 3. Variations of —ey, versus different W-centers within M for the CSAM of Fig 2.a whose domain patch includes only one
edge-segment.

(rm(ym _)_}rn)+)_/m +t~)=
ai(rm(xm _fm)_‘_fm +E)+bi =

bi=y,—a;x, =

1 _ _ o~
(0@ T+ @F D+ )=
m
(22)
Therefore, the locus-line of optimal translation vectors
(LLT) can be given by:

—k<5,f<k

= aii_(l_rm)()_}m —a;xy, _bi)}

(23)
such that,

VEET,: Ve (®)=0 (24)

Equivalently, locus-line of optimal W-centers (LLW) is
obtained by:

Ci = {;a) = (fa)a )N/w)"%w < M’ ;50 = aifw +bi} (25)

where X _ is a locally optimal W-center (LOWC) and

(2]

l;l. is computed as follows:

[;i =b; + 1, (Vu —a; X, —b;) (26)
The second term of the above equation will vanish, if
L; passes through X,, . In this case, C; completely fits

to L;. Furthermore, there is a one-to-one match between
T; and C; (because of X, =X,, +7 ) while both are

parallel to L; with the same slope of a;. Thus, hereafter,
we may use each instead of the other.

In the above CSAM, for each LOWC on C;, every
component of M is mapped to another component on
the same side of L; (it will be further justified in the
next section). Therefore, we can write:

SOVYAL b — g 8 losd — 23153 s — (4 ol Sidg 58Ul g 531 Cpwdign (yoel o

AY

VT eT;: |ew(®)|=0 @27)
Thus, every component of T, actually indicates a
GOTV with zero cost value (or phrasally, GOTV).
Similarly, each component of C; is a globally optimal
W-center (GOWC) with zero cost value (or phrasally,
GOWC). The above discussion can be summarized by
the following lemma.

Lemma 1. Assume that in a CSAM, the domain-patch
M is PC and includes only one edge-segment. First,
there is a general one-to-one match between GOTVs
and GOWCs. Second, the loci of GOTVs and GOWCs
are two lines, parallel to the edge-segment and given
by Egns. (23) and (25), respectively.

For example, Fig. 3 illustrates variations of —ey
versus different W-centers for the CSAM of Fig. 2.a
whose domain patch includes only one edge-segment.
Clearly, all GOWCs are located on C; which is also
parallel to L,. It also implies that by using the original
cost function formulation of Eqn. (5), a self-affine map
may have a number of equivalent optimal solutions
(see Section 8).

Let the function ¢,(x) compute the algebraic

distance of x from the line L, as follows:

$;(x)=y—a;x—b (28)
Obviously, the Euclidian distance is given by:
¢, (x)
D;(x) == L (29)
l+a

By using some algebraic manipulations, for any
CSAM, we can write:
VxeM: ¢;(x,) =", ¢;(x)+(¢: (X)) =1, 4 (X))
(30)
VX eW: (%) =7, 6,(x,) + (6(F0) ~ 730 61(F,)
€19
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Fig. 4. Range of acceptable values of 7, (*<1) and r,, (1<r) versus different values of ; when M includes two edge-segments.

In the right side of the above equations, the second
term vanishes for each GOWC (ie. x, =X,); and

consequently, they can be simplified as follows:

VxeM: ¢(x,)=r, ¢(x) (32)
VxeW: ¢i(x) =T ¢i (xm) (33)

Therefore, once each component of M (X € M) is
mapped by an optimal CSAM, its distance to L; is
decreased by the coefficient r,,. On the other hand, in
this case, the signs of ¢;(x), ¢;(x,), and &;(x,,)

remain the same which means that x, x,, and x,, are
located at the same side of L, (it further justifies Eqn.
27). Finally, the above discussion can be summarized
by the following lemma.

Lemma 2. For each GOWC given by Lemma 1, the
CSAM supports the attracting behavior; such that once
every component of M is mapped through m (Egn. 1),
its distance to the edge-segment within M is decreased
by the coefficient r,,

Note that the repelling behavior of ESAMs can be
proved by the same manner (see Section 2).

2.4.2. Some Convergent Edge-Segments

Assume that in a CSAM, M include ny>1 edge-
segments (see Eqn. 19). For each L;, the corresponding
LLW (i.e. C) is given by Eqn. (25). Suppose all LLWs
intersect at the same cross-point within M (e.g. see
Figs. 2.b and 2.c) which is given by solving the
following equations set:

AY

Cl : ;a) :alfw +b1

C2 : )7@ :a2)?a) +b2 (34)

Coyt Vo =0, X0 +by,
This cross-point provides a unique GOWC, because it
separately satisfies all constraints of Lemma 1 for each
edge-segment. Here, we prove that when all edge-
segments are convergent, the corresponding LLWs are
also convergent and vice versa.

Let’s X,, be the cross-point of all edge-segments.
Thus, we can write:
Vi=12,.,ny: ¢(x,)=0 (35)
Once the W-center is on C;, all components of L; are
mapped to themselves (see Lemmas 1 and 2). To
separately confirm the above condition for each edge-
segment, the optimal W-center should be chosen such
that %~ is mapped to itself as follows:

Vi=12,.,ny: X, =m;(X,) (36)
Hence, by using some algebraic manipulations, we can
obtain:

iwzrm"_cm'i_(l_rm)im (37)

Generally, the unique optimal W-center X, is

obtained as a weighted sum of X, and X, .
Therefore, all corresponding LLWs intersect at X, as

well.

In practice, we usually tend to keep X,, within M
which can be achieved via the following constraints
(see Eqns. 6 and 23):

—k<5,7T<k (38)
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Fig. 5. Variations of —ey, versus different W-centers within M for the CSAM of Fig 2.b whose domain patch includes two
intersecting edge-segments.

Particularly, when M includes two intersecting edge-
segments (i.e. d; # A, ), the unique GOTV is given
by:

F=- )[ J
a, —a

(39
7=— —r, )[azbl albz )
ap—daj
Considering this fact that X = y = k, we have:
—k<(-r,Ny;-k)<k, j=12 (40)
where 7 and p are given by:
_bi-by
a, —a
bz 1 \ (1)
a, —a
y, =192~ 0
a —aq

Thus, the cross-point of LLWs remains inside M, once
the following constraints are fulfilled:

max(?’j _,U:_J’j)

CSAM: 1y, = max| max 0 |<r, <1
(42)
max\y ;,— . —
ESAM: 1<r, <7y, =max|{ min M 1
A H
(43)

Fig. 4 illustrates the range of acceptable values of
7, and r,, versus different values of . As shown, ey
more probably includes a global zero-minimum when
the value of r,, is closer to one. This consequence is
intuitively reasonable, because according to Eqns. (25)
and (26), by approaching r,, to one, all LLWs and, in
turn, their cross-point move toward the center point of
M. Therefore, even when the cross-point of edge-

VAL (e — g 8l — 23193 Jlw 4l Sig 5SUN g 5 2 Cmwrtigen (yol oo
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segments is outside of M, the cross-point of LLWs may
be within M by using an appropriate r, sufficiently
close to one.

Generally, Eqns. (42) and (43) can be extended for
ny edge-segments as follows:

= max| max| max(;/qu —,u,—}/qu) 0|<r, <1
P4>J ’y pai k‘

CSAM:

min

(44)

max\y i,V pgi — 1
ESAM: 1<7r, <rFpax = ma){min[ (ym/ V' =+ ))],1]

P4-Ji |7/ pai k|
(45)
where for the pair (L,,L,), 741 and ,,, are given by:
_ b r_ dq
7pq1 -
dqg —dp
(46)
_bpag—ayd,
7pq2 -
dqg —dp

Therefore, we can sum the above discussion up in the
following lemma.

Lemma 3. Assume that in a CSAM, the domain-patch
M is PC and includes ny>1 convergent edge-segments.
First, the corresponding LLWs are also convergent and
second, their cross-point (given by Eqn. 37) will
indicate the unique GOWC if, and only if, the constraint
of Eqn. (44) takes place.

Indeed, in a self-affine map with convergent edge-
segments, the cross-point of LLWs separately meets
Eqns. (32) and (33) for each edge-segment. Thus, it
inherits their common properties such as zero cost
value and attracting (or repelling) behavior as follows.
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Fig. 6. Variations of —ey, versus different W-centers inside M for the CSAM of Fig 2.c whose domain patch includes four
convergent edge-segments.

Lemma 4. For the unique GOWC given by Lemma 3,
CSAM supports the attracting behavior such that once
each component of M is mapped through m, its
distance to each edge-segment is decreased by the
coefficient r,,

Finally, we can straightforwardly extend Lemmas
1-4 to a theorem of necessary-and-sufficient conditions
for global zero-minima as follows.

Theorem 1 (Global Zero-Minima). Assume that in a
CSAM, the domain-patch M is PC. First, when M
includes no edge-segment, each component of M
obviously determines a GOWC. Second, once M
involves only one edge-segment, every component of
the attached LLW indicates a GOWC. Finally, if M
includes only some convergent edge-segments, the
corresponding LLWs are also convergent and their
cross-point provides the unique GOWC. Furthermore,
except for the first case, this CSAM usually supports
the attracting behavior.

For example, Fig. 5 illustrates variations of —ey
versus different W-centers for the CSAM of Fig. 2.b
whose domain patch includes two intersecting edge-
segments. The unique GOWC is located on the cross-
point of C, and C, (referred to as C, »)) given by Eqn.
(37). However, ey includes a number of non-zero local
minima (e.g. those on the inflated region specified by
the label B) which cannot be handled by Theorem 1.

Another example is Fig. 6 which illustrates the
results of a CSAM with four convergent edge-segments
(as shown in Fig. 2.c). Again, the cross-point of LLWs
determines the unique GOWC. Although Theorem 1
can successfully specify the global zero-minimum, it is
silent about the local minima of the inflated and flat

A

regions indicated by the labels D and E, respectively, in
the figure.

2.5. Important Local Minima

Although the main purpose of this work is computing
the unique GOWC of any self-affine map, LOWCs are
also important in two aspects. First, they can provide
an exhaustive description of ey. Second, each GOWC,
actually, is a LOWC with the best cost value.

In this section, the dual of Theorem 1 is given to
determine some important LOWCs of the self-affine
map. For more details, in the same manner of Eqn.
(11), by using Eqn. (7), we can obtain:

Ven (1) = [[(1(x)-1(x,)))VI(x,,) dxdy
xeM (47)

Thus, by replacing X, with x, we have:

Vew (@) =rg [[(1(x)=10x,))VI(x) dxdy
xeW (48

Then, using Eqn. (8), we can write:

Vew (2)= [[(1(x)~1(x,,))VI(x) dxdy
xeW (49)

Finally, similar to (15), each LOWC should meet the

following constraints:

1 \74 =0

VxeW: D ” (x)||
() I(x)=1I(x,,) (50)

Therefore, in the same manner of Theorem 1, we can
obtain similar results for W instead of M as follows.
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Fig. 7. Variations of —ey, versus different W-centers inside M for the CSAM of Figs. 2.d (with ,=0.5) whose domain patch
includes three non-parallel edge-segments.

Theorem 2 (Important Local Minima). Assume that
in a CSAM, the range-patch W is PC. Some LOWCs
can be determined as follows: first, every possible W-
center for which W has no edge-segment; second, each
component of the corresponding LLW once W includes
only one edge-segment; and finally, the cross-point of
corresponding LLWs when W (M) involves only some
convergent edge-segments. Furthermore, except for the
first case, this CSAM usually supports the attracting
behavior.

For example, the flat regions labeled by the letters
A, C, and E in Figs. 3, 5, and 6, respectively, were
obtained when W included no edge-segment. Also, the
inflated regions shown by the labels B and D in Figs. 3
and 5, respectively, were provided once the range-
patch involves only one edge-segment.

Furthermore, according to Theorem 2, our previous
assumption about piecewise constancy of M (see
Section 4) can reduce to piecewise constancy of the
smaller patch W. In most image processing
applications of CSAMs, the size of W is small enough
[44] to satisfy this constraint (e.g. circular range-
patches with a radius of 2 pixels were used in [47]).
Therefore, W usually includes no edge-segment, only
one edge-segment, or some convergent edge-segments,
corresponding to smoothed regions, straight edges, and
typical corners, respectively. It means that for any self-
affine map, there are always some LOWCs
corresponding to image corners and edges which
support the attracting or repelling behavior.

For example, Figs. 7 and 8 illustrate results of the
CSAM whose domain patch includes three non-
convergent edge-segments (see Figs. 2.d and 2.e). First,
we state the results obtained with r,,=0.5. In this case,
W usually includes a number of non-convergent edge-

SOVYAL b — g 8 losd — 23153 s — (4 ol Sidg 58Ul g 531 Cpwdign (yoel o
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segments when its center point is on every LLW,
excluding some small parts next to Cg,3 and Cp,s).
Although Theorem 2 has no idea for such conditions,
we can maintain them by primary smoothing the image
with an appropriate Gaussian kernel, especially, when
the size of W is small enough.

Furthermore, one may reduce 7, to decrease the
probability of including non-convergent edge-segments
by using a smaller W. For example, in Fig. 2.e, any
range-patch W with r,,=0.2 usually includes either only
one edge-segment or two intersecting edge-segments.
Thus, every component of each LLW may denote a
LOWC as further illustrated in Fig. 8.

In other words, by using a small W, the components
of each LLW have more chance to be a LOWC.
However, in Section 5.2, we stated that the cross-point
of some convergent LLWs is more probably within M
by employing a larger W. Both consequences are
proper although they may seem conflicting at first
glance. In more detail, when the cross-point of LLWs
is not inside M due to employing a small r,, every
component of each LLW may indicate a LOWC
according to Theorem 2. However, once they intersect
at the same cross-point within M by employing a
sufficiently large r,, their cross-point provides a
GOWC as given by Theorem 1.

2.6. Cost Function Improvement

In any CSAM, the center point of M is usually mapped
to the W-center, i.e. X, =m(X,,). Thus, according
to Eqn. (32), for each LOWC, we can write:

¢i (?Cw) =Tm ¢i ('Tcm) (S1)
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Fig. 8. Variations of —ey, versus different W-centers inside M for the CSAM of Figs. 2.e (with »,=0.2) whose domain patch
includes three non-parallel edge-segments.

It means that compared to the center point of M,
any LOWC is usually closer to edge-segments. In more
detail, when M includes only one edge-segment, any
GOTV wusually points toward the edge-segment.
Furthermore, once M involves some non-parallel edge-
segments, the unique GOWC is determined by a cross-
point of LLWs within M. However, this cross-point is
also corresponded to a cross-point of edge-segments
which indicates a corner in the image. Thus, the
attached GOTV almost points toward this corner.
Hence, we can draw the following lemma.

Lemma 5 (CEP Behavior). For any CSAM, once the
given GOWC is on a LLW, the attached GOTV usually
points toward a corner or an edge within M.

The authors previously used the CEP behavior to
propose self-affine snake [48] in which GOTV was
used to compute an external force for the parametric
active contour. However, according to Theorems 1 and
2, the conventional cost function of self-affine maps
(i.e. Eqns. 5 and 7) may provide multiple equivalent
solutions, especially, when W includes no edge-
segment or only one edge-segment. It is further
illustrated in Fig. 9. In more detail, when M includes
only one edge-segment, every point on the
corresponding LLW indicates a GOWC (see Theorem
1). In turn, each GOWC is attached to a GOTV which
points toward the edge-segment (see Lemma 5).
Therefore, in this case, there are a number of
equivalent optimal solutions for the cost function of
Eqn. (5). However, may be, here, the best translation
vector is the smallest one which is likely perpendicular
to the edge-segment (e.g. the translation vector passing
through the center of W, in Fig. 9).

In order to tackle the above disadvantage, we
experimentally investigated the following cost function

AY

(instead of Eqn. 7), to enhance the matching algorithm
performance:

T
oy (1) = exp(— MJ 141 j j (I(x)-1I(x,)) dxdy
2k 2 xeM

(52)
where the first term is a Gaussian kernel with STD of
k>0 while the second term computes 1+ey(7).
Obviously, the optimum translation vector can be given
by:
T= index(min(éM (‘r))j (53)

T

Therefore, if there are some GOTVs with the same ey,

only the shortest one will be chosen by the above
equation.

Vi

Current

Vi
LLW
Contour s/

M

ool
4 :

Object

Fig. 9. Multiple equivalent optimal solutions of CSAMs
may provide uncertainty in the image processing
algorithm. Here, M includes only one edge-segment while
every component of the corresponding LLW determines a
GOWC (e.g. those of W, W,, and W;).
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3. Experimental Results

To evaluate the proposed enhanced equation (Eqn.
52), it was used as the cost function of the matching
algorithm (instead of Eqn. 7) in the self-affine snake
[48] (with £,;=55). In more detail, SAS is a parametric
active contour which can move/evolve in the image
domain under the influence of internal and external
forces [52].

The internal forces make the curve smooth while
the external forces move it toward the interested
features in the image. Parametric active contours are
usually evolved, in light of the Euler-Lagrange
formulation, by solving the following differential
equation:
ox(s,t o%x o*x

(’):a z_ﬂ 4+fext

ot Os 0s

where x(s,t), s €[0,1] indicates the evolving curve

(54

and f,, is the external force.

To compute the SAS external force, in each image
scale (computed by the wavelet transform), a CSAM is
defined for every pixel. The external force is computed
by superposition of corresponding GOTVs of different
scales.

By using the proposed cost function, the
performance of SAS was significantly improved. For
example, Figs. 10.d and 10.e illustrate the external
force fields obtained with both the conventional SAS
(with Eqn. 7) and enhanced SAS (with Eqn. 55),
respectively, for a synthetic image (called Room). As
shown by two triangles, the uncertainty of the
conventional cost function caused to appear divergent
external forces close to both top-left and top-right
corners of the force field. However, by using the
proposed cost function, this problem is completely
avoided. The evolution of the curve by using the above
force fields is further illustrated in Figs. 10.b and 10.c.
The divergent forces of the conventional SAS partially
prevent the curve from converging to the boundary of
the room shape.

As another example, Fig. 11 illustrates the results of
the enhanced SAS compared to those of balloon [52],
gradient vector flow (GVF) [53], generalized GVF
(GGVF) [54], and active contour without edge
(ACWE) [30] for a MR image of the human shoulder.
This image shows the humeral head and acromion
whose edges weakened or disappeared in some parts.
Enhanced SAS successfully segmented the humeral
head boundary while the other counterpart active
contours stepped through the boundary openings.

Furthermore, as illustrated in Fig. 12, similar results
were obtained for a T2 weighted MR image of the
human liver. Segmentation of this medical image is
really difficult, because i) the top-right edges of the
liver are extremely weak or even disappeared in some

S NYAL (linej - oguw 0lowd —o233193 Jlus — ol Siig 5 9 82 omwsiae (yodl oo
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parts (e.g. see the dotted ellipse); ii) it suffers from
non-uniform brightness variations; and #ii) the desired
boundary is partially located next to stronger edges (as
indicated by dotted rectangles). Again, enhanced SAS
successfully segmented the liver boundary while all of
the other counterpart snakes failed. In more detail,
ACWE was not successful, mainly because of the non-
uniform illumination changes of the liver region.
Furthermore, balloon, GVF and GGVF were partially
pulled out by stronger edges next to the desirable
boundary while they also stepped through boundary
gaps in some parts.

Finally, the corresponding total CPU times of the
enhanced SAS and other counterpart snakes for two
medical benchmark images illustrated in Figs. 11 and
12 are given in Table III. Although balloon provided
the best CPU time, SAS converged, at least, two times
faster than GGVF, and ACWE, on average.

4. Conclusion

Self-affine maps have been successfully used in
various image processing applications such as edge
detection, image segmentation, and contour extraction.
All of these encouraging algorithms have been
provided based on the attracting and repelling
behaviors which were only experimentally investigated
without any mathematical justification.

In this paper, we analytically studied important
properties of self-affine maps. In more detail, it is
shown that self-affine maps usually provide promising
global minima in accordance with attracting or
repelling behaviors. Furthermore, we proposed and
proved the new CEP behavior of CSAMs. It states that
each GOWC usually points toward a corner or an edge
in the image.

Both of the above consequences further justified
those algorithms which were previously proposed by
researchers based on self-affine maps properties.

We showed that the conventional cost function of self-
affine maps may have multiple equivalent optimal
solutions. To avoid the uncertainty caused by this
problem, a new formulation with unique optimal
solution was proposed for the cost function. It was
further used to improve the performance of SAS for
contour extraction. Experimental results demonstrated
better performance for enhanced SAS compared to the
conventional SAS and a number of active contour
methods.

The analytical principles given in this paper may
open new horizons for researchers to present new
image processing methods based on remarkable
properties of self-affine maps. However, these
advances are still open problems and further research is
necessary to this end.
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Table 1. Comparing SAS with balloon, GGVF, and ACWE, in terms of CPU time, for two medical benchmark images
illustrated in Figs. 11 and 12. The best results have been shown by bold-faced text.

Medical Image Size Balloon GGVF ACWE Enhanced SAS
Shoulder (Fig. 11) 176x206 03 2.1 14.6 1.3
Liver (Fig. 12) 112x129 0.2 1.5 5.1 0.5
Average CPU Time 0.3 1.8 9.9 0.9

Source Image Balloon GGVF (GVF) ACWE Enhanced SAS
Fig. 12. Comparing the results of enhanced SAS with those of balloon, GVF, GGVF, and CV for a T2 weighted MR image of
the human liver. All of the counterpart algorithms used the same circular initial curve to evolve.

and nondirectional approaches,” IEEE Trans. Image
Processing, vol. 18, no. 12, pp. 2769-2779, 2009.

References [13] S. Rashidi, A. Fallah, F. Tohidkhah, ¢  glael & auas

[1] C. Haworth, A. M. Peacock, and D. S. Renshaw, Sl e bl gl el 5 s Cuse el g Ly
“Performance of reference block updating techniques _ R . e
when tracking with the block matching algorithm,” Lasl slagSl aedais o Journal of Iranian Association
IEEE Conf. Image Proc., vol. 1, pp. 365-368, 2001. of Electrical and Electronics Engineers, vol. 9, no. 1,

[2] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, 2012.

“Overview of the H264 video coding standard,” IEEE [14] A. Buades, B. Coll, and J. M. Morel, “A non-local
Trans. Circuits and Systems for Video Tech, vol. 13, algorithm for image denoising,” IEEE Conf. Comp.
no. 7, pp. 560-576, 2003. Vision Patt. Recog., pp. 60-65, 2005.

[3] B. C. Song, S. C. Jeong, and Y. Choi, “Video super- [15] N. Azzabou, N. Paragios, F. Guichard, and F. Cao,
resolution algorithm using bi-directional overlapped “Variable bandwidth image denoising using image-
block motion compensation and on-the-fly dictionary based noise models,” IEEE Conf. Computer Vision and
training,” IEEE Trans. Circuits and Systems for Video Pattern Recognition, pp. 1-7, 2007.

Technology, vol. 21, no. 3, pp. 274-285, 2011. [16] J. Boulanger, C. Kervrann, and P. Bouthemy, “Space-

[4] M. Ashikhmin, “Synthesizing natural textures,” Sym. time adaptation for patch-based image sequence
Interactive 3D Graphics, pp. 217-226, 2001. restoration,” IEEE Trans. Patt. Anal. Mach. Intell., vol.

[5] L.Y. Weiand M. Levoy, “Fast texture synthesis using 29, no. 6, pp. 1096-1102, 2007.
tree structured vector quantization,” SIGGRAPH, [17] T. Brox and D. Cremers, “Iterated nonlocal means for
Comp. Grap. Proc., pp. 479488, 2000. texture restoration,” In Proc. 1st Int. Conf. Scale Space

[6] T.S. Cho, S. Avidan, and W. T. Freeman, “The patch and Variational Methods in Computer Vision, pp.13—
transform,” IEEE Trans. Pattern Analysis and Machine 24,2007.

Intelligence, vol. 32, no. 8, pp. 1489-1501, 2010. [18] X.Liand Y. Zheng, “Patch-based video processing: a

[71 M. Ashikhmin, “Fast texture transfer,” IEEE Computer variational Bayesian approach,” IEEE Trans. Circuits
Graphics and Applications, vol. 23, no. 4, pp. 38-43, and Systems for Video Technology, vol. 19, no. 1, pp.
2003. 27-40, 2009.

[8] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and [19] C. A. Deledalle, L. Denis, and F. Tupin, “Iterative
D. Salesin, “Image analogies,” SIGGRAPH, Comp. weighted maximum likelihood denoising  with
Graph. Proc., pp. 327-340, 2001. probabilistic patch-based weights,” [EEE Trans. Image

[91 A. Criminisi, P. Pérez, and K. Toyama, “Region filling Processing, vol. 18, no. 12, pp. 2661-2672, 2009.
and object removal by exemplar-based image [20] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.
inpainting,” IEEE Trans. on Image Proc., vol. 13, no. B. Sibarita and J. Salamero, “Patch-based nonlocal
9, pp. 1200-1212, 2004. functional for denoising fluorescence microscopy

[10] J. Hays and A. A. Efros, “Scene completion using image sequences,” IEEE Trans. Medical Imaging, vol.
millions of photographs,” ACM Trans. Graph., vol. 26, 29, no. 2, pp. 442-454, 2010.
no. 3, pp. 87-94, 2007. [21] P. Perona and J. Malik, “Scale space and edge

[11] Z. Xu and J. Sun, “Image inpainting by patch detection using anisotropic diffusion,” IEEE Trans.
propagation using patch sparsity,” IEEE Trans. Image Patt. Anal. Mach. Intell., vol. 12, no. 7, pp. 629-639,
Processing, vol. 19, no. 5, pp. 1153-1165, 2010. 1990.

[12] C.W.FangandJ.J.J. Lien, “Rapid image completion [22] L. Yaroslavsky, Digital Picture Processing - An
system using multiresolution patch-based directional Introduction. Springer Verlag, New York, 1985.



https://jiaeee.com/article-1-101-en.html

[ Downloaded from jiaeee.com on 2026-02-13 ]

(23]

[24]

[25]

[26]

(27]

[34]

[35]

[36]

[38]

S. Smith and J. Brady, “Susan - a new approach to low
level image processing,” Int. J. Computer Vision, vol.
23, no. 1, pp. 45-78, 1997.

C. Tomasi and R. Manduchi, “Bilateral filtering for
gray and color images,” In Proc. 6" Int. Conf.
Computer Vision, pp. 839-846, 1998.

C. Kervrann and J. Boulanger, “Optimal spatial
adaptation for patch-based image denoising,” IEEE
Trans. on Image Proc., vol. 15, no. 10, pp. 28662878,
2006.

G. Gilboa and S. Osher, “Nonlocal linear image
regularization and supervised segmentation,” SIAM
Multiscale Modeling and Simulation, vol. 6, no. 2, pp.
595-630, 2007.

D. Tschumperlé and L. Brun, “Image denoising and
registration by PDE’s on the space of patches,” Int.
Workshop Local and Non-Local Approximation in
Image Processing, 2008.

S. C. Zhu and A. Yuille, “Region competition: unifying
snakes, region growing, and Bayes/MDL for multiband
image segmentation,” IEEE Trans. Patt. Anal. Mach.
Intel., vol. 18, no. 9, pp. 884-900, 1996.

N. Paragios and R. Deriche, “Geodesic active regions:
a new paradigm to deal with frame partition problems
in computer vision,” J. Visual Comm. and Image Rep.,
vol. 13, no. 1-2, pp. 249-268, 2002.

T. F. Chan and L. A. Vese, “Active contours without
edges,” IEEE Trans. Image Processing, vol. 10, no. 2,
pp. 266-277,2001.

X. Bresson, “Image Segmentation with Variational
Active Contours,” PhD Thesis, Ecole Polytechnique
Fédérale de Lausanne, p. 21, 2006.

C. Li, C. Y. Kao, J. C. Gore, and Z. Ding, “Implicit
active contours driven by local binary fitting energy,”
IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1-7, 2007.

C. Li, C. Y. Kao, J. C. Gore, and Z. Ding,
“Minimization of region-scalable fitting energy for
image segmentation,” IEEE Trans. Image Processing,
vol. 17, no. 10, pp. 1940-1949, 2008.

S. Lankton and A. Tannenbaum, “Localizing region-
based active contours,” IEEE Trans. Image Proc., vol.
17, no. 11, pp. 2029-2039, 2008.

J. A. Yezzi, A. Tsai, and A. Willsky, “A fully global
approach to image segmentation via coupled curve
evolution equations,” J. Vis. Comm. Image Rep., vol.
13, no. 1, pp. 195-216, 2002.

O. Michailovich, Y. Rathi, and A. Tannenbaum,
“Image segmentation using active contours driven by
the bhattacharyya gradient flow,” IEEE Trans. Image
Processing, vol. 15, no. 11, pp. 2787-2801, 2007.

M. Varma and A. Zisserman, “A statistical approach to
material classification using image patch exemplars,”
IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 11, pp. 20322047, 2009.

A. Colombari and A. Fusiello, “Patch-based
background initialization in heavily cluttered video,”
IEEE Trans. Image Processing, vol. 19, no. 4, pp. 926—
933,2010.

)

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

W. Hu, J. Xue, X. Lan, and N. Zheng, “Local patch
based regularized least squares model for compression
artifacts removal,” IEEE Trans. Consumer Electronics,
vol. 55, no. 4, pp. 2057-2065, 2009.

U. Avni, H. Greenspan, E. Konen, M. Sharon, J.
Goldberger, “X-ray categorization and retrieval on the
organ and pathology level, using patch-based visual
words,” IEEE Trans. Medical Imaging, vol. 30, no. 3,
pp. 733-746, 2011.

M. Barnsley and L. Hurt, Fractal Image Compression.
Wellesley, MA: A K Peters, 1993.

D. M. Monro, F. Dudbridge, and A. Wilson,
“Deterministic rendering of self-affine fractals,” IEE
Colloquium Application of Fractal Techniques in
Image Processing, pp. 5/1-5/4, 1990.

S. Kumar, K. N. Rao, R. R. Mishra, and R. C. Jain.
“An efficient bath fractal transform-based image
coding technique,” IEEE Trans. Consumer Electronics,
vol. 44, no. 4, pp. 1298-1308, 1998.

T. Ida and Y. Sambonsugi, “Image segmentation and
contour detection using fractal coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 8, pp. 968—
975, 1998.

T. Ida and Y. Sambonsugi, “Self-affine mapping
system and its application to object contour
extraction,” IEEE Trans. Image Processing, vol. 9, no.
11, pp. 1926-1936, 2000.

M.  Saadatmand-Tarzjan and H.  Abrishami
Moghaddam, “A new method for contour extraction
based on self-affine mapping system,” Iranian Conf.
Intelligent Systems, 2004. [Online] Available:
http://profdoc.um.ac.ir/paper-abstract-1030322.html
M. Saadatmand-Tarzjan and H. Ghassemian, “Self-
affine snake: a new parametric active contour,” IEEE
Int. Conf. Signal Proc. Comm., 2007.

M. Saadatmand-Tarzjan and H. Ghassemian, “A novel
active contour for medical image segmentation,”
IEICE Electronics Express, vol. 6, no. 23, pp. 1683—
1689, 2009. [Online] Available:
http://profdoc.um.ac.ir/paper-abstract-1030310.html

D. Mumford and J. Shah, “Optimal approximation by
piecewise smooth functions and associated variational
problems,” Commun. Pure Appl. Math, vol. 42, pp.
577-685, 1989.

M. D. Greenbery, Foundation of Applied Mathematics.
Prentice Hall, Englewood Cliffs, 1978.

S. Theodoridis and K. Koutroumbas, Pattern
Recognition. Elsevier Academic Press, San Diego,
2003.

C. Xu, D. Pham, and J. L. Prince, “Image segmentation
using deformable models,” in Handbook of Medical
Imaging. vol. 2: Medical Image Proc. and Analysis, J.
Fitzpatrick and M. Sonka, Eds., London, 2000, pp.
175-272.

C. Xu and J.L. Prince, “Snakes, shapes, and gradient
vector flow,” IEEE Trans. Image Processing, vol. 7,
no. 3, pp. 359-369, 1998.

C. Xu and J.L. Prince, “Generalized gradient vector
flow external forces for active contours,” Signal
Processing, vol. 71, pp. 131-139, 1998.

Journal of Tranian Association of Electrical and Electronics Engineers - Vol.12- No.3- Winter 2015

YL (yam — om0 8o — 023193 Jluw — ] 2l Sig 7S 9 (2 (omrliew (yodl o @


https://jiaeee.com/article-1-101-en.html

SI0C [1ed -C'ON -CI'[OA - muwoﬁ_wﬁm— SOIUONII[H puUe [BILIIIJ[H JO UONBIDOSSY UeIURI] JO [RUINO[

[ £T-20-920z uo woossse|( wouy papeojumoq |

= 299 8l — o83 315 Jbus — (2! Sig 5 5 (351 Cymwsidn cyodl oo @

b

54

1€

ay



https://jiaeee.com/article-1-101-en.html
http://www.tcpdf.org

