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Abstract:
Since the birth of multi–spectral imaging techniques, there has been a tendency to consider and process this new type of
data as a set of parallel gray–scale images, instead of an ensemble of an n–D realization. Although, even now, some
researchers make the same assumption, it is proved that using vector geometries leads to better results. In this paper,
first a method is proposed to extract the eigenimages from a color image. Then, using the energy compaction of the
proposed method, a new color image compression method is proposed and analyzed. The proposed compression
method, which uses vector–based operations, applies a grayscale compression algorithm on the eigenimages.
Experimental results show that, at the same bandwidth, the proposed method produce 3.6dB and 1.9dB enhancement in
the quality, compared to JPEG and JPEG2000, respectively.
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1. Introduction
Although, color is one of the most important tools for
object discrimination by human observers, it is
overlooked in the past [18]. In fact, discarding the
intrinsic characteristics of color images, as vector
geometries, some researchers have considered color
images as parallel gray–scale images (e.g., see [7]).
However, it has been proved that the Principle
Component Analysis (PCA) is an appropriate vector–
based descriptor for natural color images [8]. In this
paper, we show how using PCA yields a vector–based
image compression method which outperforms the
conventional ones. In the next paragraph, we briefly
discuss some of the relevant developments.

In 1988, Klinker, Shafer, and Kanade presented a novel
approach to measuring the highlights in color images
[14]. In that work, they developed a proper model for the
reflected light from an arbitrary point of a dielectric
object. In 1990, they applied their approach to color
image understanding [15]. However, more than a decade
passed since the idea was successfully incorporated into a
practical algorithm. In 2003, without paying too much
attention to the theoretical aspects, Cheng and Hsia used
the principal component analysis (PCA) for color image
processing [8]. Then, in 2004, Nikolaev and Nikolayev
started the work again from the theory and proved that
the PCA is a proper tool for color image processing [17].
The next necessary step had been introduced in 1991,
when Turk and Pentland proposed their eigenface method
[23], in a completely different context. There, they
developed a novel idea which connected the
eigenproblems in the color domain and the spatial
domain. Although, there is this rich theoretical
background for the linear local models of color, it is quite
common to see research procedures which are based on
the old color space paradigm, even published in 2005.
For a more comprehensive discussion of this topic refer
to [2].

The early approach to color image compression is based
on decorrelating the color planes using linear or nonlinear
invertible coordinate transformations such as YCbCr [1],
YIQ[5] or YUV [22]. Then, the color planes will
independently undergo a standard gray–scale
compression method, such as Differential Pulse Code
Modulation (DPCM) [16] or transform coding [19] (also
see [10]). This approach is inefficient, because none of
the available color spaces is able to completely
decorrelate the color planes in an arbitrary image.

In [9], using the PCA in the neighboring pixels, the
author discusses the idea of separating the spatial and the
spectral compression stages. As the paper shows, the
maximum theoretical compression ratio for an ideal
spectral compression method is 1:3. The main
shortcoming of the method in [9] is neglecting the fact

that in non–homogeneous regions, the PCA does not
perform energy compaction [6]. In [6], the author

combines the spatial and the spectral information to reach
a higher compression ratio. Although, the method is
based on expensive computation, the Peak Signal to
Noise Ratio (PSNR) results are not acceptable. The main
shortcoming of the method in [6] is the block artifacts
produced after decompression.

In this paper, we apply a tree decomposition using a
novel color homogeneity criterion to cut a given image
into homogeneous patches. These patches will be
analyzed using mathematical tools proposed in this paper
to extract eigenimages. The main contribution of this
paper is a new color image compression method using the
proposed eigenimage extraction technique. Experimental
results are also carried to analyze the performance of the
proposed method and also to compare it to the available
approaches.

Quad–tree decomposition is the well–known method for
splitting an image into homogeneous sub-blocks,
resulting in a very coarse but fast segmentation [20]. To
use the quad–tree decomposition, a suitable homogeneity
criterion is needed. In [3], the authors proposed to use the
error made by neglecting the two least important
principal components (the second and the third) as a
likelihood measure, called the Linear Partial
Reconstruction Error (LPRE). The LPRE distance of
vector c

 to cluster r is defined as ( ) ( ) ( )Tr c v c v cr η η   
       ,

where v
 denotes the direction of the first principal

component and x is the normalized 1L norm,

1 /
N

ix x N  . In [3], the authors proposed to use the
following stochastic margin to compute the homogeneity
of the selected region r,   , arg ( )r p x ref P f x e p  

 , where

p is the inclusion percentage and  ( )x rP f x e 
 denotes

the probability of x being less than or equal to e. It is
proved that ,r r pτ is a proper homogeneity criterion for
quad–tree decomposition [4]. The comparison of the
LPRE–based homogeneity criterion with the Euclidean
and Mahalanobis measures has proved its superiority [4].

2. Proposed Algorithms
2.1. Basis Vector Polarization

Consider the space n
R and a set of n basis

vectors , 1, ...,iv i n
 . Storing this set of vectors needs 2

n

units of memory (when neglecting the redundancy among
data). Having in mind that a set of basis vectors is an
orthonormal set, the actual needed memory can be
reduced. In fact, a set of basis vectors of n

R is a member

of
2n

R , with n constraints of normality ( 1, 1, ...,iv i n 
 )

and ( 1)
2

n n constraints of orthogonality
( , , 1, ..., ,i jv v i j n i j  
  ). Thus, the above–mentioned set
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(a) (b)

Fig . 1: (a) Flowchart of the proposed color image compression method. (b) Flowchart of the proposed color image
decompression method.

of basis vectors is an unconstrained member of an m–D
space, with m equal to 2 ( 1)/2n n n n   or ( 1)

2
n n . Thus,

storing a set of the basis vectors of n
R in ( 1)

2
n n memory

cells contains zero redundancy. To make this
representation unique, it is crucial to make the set of basis
vectors right–rotating (RR). In 2–D spaces, RR means
( 1 2( ). 0v v j 

  where, × and denote the outer and the
inner products, respectively. In 3–D spaces, RR
means 1 2 3( ). 0v v v 

   . Setting n = 2 leads to m = 1, which
means that any set of RR basis vectors in the xy plane can
be specified uniquely by a single parameter (the angle).
Similarly, the case of n = 3 results in m = 3, which is
used in this paper. We will prove that the parameters in
the 3–D case are angular too. Thus, we call this method
of representing a set of basis vectors, the polarization
method. Here we propose a method for finding these
angles.

Consider the three RR vectors 1 2 3, ,v v v
   in 3

R . We define
the angles θ, φ, and ψ as a manipulated version of the
well–known set of Euler angles. Using pv


as the

projection of v
 on plane p (e.g., 1

xyv


), the three angles are
defined as:

1

1

2

( ,[1,0] )

(( ) ,[1,0] )

( ) ,[1,0] )

xy T

xy zz T

xyxz yz T

v

R v

R R v
θ

θ θ

θ

φ

ψ

 
 









(1)

where, ( , )v u
  denotes the angle between two vectors

2
,v u R
  , computed as 1

( , ) sgn(( ). ) cos . /v u v u j v u v u


  
       

where sgn(x) is the signum function. Also, P
Rα is the 3 ×

3 matrix of α radians rotated counter–clock–wise in the p
plane. Composing the 3×3 matrix V with iv

 as its i–th
column, we get 1

. ( )
yz xz xy P P

R R R V I As R Rψ φ θ α α


  we

have xy yz xz
V R R Rθ ψ φ   . While (1) computes the three angles θ,

φ, and ψ out of the basis vectors (polarization), the above
equation reproduces the base from θ, φ, and ψ angles
(depolarization).

2.2. Block–wise Interpolation

Consider a partition of the W HN N as a set of rectangular

regions { 1, ..., }ir i n , with corresponding (given) values of

{ 1, ..., }i i nλ  , satisfying , , ( )i ii c r f c λ   
  for an arbitrary

function 2
:f R R . The problem is to find �f as a good

approximation of f. We address this problem as a block–
wise interpolation of the set {( , ) 1, ..., }i ir i nλ  . Note that in
the case that the partition is a conventional rectangular
grid, the problem reduces to an ordinary 2–D
interpolation task. Here, we use a reformulated version of
the well–known low–pass Butterworth filter as the
interpolation kernel,

1
2 2

,

2

2

2
2

2

( ) (1 ( ) )

1(log ( ))
1

1

N
N

a
b

N

xB x

N rnd

a

τ τ

β α

α β

ατ
α





 

 
 
 


 
 

(2)
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The function , (0)NBτ satisfies the conditions of , ( )NB a aτ 

and , ( )NB bτ β . The 2–D version of this function is

defined as , , , , ,( , ) ( ) ( )N w h w N h NB x y B x B yτ τ τ where w and h
control the spread of the function in the x and y
directions, respectively. Figure 4 shows the typical shape
of the function ,

, ( , )
w h

NB x yτ with a = 0.9, α = 0.7, b = 1, β
= 0.5, and w = h = 16.

Fig.4: The typical shape of the proposed interpolation
kernel, ,

, ( , )
w h

NB x yτ .

Assuming that the region ir is centered on ( , )i ix y while

its height and width are iω and ih , respectively, we
propose the function �f to be defined as:

�
1 , , ,

2 2

1 , , ,
2 2

( , )

( , )
( , )

N
i h i ii ii N

N
h i ii ii N

B x x y y

f x y
B x x y y

ωτ

ωτ

λ




 


 




(3)

Note that � ( , )f x y , is a smooth version of the initial step
case function [ , ] : ( , )

T
i o ix y r f x y λ   . Also, by setting

proper values of the parameters a, b, α, and β, the
function � ( , )f x y will satisfy the constraints. The proper set
of the parameters must force

,
2 2
, ( , )

hi i

NB x x y yi i

ω

τ   to become nearly one in entire ir

(except for the borders neighborhoods) and also to
prevent ir to intrude the interior with points of jr , for
i j . Selecting a value near unity but smaller than it for a
and α, limits the decline of the ceil of the function, while
setting b = 1 and a not too big value for β (e.g., 0.4)
controls the effects of neighbor regions on each other.
Note that setting a = 1−, α = 1, b = 1+, and β = 0, is the
marginal choice leading to no smoothing (the same as f◦).

As the generalization of the block–wise interpolation
problem, assume the set of regions  ( ; ) 1,..., , 1,...,i ijr i n j mλ   ,

satisfying arg ( , ( ) )ij i jc r f cλλ λ  
 

� for a set of arbitrary

functions 2
: , 1, ...,if R R i m  . In a similar manner with

(3), we propose:

�

( , )1
, , ,

2 2( , )
( , )1

, , ,
2 2

j

N B x x y yij h i ii i iN
f x y N B x x y yh i ii i iN

λ ω
τ

ω
τ

  


  

(4)

Here, because the set of the base regions for all �
jf are the

same, the total performance is increased by computing
,

2 2
, ( , )

hi i

NB x x y yi i

ω

τ   for each value of i, just once. Then, the
problem reduces to m times computation of a weighted
average.

When working in the polar coordinates, because of the 2π
discontinuity, ordinary algebraic operations on the
variables lead to spurious results (for example 0 2

2
π

π


 ,

while the average of 0 radians and 2π radians equals 0
2π radians). To overcome this problem, we propose a
new method: for the given problem  ( , ) 1,...,i ir i nθ  , solve the

problem  ( ,cos ,sin ) 1,...,i i ir i nθ θ  and then find iθ using
ordinary trigonometric methods. Note that interpolating
both sin iθ and cos iθ is performed to avoid ambiguity in
the polar plane.

2.3. The Eigenimage

Consider the PCA matrix, rV , and the expectation vector,
rη
 , corresponding to the homogeneous cluster r. Then,
for the color vector c

 belonging to r we get the PCA
coordinates as 1

( )
T

rrc V c η


 
   . Assume that we can

somehow find the color cluster cr for each color vector c
 ,

where cr describes the color mood of c
 , in the sense that

1
( )

T
rrc

c V c η


 

   satisfies ' ' '1 2 3c c cσ σ σ  , where

1 2 3[ ' , ' , ' ]
TT

c c c c
 . We denote the 2–D arrays made

by 1 2' , 'c c , and 3'c as the 1 2,pc pc , and 3pc , respectively. The
original image can be perfectly reconstructed using these
three channels, except for the numerical errors as

3

Tc
rr cc

c c V η 




  
� . It is proved in [3] that for homogeneous

swatches, neglecting 3pc (or even both 2pc and 3pc ), gives
good approximations of the original image. Here, we
generalize the approach. Note that the perfect
reconstruction of the image from all eigenimages does
not rely on the energy compaction, while the partial

reconstructions defined as 2 1 2[ ' , ' , 0]
T

r cr cc V c c η  



and

1 1[ ' , 0, 0]
T

r cr cc V c η  



do rely on it. Although, the above

scheme gives a 1–D representation of a given color
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image, if the computation of r cV  and r cη 
 gets expensive

the scheme although being theoretically promising it
actually is not applicable. Thus, we seek for a method for
describing r cV  and r cη 

 in a simple way. The case for

defining c cr N  (the neighborhood pixels) is

automatically rejected (because to compute r cV  and r cη 


we need all the neighborhood points of c
 leading to a

high redundancy and computation cost).

Here, we propose a fast and reliable method to compute
the corresponding r cV  and r cη 

 for all image pixels.
Assume feeding the given image I to the bi–tree (or
equivalently the quad–tree) decomposition method. The
output of the decomposition method is the matrix 

containing the coordinates of ir along with the
expectation matrix iη

 and the polarized version of the
PCA matrix ( , , )i i iθ φ ψ . Storing this portion of the 

matrix needs 10n bytes. For ordinary values of 200n � in
a 512 × 512 image,  will take about 1

400 of the
original image data. Now, assume solving the problem
 ( ; ) 1,...,i ir i nζ  using the block–wise interpolation, where

iζ is the row vector containing � � �
1 2 3, , , ,i i i i iη η η θ φ and iψ .

Note that the three values of ,i iθ φ and iψ are of angular
type. Assume the solutions of the problem as the
functions � � �

1 2 3, , , ,i i i i iη η η θ φ and iψ . Now we compute the

functions  2 3
: R Rη 

 and � 2 9
:V R R , as the value of the

expectation vector and the PCA matrix in each pixel,
respectively. This leads to the computation of the three
eigenimages 1 2,pc pc and 3pc . We call the function
 2 3

: R Rη 
 as the expectation map (Emap) and the
polarized version of � 2 9

:V R R as the rotation map
(Rmap), respectively. As the PCA theory states [11], we
expect the standard deviation of the three planes to be in
descending order.

From linear algebra we know that for orthonormal
matrices rV the eigenimages satisfy

2 2 2 2 2 2
1 2 3pc pc pc r g bσ σ σ σ σ σ     . Thus,

2 2 2 2

1 1 2 3/ ( )i pc pc pc pcκ σ σ σ σ   shows the amount of
information available in the i–th eigenimage, satisfying

1 2 3 1r g bκ κ κ κ κ κ      .

2.4. Color Image Compression
Consider the image I and its corresponding eigenimages

1 2,pc pc and 3pc . Due to the energy compaction condition,
this scheme is actually an spectral image compression
method. Reconstructing the image using just one or two
eigenimage(s) gives the compression ratios of 3:1 (the
theoretical margin) and 3

: 12 , respectively. To add the
spatial compression ability to the proposed method, we
use the PU–PLVQ gray–scale image compression
technique [12] for each eigenimage with different
compression ratios (see Figure 1–a).

(a) (b) (c) (d)

Fig . 2: (a) Original image adopted from [21], (b) result of the bi–tree decomposition method, (c) Emap, and (d) Rmap.

(a) (b) (c) (d)

Fig . 3: Eigenimages of the image shown in Figure 2–(a), (a) 1pc , (b) 2pc , (c) 3pc , (d) Corresponding Histograms
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As Figure 1–a shows, the transmitted information
contains the compressed versions of the 1 2,pc pc and 3pc ,
along with the  , α, a, β, and b (for block–wise
interpolation). Assume that the image to be compressed is
a H ×W color image, decomposed into n blocks. The
total amount of information to be sent equals: 10n bytes
for storing 1 2 1 2 1 2 3 1 1, , , , , , , ,i i i i i i ix x y y η η η θ φ and 1ψ plus

1 1 1
1 2 3( )WH λ λ λ
  

  for storing 1 2,pc pc and 3pc

eigenimages compressed with compression ratios of 1 2,λ λ

and 3λ , respectively (where 1 2 3λ λ λ  ). Thus, the total

compression ratio equals 1 1 1 1
1 2 3

10
3( )

n
WHλ λ λ λ

   
    . A

nominal value of 2 1λ λ and 3λ   leads to 11.5λ λ� .
Note that using a pure spatial compression, all three
channels must be compressed with almost the same
compression ratios, resulting in a total compression ratio
of � 1

11 1 1
3 ( )

WH WH WH
WHλ λλ λ λ


  � . As shown in Figure 1–b,

in the decompression process the Emap and the Rmap are
computed just like what performed in the encoding
process. Using these information along with the decoded
versions of 1 2,pc pc and 3pc , the original image is
reconstructed.

3. Experimental Results
The proposed algorithms are developed in MATLAB 6.5,
on an 1100 MHz Pentium III personal computer with
256MB of RAM. The codes are available online at
http://math.sharif.edu/ abadpour. For a
typical 512 × 512 image it takes 8.3 seconds to extract
the eigenimages. Then, another 4.6 seconds are needed to
reconstruct the image. Adding the less than one second
needed to do the spatial compression the total operations
take slightly less than 16 seconds for a typical image.
Note that these values are measured using MATLAB
code and can be further reduced if the code is to be
implemented using a higher–level programming
language.

A database of color images (140 samples) including the
standard images of Lena, Mandrill, Peppers, and Couple
and also some professional color photographs [21] is
used. All images have the size of 512 × 512, in RGB
color space, and compressed using standard JPEG
compression with qualities above 95. Prior the operation
all the images are converted to the standard BMP format.

3.1. Block–wise Interpolation
Figure 7–(a) shows a sample problem set given to the
proposed block–wise Interpolation. Figure 7–(b)
illustrates the corresponding �f . In this sample the
resulting Signal to Noise Ratio (SNR) is more than 22dB.

(a)    (b) (c)

Fig . 5: Distribution of the energy between the three eigenimages for different values of 1ε  and Q . (a) 1pcκ . (b) 2pcκ . (c) 3pcκ .

Fig . 6: PSNR values of image reconstruction using. (a) Three eigenimages. (b) Two eigenimages. (c) One eigenimage for
different values of 1ε  and Q
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3.2. The Eigenimage
Consider the image shown in Figure 2–(a). It is
decomposed with parameters of 10.5, 5p ε  and 5Q 

into 91 blocks (see Figure 2–(b)). Figures 2–(c) and 2–
(d) show the corresponding EMap and RMap. Figure 3
shows the three ipc channels corresponding to the image
shown in figure 2–(a). In all eigenimages the dynamic
range of the image is exaggerated to give a better
visualization.

  (a) (b)

Fig .7: Proposed block–wise interpolation, (a) sample
problem and (b) the solution with SNR > 22dB.

The stochastic distributions of ipc are investigated in
Figure 3–d. It shows the histogram of the three produced
planes for the image shown in Figure 2–(a). In this
example, the standard deviations of the ipc planes are

computed as: 1 252, 12pc pcσ σ  and 3 6pcσ  . Note the

perfect compaction of the energy in 1pc .

Figure 5–(a), 5–(b), and 5–(c) show the values of 1 2,κ κ

and 3κ for the image shown in Figure 2–(a) for different

values of 1ε and Q . Note that rather than the trivial cases

of 2Q  and 1 9ε  (which are never used actually), more

than 90% of the image energy is stored in 1pc , while 2pc

and 3pc hold about 9% and 1% of the energy,
respectively. Having in mind that in the original image

38%, 32%r gκ κ  and 30%bκ  , the energy compaction of
the eigenimages are considerable.

Figure 8 shows the results of reconstructing the image of
Figure 8–(a) from the eigenimages. While Figure 8–(b)

shows the result of reconstructing the image using all
three eigenimages, Figures 8–(c) and 8–(d) show the
results of ignoring 3pc and both 3pc and 2pc ,
respectively. The resulting PSNR values are 60dB, 38dB,
and 31dB, respectively. Note that PSNR = 60dB (instead
of infinity), for reconstructing the image using all
eigenimages is caused by the numerical errors, while the
two other PSNR values (38dB, 31dB) show some loss of
information. The PSNR values of above 38dB are
visually satisfactory even for professionals [13].

Figure 6 shows the PSNR values obtained by
reconstructing the image using all the three channels
(Figure 6–(a)), only two channels (Figure 6–(b)), and just
one channel (Figure 6–(c)), for different values of 1ε and

Q . Note that for values of 1 8ε  and 3Q  , reconstructing
the image using all eigenimages gives the high PSNR
value of about 60dB, while neglecting one and two
eigenimages results in PSNR 35dB and PSNR 28dB,
respectively.

3.3. Color Image Compression
Figure 9 shows the results of the proposed compression
method. Table 1 lists the compression ratio used for
compressing the eigenimages and the resulting
compression ratio and PSNR values. These results has
been acquired while setting 1

1
, 52p ε  ,

and 5Q  . Figure 10 shows the exaggerated difference
between the reconstructed images shown in Figure 9 and
the original images. Here, the scheme is defined
as *

( [ ]) / (2 )x x η σ σ   , where η and σ denote the
expectation and the standard deviation of x, respectively.
Note the high compression ratio of about 70 : 1 in all
cases, while the PSNR is mostly above 25dB. Among
other region–based coding approaches the method by
Carveic et. al. is one of the best [6]. They mixed the color
and texture information into a single vector and
performed the coding using a massively computationally
expensive algorithm. The final results show PSNR values

(a) (b) (c) (d)

Fig . 8: Results of reconstructing an image from its eigenimages. (a) Original image adopted from [21]. (b) Using all
eigenimages (PSNR = 60dB). (c) ignoring one eigenimage (PSNR = 38dB). (c) ignoring two eigenimages (PSNR = 31dB).
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(a) (b) (c)

(d) (e) (f)

Fig . 9: Results of the proposed compression method on sample images. For details about compression ratio and PSNR see
Table 1.

of about 20 : 1 for compression ratios of about 40dB.
In [9], the researchers use the same separation scheme
between compression in the two disjoint domains of
spectral and spatial redundancy using a PCA neural
network. They reached the compression ratio of 3.7:1
with value of PSNR around 25dB, while almost all test
samples are homogeneous. In [24], the method gives
the compression ratio of about 14.5:1 but with the
same range of PSNRas ours. The only drawback of the
proposed compression method is some rectangular
artifacts in ultra simple images, as seen in Figure 9–(f).
Our future plan is to overcome this problem.

(a) (b)   (c)  (d) 

(e) (f)    (g)

Fig . 10: Exaggerated error of the proposed compression
method.

Table 1 also compares the proposed algorithm with
JPEG and JPEG2000. To do this comparison, each
sample image is compressed using each one of these
algorithms with the exact com pression ratio acquired
from the proposed method. As expected, Table 1 shows
that JPEG2000 is always giving a better result
compared to JPEG. Comparing the proposed method
with JPEG2000 we understand that except for the case
of Figure 9–(f) the proposed method is giving a higher

PSNR than both others. Followed by the discussion
given in the last paragraph we omit Figure 9–(f) from
the investigation. Numerically, the proposed method is
14% and 7% better than JPEG and JPEG2000,
respectively. This means more than 3.6dB and 1.9dB
increase in the quality when comparing the results of
the proposed method with JPEG and JPEG2000,
respectively.

4. Conclusion
The performance of the proposed eigenimage
extraction method is analyzed both in terms of energy
compaction and partial reconstruction. The method
shows the ability to reduce the energy content of the
third eigenimage to a few percents while the first one
encompasses more than ninety percent of the total
energy. Also, the subjective quality of the partially
reconstructed images is investigated. Then the
performance of the proposed color image compression
method is analyzed. Comparison of the results with the
available literature shows the superiority of the
proposed color image compression method.
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Table 1: Numerical information relating to the samples shown in Figure 9. [n: block count. λ: Compression Ratio, bpp: bit
per pixel. PSNR: Peak signal to noise ratio in dBs.]

Proposed Method

1pc 2pc 3pc

JPEG JPEG2000Sample

n

λ bpp λ bpp λ bpp λ bpp PSNR PSNR PSNR
9-(a) 334 42.6:1 0.19 58.8:1 0.14 0 71.1:1 0.34 28.4 26.8 27.1
9-(b) 161 39.8:1 0.20 55.1:0 0.15 0 68.0:1 0.35 30.4 27.7 29.5
9-(c) 311 44.4:1 0.18 58.0:1 0.14 0 72.5:1 0.33 24.5 19.8 21.7
9-(d) 203 41.3:1 0.19 56.9:1 0.14 0 70.1:1 0.34 33.3 30.5 32.4
9-(e) 32 45.5:1 0.18 62.8:1 0.13 0 78.8:1 0.30 26.1 38.4 42.4
9-(f) 91 41.3:1 0.19 57.7:1 0.14 0 71.4:1 0.34 35.4 30.2 32.7
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