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Abstract:

Quality of Service (QoS) refers to a set of rules or techniques that help the network administrators use the available
network resources optimally to manage the effects of congestion and to treat the applications according to their needs.
The differentiated services architecture (DiffServ) allows providing quality of service to users. The major DiffServ
premise is that individual flows with similar QoS requirements can be aggregated in larger traffic sets and identified as
classes. Relative service differentiation is a simple and easily deployed approach compared to the absolute
differentiation service. In this paper, we use fuzzy logic systems to design a novel algorithm for queue management and
scheduling of classified packets in the differentiated service IP networks. The proposed model consists of two parts. The
first part of the proposed model is used for absolute differentiated services and tries to optimize QoS parameters and to
share sources between different requests fairly. The second part of the proposed fuzzy system is dedicated to relative
Diffserv model. As one of the famous existing algorithms for both buffer management and scheduling in the relative
differentiated service is Jobs algorithm, in the second parts of the proposed system, we modify the traditional Jobs
algorithm and proposed a fuzzy based modification of existing Jobs algorithm. The proposed algorithm uses different
fuzzy logic controllers to differentiate the delay of traffic classes. Simulation results confirm that the proposed fuzzy
system, can provide better delay differentiated than the traditional algorithms.
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1. Introduction

In the last few years, the growth of the Internet and the
use of new services such as e-business, voice over IP
(VolP) [1] and multimedia applications has risen the need
to support QoS requirements and to accommodate
different service levels.The primary goal of QoS is to
provide priority including dedicated bandwidth,
controlled jitter and latency (required by some real-time
and interactive traffic), and improved loss characteristics.
Also important is making sure that providing priority for
one or more flows does not make other flows fail [2]. The
differentiated services architecture (DiffServ) [3] allows
providing quality of service to users. The major DiffServ
premise is that individual flows with similar QoS
requirements can be aggregated in larger traffic sets and
identified as classes. All packets in each traffic class,
receive the same ‘forwarding behavior' in routers [4].
Two directions exist in the DiffServ architecture: the
absolute and the relative. In absolute DiffServ [5], an
admission control scheme is used [6] to provide QoS
guarantees as absolute bounds of specific QoS parameters
such as bandwidth, packet transfer delay, packet loss rate,
or packet delay variation (jitter). A connection request is
rejected if sufficient resources are not available in the
network so as to provide the desirable assurances. End to
end performance requires passive or active monitoring
procedures along a specific connection before its
establishment and throughout its lifetime. Thus, for any
admitted user the appropriate resources are reserved and
the performance level of the connection is assured [7].
The relative DiffServ model [8] provides QoS guarantees
per class in reference to guarantees given to other classes.
The only assurance from the network is that higher
classes receive better service treatment than lower
classes. QoS parameter values for a connection depend
on the current network load since there is no admission
control and resource reservation mechanism. Relative
service differentiation is a simple and easily deployed
approach compared to the absolute differentiation service
[7]. Proposals for relative per class DiffServ QoS define
service differentiation qualitatively [9-10], in terms that
higher classes receive lower delays and losses from lower
classes. Specifically research effort has focused on a
qualitative relative differentiation scheme named
proportional DiffServ [11-12], which controls the ratios
of delays or loss rates of successive priority classes in
order to be constant.

In the following paragraph, a generic description of the
proportional differentiation model as described in [11] is
given. Suppose that T (t,t+7) is a performance

measure for class i in the time interval (t,t +7), where

7 >0 is the monitoring timescale. The proportional
differentiation model imposes constraints of the
following form for all pairs of classes and for all time

intervals (t,t+7) in which both T;(t,t+7) and
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q;(t,t+7)are defined, the following equation is

satisfied:
?i(t,t+r) G )
q,(tt+7) c

where ¢; < ¢ < < cy are the generic Quality
Differentiation Parameters (QDPs). The basic idea is that,
even though the actual quality level of each class will
vary with the class loads, the quality ratio between
classes will remain fixed and controllable by the network
operator, independent of the class loads [8]. The
proportional differentiation model can be applied in three
contexts, proportional delay differentiation [11],
proportional loss rate differentiation [12] and
proportional jitter differentiation model [13-15]. Several
scheduler and dropper are presented about proportional
differentiated services [11-21]. Jobs[22] is the famous
algorithm in proportional Diffserv model that considers
scheduling and buffer management (dropping) together in
a single step. Jobs algorithm, proportionally differentiates
class of service based on two parameters, delay and loss
rate.

In this paper, we use fuzzy logic systems to design a
novel algorithm for queue management and scheduling of
classified packets in the differentiated service IP
networks. As shown in figure 1, the proposed model
consists of two parts. The first part of the proposed model
is used for absolute differentiated services and tries to
optimize QoS parameters and to share sources between
different requests fairly. The second part of the proposed
fuzzy system is dedicated to relative Diffserv model. As
one of the famous existing algorithms for both buffer
management and scheduling in the relative differentiated
service is Jobs algorithm, in the second parts of the
proposed system, we modify the traditional Jobs
algorithm and proposed a fuzzy based modification of
existing Jobs algorithm. The proposed algorithm uses
different fuzzy logic controllers to differentiate the delay
of traffic classes. With the expansion of Internet traffic
and its diversified service requests, the focus is on
requirement of new traffic used on the Internet. In the
proposed fuzzy controller for absolute Diffserv model,
scheduling packets are based on jitter. The proposed
fuzzy controller  for relative Diffserv  model,
proportionally differentiates classes based on jitter and
loss rate. Because of jitter is very close to delay, result in
this method shows that besides differentiate traffic
classes that are proportionate to jitter Differentiation
Parameters (JDP) and Loss rate Differentiation
Parameters (LDP) , these classes can be separated based
on delay as well.
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Fig. 1: The structure of proposed fuzzy scheduling
mechanism

The reminder of this paper is organized as follows. In
section 2, we explain the property of fuzzy systems. In
section 3, the proposed fuzzy controller for absolute
Diffserv scheduler is described. In section 4 the proposed
fuzzy implementation of Jobs algorithm which is used for
relative Diffserv model is described. Finally section 5,
concludes the paper.

2. A Brief Introduction to Fuzzy Logic
Controllers

Fuzzy logic controllers are used to compute values of
action variables from observation of state variables of the
process under control. Fuzzy logic is very similar to
human thinking and natural language. It provides an
effective means of capturing the approximate, inexact
nature of the real world. The goal of fuzzy logic
controller is to put human knowledge into engineering
systems. In this paper by using the fuzzy logic
capabilities, we develop a fuzzy extension to the
traditional Jobs algorithm. In the proposed algorithm, the
service rate of all traffic classes is tuned so that both the
absolute delay and relative delay constraints are satisfied.
As the proposed mechanism, uses the fuzzy controller,
we first explain the properties of fuzzy controllers. A
fuzzy controller consists of four major parts including:
fuzzifier, Inference engine, fuzzy rule base and
defuzzifier. As in many fuzzy control applications, the
input data are usually crisp, so a fuzzification is necessary
to convert the input crisp data into a suitable set of
linguistic value which is needed in inference engine. The

singleton fuzzifier, maps a real-valued pointx”into a
fuzzy singleton A’which has membership value 1

atx"and O at all other points. The main advantage of
using singleton fuzzifier is the great simplicity of
implementing the consequence part. It can be used with
Mamdani®* method to simplify considerably the
defuzzification stage, whose task is reduced to the
calculation of a weighted average with a restricted set of
crisp values. The use of singletons has no bad
consequence on the output variable domain which can be
the same as with triangular or trapezoid output sets when
using the center of gravity defuzzification method. In the
rule base of a fuzzy controller, a set of fuzzy control
rules, which characterize the dynamic behavior of
system, are defined. It is the heart of the fuzzy system in
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the sense that all other components are used to implement
these rules in a reasonable and efficient manner. The
inference engine is used to form inferences and draw
conclusions from the fuzzy control rules. In a fuzzy
inference engine, fuzzy logic principles are used to
combine the fuzzy rules into a mapping from input fuzzy
sets to the output fuzzy sets. There are a number of fuzzy
inference engines that are commonly used in fuzzy
systems and fuzzy control. The product and minimum
inference engines are the most commonly inference
engine techniques. The output of inference engine is sent
to defuzzification unit. Defuzzification is a mapping from
a space of fuzzy control actions into a space of crisp
control actions. Conceptually, the task of the defuzzifier
is to specify a point that best represents the output fuzzy
set. The center of gravity, center average and maximum
(or hight) are the most commonly defuzzification
techniques. The common center of gravity defuzzification
method requires a quantity of calculation that is
prohibitive for many real-time applications with software
implementations. Its calculation can however be
simplified when associated with the sum product method.
The computation of the center of gravity can take
advantage of the high speed afforded by VLSI when
integrated on an IC, which is however quite complex.

Suppose we have a fuzzy controller with n inputs
including x;,X,,...,X,and one output yeR .The input
vector X is defined as:
X = (xl,xz,____,xn)T e R" .Furthermore, suppose the rule

base consists of M rules with the following general form:
Rule 1: if x, is Al'and x, is A,'...and x, is A, then
yis B!

Rule 2: if x; is Alzand X, IS AZZ. ..and x, is An2

thenyis B2

Rule M : if x; is AlM and x, is AZM. ..and x, is

AM thenyis BM

where in the ith rule, Ajiand B'( i=12..M;
j=12,...,n) are fuzzy sets of linguistic variable x; and
y, respectively. In [23] it is shown that the output
f(X)eR of this fuzzy -controller with singleton
fuzzifier, minimum inference engine and center average
defuzzifier is calculated as:

M

VI
=1

(min’_; 41, 1))

@

f(X)="%
2 (minfy ()

=1




where y'is the center of fuzzy set B'and I (Xj) is
]

the membership function of fuzzy set Aj'of linguistic
variable X; inthe I'th rule (1=12,..,M).

3. The Proposed Fuzzy Absolute Diffserv
Scheduler

In the first part of the proposed system, we implemented
a fuzzy scheduler illustrated in figure 2. A packet
classifier classifies incoming packets, puts them in
different queues with different priorities.  This
classification is done based on the level of service they
demand from the network. We assigned four different
queues, Q1, Q2, Q3 and Q4 where Q1 has the most
priority and Q4 the least. Each queue has a length,
'QL;i(k)", at any time and an average expiry time of the
packets in the queue, ET;(k), where 'i" is the queue index
and ‘k’ is the time. These two parameters are used in the
scheduling strategy.

_________________________________________

-

Pacl(ets from
the:selected

Fuzzy
Scheduler

queue.

Fig. 2: The location of proposed fuzzy scheduling
mechanism in an IP router

The queue lengths change within the time. Assume that
xi(K) is the number of packets added to Q; at time k. Now,
the queue lengths update with the following formula as
time passes:

QL (k+1) = QL; (k) +x (k) - R (k) ®
where, if C is the bandwidth capacity we have:
C Q, selected in time 'k’
R(k)= 0 . 4)
otherwise

The average expiry time of the packets in the queue is
relative to the TTL (Time to Live). TTL is set a default
value of 64 seconds. If the packet suffers excessive delays
and undergoes multi-hop, its TTL falls to zero. As a result
of this, the packet is dropped. If this variable is used as an
input to the scheduler for finding the priority index, a
packet with a very low TTL value is given the highest
priority. The Expiry time is updated using the following
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procedure; at each time tick, when adding a number of
packets to a queue regarding ‘x;(k)’ the average expiry
time is updated as what follows:

ET, (k) *QL, (k) + TTLx, (k +1)
QL (k+1)

ET, (k+1) = ©)

TTLxi(k)” is the sum of TTLs in “x(k)’. And when
removing a number of packets from each queue the
average expiry time will be:

ET, (K)*QL, (k) ~TTLy, (k +1)

ET, (k+1) = oL (D

(6)

The variable “TTLy;(k)” is the sum of the TTL of the
packets removed from Q; at time ‘k’. Also, when time
passes we need to update average expiry time of the
queues. As soon as a one TTL changes in a packet we
update the average expiry time for the queue that packet
belongs to. If “N;(k)’ is the number of packets decreased
one unit from their TTLs in time ‘k’ from ‘i’th queue, the
new average expiry time is:

ET, (k) * QL (k) — N, (k)

N N CREY

)

As far as the TTLs do not change rapidly, this equation
will not be used frequently.

3.1. Fuzzy Inference

After knowing the network behaviour, we can design the
fuzzy inference engine used as a scheduler. In our model,
we have assumed to have four queues. For each queue we
define two membership functions, one for the queue
length and one for the average expiry time of the packets
in the queue.We should design a scheduling algorithm
that takes into account the queue lengths and their expiry
times together with the queue priorities. If the queue
lengths are equal and the average expiry times do not
significantly vary, it should choose the one with the most
priority. Otherwise, it should make a fair, reasonable
decision regarding the expiry time and the queue length.
Figure 3 illustrates our fuzzy scheduler. It uses a
Mamdani fuzzy model [24] with eight inputs and a single
output.

In Figure 3, the eight inputs of the fuzzy system are the
queue levels QL;, QL,, QL3 and QL4 and the average
expiry times ET,, ET,, ET; and ET,. The output is the
scheduled queue Qs, which has four types each
corresponding to a separate queue. We assume two fuzzy
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membership functions for Queue lengths: small (s), and
large (L), and two for the expiry times: low (L) and high
(H). AIll are defined using triangular membership
functions. Parameter values in these membership
functions must be selected for best performance.

Table 1: Part of the rule-base designed for the fuzzy
scheduler

# QL. QL QLs QLs ET, ET, ETs ETs

XN
aL, ET,
N & Mamdani
o ik Inference S(el‘e“ed
ueue N
XN XN Engine e
aL, ET,
N XN
aL, ET,

Fig. 3: Proposed Fuzzy Inference System

The range of the horizontal axis in each antecedent
membership function is from zero to the maximum queue
length for QLs and from zero to maximum TTL for expiry
times. With these membership functions specification, we
can design the fuzzy rules as the following. We have four
variables with three types of membership function and
four variables with two types of membership function. So,
totally we have 2x2x2x2x2x2x2x2 = 28 = 256 rules in
the knowledge base.

Some of the rules are showed in table 1. As discussed
before, the first thing to notice when designing the rule-
base is the level of the queue being full. Because, the
fuller the queues are the more packets will be dropped.
Second, when considering more or less equal queue
length the queue with more average expiry time should
be selected and after when no significant difference is
found in queue levels and average expiry time, the queue
priorities are taken into account.

Defuzzification is the final computation stage in the fuzzy
scheduling algorithm, in which a certain queue type is
determined. We use Centroid of Area (COA) [24], the
most popular defuzzifier. Defuzzification vyields a
representative crisp value from a fuzzy set which is
generally not an integer number in this case. Since queue
type is an integer 1, 2, 3 or 4, we assign a defuzzified
integer with a range of [1,4] using:

z<15
15<z<25
25<z2<35
35>z

®)

Selected Queue =

A W N -
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1 S S S S H H H H 1

16 S S S L H H H H 4

17 S S S L H H H L 4

18 S S S L H H L H 4

161 L S L S H H H H 1

162 L S L S H H H L 1

228 L L L S H H L L 1

241 L L L L H H H H 1

242 L L L L H H H L 4

247 L L L L H L L H 2

255 L L L L L L L H 1

256 L L L L L L L L 1

3.2. Performance Evaluation

In this subsection, using computer simulation we evaluate
the performance of the proposed fuzzy scheduler. For this
purpose we simulated an IP router shown in figure 2. The
network environment for our simulations is as follows:
four queue types in a router with different priorities and
with maximum queue capacity, Q1, Q2, Q3 and Q4,
respectively. A link bandwidth with 200 Kb/sec, and a
total queue length of 2200 packets. In these simulations,
we assume constant-length packets of 256 bytes (i.e.
almost 100 packets could be transferred per second). The
packet arrivals for each queue type are assumed to have a




Poisson  distribution with four different Poisson
parameters, A = 110, 95, 80, and 65, respectively. This
means that the queues with more priority receive packets
with less probability during the time. For a simple case we
just assigned the queue lengths as Q1 = Q2 =500 and Q3
= Q4 =600. We used Matlab 7.2.0.232 (R2006a). Figure
4 shows a sample of the input data ‘x;(k)’ fed into the
system, created randomly with the mentioned Poisson
parameters. TTLs of the packets are set randomly at the
time they enter to an integer number in the interval [1, 6,
4]. Every 2 seconds the packets lay inside the queue with
no move one unit is decreased from these values.

We have tested the algorithm and compared with WRR.
Simply table 2 shows this comparison. It shows the
Maximum number of packets in each queue all over the
simulation. Also, it includes the mean and variance of the
number of packets within time. What’s more, It holds the
percentage of packet loss as a result of queue being full
(Full Queue Loss%) and the percentage of packet loss
because a long delay in the queues and decreasing TTL
below zero (Starvation Loss%). The last row of the table
shows an average number of seconds the scheduler took
to decide which packets from which queue should
multiplexed into the output link. All these results are
averaged on outcomes of five separate simulation runs.
We see that our scheduler is a bit slower. That’s because
of the big knowledge-base we constructed for the fuzzy
inference engine. But losing this point we achieved a fair
scheduler, which decides the best decision and allocates
recourses for the packets the best it can. This is what the

QoS principles are seeking.
iy fim M* ol ;w Ui
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Fig.4: Packet arrival time for all queues
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Table 2: Simulation Results

WRR
Q1 Q2 Q3 Q4
Max QL 4712 499.2 598.3 599.9
Mean QL 165.7 281.7 310.2 410
Variance 2105 2451 291.8 298.8
Full Queue Loss% 7.44%
Starvation Loss% 5.7%
Average Delay 0.65
Fuzzy Scheduler
Q1 Q2 Q3 Q4
Max QL 3515 362.7 398.7 4015
Mean QL 238.1 249.9 301.8 299
Variance 125.2 137 154.5 159.1
Full Queue Loss% 0.97%
Starvation Loss% 1.01%
Average Delay 2.08
4. Proposed Fuzzy Relative Diffserv
Scheduler

In this section we introduce the proposed fuzzy scheduler
for relative Diffserv which is fuzzy implementation of
Jobs algorithm. The proposed algorithm is called Fuzzy
Jobs [25]. The main objective of the proposed Fuzzy Jobs
is to enhance the delay differentiation of the Jobs
algorithm. The proposed Fuzzy Jobs uses n fuzzy
controllers (which n is the number of traffic classes). All
fuzzy controllers consist of singleton fuzzifier, minimum
inference engine and center average defuzzzifier. In the
proposed fuzzy system we use n-1 two-input-single-
output fuzzy controllers and one single-input-single-
output fuzzy controller.  The inputs of all fuzzy
controllers are as below:

- Input signal €, : This input is an array with n members.
Each member of this array belongs to a traffic class. For
each traffic class i, the input variablee[i] which

represents the difference between actual serviced packets
and expected service packets, is defined as below:

e1[i1= (Rout_ th[i]— Rout[i])/1000000 9)
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For each traffic class i, the Rout[i] represents the number
of serviced packets and Rout_th[i] represents the number
of expected serviced packets. To reduce the
computational complexity, the input signal el is scaled
by dividing to 1000000. The number 1000000 is selected
by trial and error approach. For each traffic class i, if the
number of serviced packets is less than the number of
expected serviced packets, then e[i] will be a positive

number. So, to satisfy the defined constraints, the input
packets of this class should be serviced faster.

- Input signal €2 : This input consists of an array with n

elements. Some elements of input array are used for
traffic classes with absolute constraints while the other
are used for relative classes. For each traffic class i with

absolute constraints, e,[i] is defined as below:

e,[i]= (delay[i])/ ADC[i] (10)

where delay[i] is the delay of packet which is at the head
of queue and ADCIi] is the Absolute Delay Constraint of

class i. For each class i, if ey[i] is close to 1 then the
packets of this class must be serviced faster than the other
classes. Actually e,[i] represents the error between
actual relative delay and the requested relative delay
constraint. For relative traffic classes, es[i] is defined as
below:

e,[i] = (delayfi]/delayfi —1]) - RDC]i] 11)

where i is the traffic class that RDC (Relative Delay
Constraint) has been defined for it, delay[i] represents the
delay of packet which is at the head of queue i and
RDCIi] is the defined relative delay of class i. Whatever

eo[i] is close to zero, this confirm that for traffic class i
the delay differentiation has been satisfied. Suppose we
have K classes which relational delay has been defined
for them, as the input signal €2 uses the proportional
delay of classes, so for K-1 classes this input signal can
be calculated and for the first class it is not possible to
calculate the input signal €2 . So for the first class, we
use a single-input-single-output fuzzy controller.

- Input signal €3 : This signal is considered only for the
first class which relative delay parameter has been

defined for it. The input signal €3 is calculated similar

to €1 but it has different membership functions. The

output of each fuzzy controller determines the service
priority of the packet in each traffic class. The packet in a
class which has the highest priority is selected to be
serviced.

The membership functions of e [1],...,e,[n] .e,[1].....e,[n]

and €, are shown in figure 5.
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Fig. 5: The membership functions of inputs € ,

€2 and €, (a) Membership function for ¢ [1],...,e,[n]
(b) Membership function for e,[k],...,e,[ j] (c) Membership

function for ¢,[l],...,e,[m] (d) Membership function for €,




The membership function of the output signal is plotted
in figure 6.

A

1|foft f2 3 f4 fs f6 f7 f3 fo

v

0.000010.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

Fig. 6: The output’s membership function (p1,...,pn)

The rules of fuzzy controllers are divided to 3 groups.
The first group is assigned for classes which use ADC.
The fuzzy rules of traffic classes which use RDC are
given in group b. Group c is assigned to the first class
which uses RDC.

Group a:
Rule 1: If el[i] is neg and e2[i] is small then priority[i] is f1
and e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is

Rule 2: If el[i] is neg equal then priority[i] is f2

Rule 3: If el[i] is neg and large then priority[i] is f8

Rule 4: If el[i] is zero and small then priority[i] is f2

Rule 5:

=

el[i] is zero and equal then priority[i] is f3

Rule 6:

=

el[i] is zero and large then priority[i] is f9

Rule 7:

=

el[i] is pos and small then priority[i] is f3

Rule 8:

=

el[i] is pos and equal then priority[i] is f5

Rule 9: If el[i] is pos and large then priority[i] is f9

Group b:
Rule 10:

=

el[i] is neg e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is
e2[i] is

small then priority[i] is fO
Rule 11:

=

el[i] is neg and equal then priority[i] is f3

Rule 12:

=

el[i] is neg and large then priority[i] is f5

Rule 13:

=

el[i] is neg and vlarge then priority[i] is f9

Rule 14:

=

el[i] is zero and small then priority[i] is fO

Rule 15:

=

el[i] is zero and equal then priority[i] is f4

Rule 16:

=

el[i] is zero and large then priority[i] is f6

Rule 17:

=

el[i] is zero and vlarge then priority[i] is f9

Rule 18:

=

el[i] is pos and small then priority[i] is fO

Rule 19:

=

el[i] is pos and equal then priority[i] is f5

Rule 20:

=

el[i] is pos and large then priority[i] is f8

Rule 21:

=

el[i] is pos and vlarge then priority[i] is f9

Group c:
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Rule 22: If el[i] is neg then priority[i] is f4
Rule 23: If el[i] is zero  then priority[i] is f5
Rule 24: If el[i] is posS  then priority[i] is 6
Rule 25: If el[i] is posM then priority[i] is f7
Rule 26: If el[i] is posB  then priority[i] is f8
Rule 27: If el[i] is posVB then priority[i] is f9

4.1. Simulation Results

To evaluate the performance of the proposed Fuzzy Jobs,
we used the ns2 [26] network simulator. The network
topology used in the simulation is shown in figure 7.
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Fig. 7: Network topology used in the simulation

This network topology was used in [22] to evaluate the
performance of Jobs algorithm. In this test, just the
relative differentiated between the traffic classes is being
observed. Network topology consist of four routers that
connected by three 45 Mbps links. Sources and sinks are
connected to the routers by independent 100 Mbps links.
Each 45 Mbps link has a propagation delay of 3 ms, and
each 100 Mbps link has a propagation delay of 1 ms.
There exist four different traffic classes.

The composition of the traffic mix is given in table 3.
Cross-traffic flows (denoted by A-1,...,C-10) start
transmitting at time t = 0 s. The flows TCP-1,TCP-2,
TCP-3 and TCP-4 start transmitting at time t = 10 s. All
flows consist of packets with a fixed size of 500 bytes,
and the simulation time is set to 70s. The offered load is
asymmetric. Classesl,2,3 and 4 contribute 10%,20%,30%
and 40% of the aggregate cross-traffic, respectively.
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Table 3: Traffic mix of experiment 1. Traffic mix for flows
B-1,..., B-10 and C-1,...C-10 is identical to the traffic mix
described here for flows A-1,...,A-10.

Flow Class Protocol Traffic On Off

TCP-1 1 TCP Greedy N/A N/A

TCP-2 2 TCP Greedy N/A N/A

TCP-3 3 TCP Greedy N/A N/A

TCP-4 4 TCP Greedy N/A N/A

A-1 1 TCP Exponential on- 1000pkts 200ms
of

A-2,A-3 2 TCP Exponential on- 1000pkts 200ms
of

A-4,A-5A-6 3 TCP Exponential on- 1000pkts 200ms
of

A-7,A-8A- 4 TCP Exponential on- 1000pkts 200ms

9,A-10 of

Different experiments were performed. In all experiments
we used the same network topology and traffic
parameters given in figure 7 and table 3. In the first
scenario we only consider the RDC. The service
guarantees of traffic classes are as below:

Class-4 Delay 2 x Class-3 Delay

4

Class-3 Delay

4

2 x Class-2 Delay

Class-2 Delay ~ 2 x Class-1 Delay

In figure 8, for all routers and for both Jobs and Fuzzy
Jobs, the delay of classes is given. As the input traffic
load to the Router 4 is less that its output link capacity, so
there is not any queuing in this router and the delay is
zero.
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Fig. 8: Delay of classes for both Jobs and Fuzzy Jobs
algorithms (a) Router1- Delay of classes (Jobs) (b)
Router1- Delay of classes (Fuzzy Jobs) (c) Router2- Delay of
classes (Jobs) (d) Router2- Delay of classes (Fuzzy Jobs) (e)
Router3- Delay of classes (Jobs) (f) Router3- Delay of classes
(Fuzzy Jobs)

As shown in this figure, it is clear that the proposed
Fuzzy Jobs can differentiate the delay of classes better
than the traditional Jobs. In figure 9 for both algorithms,
the end-to-end delay of flows is shown. By looking at this
figure, it can be recognized that the end to end delay of
traffic flows in Jobs algorithm is not completely
differentiated. But, in the proposed Fuzzy Jobs algorithm
this differentiation is perfectly specified and obvious.
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Fig. 9: The end-to-end delay of flows (a) Jobs algorithm (b)
Fuzzy Jobs algorithm

5. Conclusion

In this paper we proposed a fuzzy controller for both
absolute and relative differentiated service model. For the
absolute Diffserv model, we developed a fuzzy dynamic
queue scheduler for class-based queuing in differentiate
service routers. A fuzzy rule-base gave us a stable queue
scheduler. We simulated a queuing mechanism whit
queues with different priorities. Compared to WRR, a
well known conventional queue scheduling policy, the
proposed fuzzy scheduler yields superior performance in
our simulation experiments. The queue levels in the
simulated router with our fuzzy scheduler have lower
steady-state responses and much lower average queue
lengths than WRR. Consequently, the fuzzy based queue
scheduler is an efficient dynamic queuing mechanism.
The only problem is the delay this scheduler adds to the
overall performance of the system. So, it makes it a trade-
off between fairness and overall delay. A lot of works in
this area is left. Simulations on more realistic network
environments are desired. The delay of the system could
be simply decreased by an optimal design of the
knowledge-base. And also, using better tuned fuzzy
membership functions also can enhance the efficiency of
the system. For the relative Diffserv model we presented
a fuzzy based implementation of traditional Jobs
algorithm which is called Fuzzy Jobs. In the proposed
Fuzzy Jobs, by using different fuzzy controllers, the
service rate of each traffic classes is determined
dynamically. The performance of the proposed Fuzzy
Jobs was evaluated using computer simulation. Different
experiments were performed. All simulation results
confirmed that the proposed Fuzzy Jobs has better
performance than traditional Jobs.
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