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Abstract : 
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment 
is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using 
an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman 
filter at each time step. The estimation of the probabilistic distribution can be shown using an error ellipse for a constant 
collision probability. Analytical forms of error ellipses can be obtained by quadratic inequalities. These quadratic 
inequalities make the optimization problem nonconvex. Thus, these inequalities are relaxed by applying a linearization 
approach. Finally, the optimization problem is reformulated to a convex optimization problem. There are some strong 
algorithms for solving a convex optimization problem, so the consequent path planning method can be solved 
efficiently with considerable performance that will be obtained in the end of this paper.
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1. Introduction 
The trajectory planning of unmanned vehicles such as 
UAVs1,UGVs2and AUVs3 in a dynamic environment, 
has received a great interest in recent years [13, 15,
23]. In a dynamic environment the main challenge is 
the existence of uncertainty in the path planning 
strategy of an autonomous vehicle. These problems are 
known as stochastic path planning or path planning 
under uncertainty. It is necessary to consider these 
uncertainty sources in a real word path planning of an 
autonomous vehicle. Generally, path planning methods 
can be divided into two main categories known as 
myopic and nonmyopic. In the myopic methods, there 
isn’t an implicit planning in future time intervals. 
Unlike the myopic methods, for nonmyopic methods, 
an implicit planning occurs in future time steps. 
Myopic methods include graph-based method knows as 
graph search algorithm [1], Fuzzy control [2], artificial 
potential field [3], evolutional algorithms [4] and etc. 
Unlike the myopic methods, there is an implicit 
programming based the future evolution of the system 
in the nonmyopic methods. Generally, the nonmyopic 
methods have a better input control but in these 
methods, the complexity of the problem increase by 
increasing the number of the horizon steps. Model 
predictive control (MPC) is the most popular approach 
of nonmyopic method.  

 Model predictive control (MPC) also known as 
receding horizon control (RHC) is a feedback control 
method which is suitable for the control of 
multivariable systems. MPC is a nonlinear control 
policy that handles input and output constraints as well 
as various other objective functions. The capability of 
handling constraints in a systematic way makes MPC a 
very attractive control strategy. Particularly, in those 
applications where the process is required to work in 
wide operating regions and close to the boundary of 
admissible states and input sets, which are imposed by 
constraints. In MPC, a model of plant is used to predict 
the future evolution of the system [5]. Based on this 
prediction, an optimization problem is solved at each 
time step to determine a plan of action over a fixed 
time horizon. The first input from this plan is applied to 
the system, such that at the next time step, a new 
optimization problem is solved with the time horizon 
shifted one step forward. The graphical representation 
of this procedure is obtained in the Fig. 1 for N time-
steps horizon.
MPC can be used for several types of control and 
estimation problems including tracking problems, 
regulator problems and stochastic control problems. It 
has a variety of applications such as industrial and 
chemical process control [6], supply chain 
management [7], stochastic control in economic and 
finance [8], revenue management [9], control of hybrid 
vehicles [10], automotive applications [11] and 
aerospace applications [12].

In the context of autonomous control systems, the 
vehicle must perform target tracking as well as obstacle 
avoidance. For these types of problems, several 
solutions have been proposed in the literature such as 
potential field [13], A*  with visibility graph [14], 
nonlinear trajectory generation [15], vertex-graph 
algorithm [16] and mixed integer linear programming 
[17]. Since MPC can systematically handle some 
constraints such as vehicle dynamics, envelop 
limitations and no-fly zones, it can be a suitable 
technique for path planning of an autonomous system 
[18]. In [19], [20] a predictive controller is used for 
minimal risk motion planning in the presence of both 
dynamic and static obstacles. Falcone and colleagues 
[11] presented two formulations for MPC to control an 
active front steering system in an autonomous vehicle. 
The first, uses a nonlinear vehicle model to predict the 
future evolution of the system, thus the resulting MPC 
requires a nonlinear optimization problem. The second 
formulation is a successive linearization of the 
nonlinear vehicle model at each time step resulting in a 
linear time varying MPC. It is a suboptimal MPC of the 
original nonlinear problem. An autonomous 
exploration algorithm that is suitable for urban 
navigation, but it is not limited to urban navigation is 
proposed in [15]. This algorithm is a combination of 
MPC-based obstacle avoidance and local obstacle map
which is built using onboard laser scanners. In [21], a 
MPC is used for controlling a multivehicle system to 
track multiple target points.  

Since some uncertainty sources exist in a dynamic 
environment, the perception of target location has some 
uncertainty. Thus this setting gives rise to a complex 
stochastic optimal control problem. Although it can be 
solved by dynamic programming it is still a 
computationally intractable approach. Bemporad and 
colleagues in [22] introduced a decentralized linear 
time varying MPC4 to control a fleet of UAVs. Each 
vehicle is a quadrotor type which is stabilized by the 
controller at the lower level around desired set points.
These set points are generated from the high level 
LTV-MPC trajectory planner with a slower rate.

Fig. 1. Graphical representation of MPC planning 
method for N time-steps horizon 
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In the more complex situation, the autonomous 
vehicle must perform target tracking as well as obstacle 
avoidance. In other words, targets and obstacles can 
move stochastically in the environment. The existence 
of obstacles makes the feasible region nonconvex 
inherently. Some optimization methods which were 
used in the previous works for obstacle avoidance are 
nonconvex, and therefore most of them are greedy 
problem, that is, there is not a planning strategy to 
move because the inherent nonconvex feasible region 
makes the problem nonconvex entirely which would be 
complicated to be solved as a real time optimization 
problem.  

Furthermore, most of the previous works are related 
to deterministic and semi-deterministic environments 
just as laboratory environment and so on. However, the 
main mission of an autonomous vehicle is moving in 
an unknown and dynamic environment where does not
exists any information about the incoming future 
events. Therefore, it is obvious that the greedy 
problems fail in these situations, so it is necessary to 
involve the prediction of future environment states into 
the process of determining current input control. 
Indeed, model predictive control uses a systematic 
structure to create a sequence of inputs based on the 
prediction of future states of vehicle and environmental 
objects.  

 In this paper we introduce a path planning method 
for stochastic target tracking and obstacle avoidance in 
a dynamic environment. In fact, the main contribution 
of this paper is making the feasible region linear in 
order to the entire MPC problem to be converted to 
LTV-MPC problem firstly and secondly it can be 
converted to a close-form MPC problem based on the 
new state vector and new input control vector over the 
horizon. Finally, the last MPC problem is converted to 
close form optimization problem as authors have 
mentioned in [26].   

The reminding of this paper has the following order.
First, in the next section, the modeling of the problem 
is described followed by the LTV-MPC modeling for 
target tracking and obstacle avoidance mission. In the 
next section i.e. section 4, constraints of obstacle
avoidance mission are described, also a desired 
linearization approach is proposed in details. Finally, 
the consequent model of predictive control is converted 
to a convex optimization problem in the final section of 
this paper. 

2. Problem Modeling 
Two coordinate frames are defined for navigation of 

an autonomous vehicle, generally. The first one is fixed 
to the vehicle called the vehicle-fixed reference frame. 
The origin of the vehicle-fixed frame is chosen to 
coincide with the center of gravity, which is in the 
principal plane of symmetry. The position and 

orientation of the vehicle are described relative to this 
inertial reference frame. In this section, a dynamic 
model of the vehicle, target and obstacle are presented. 
Then, a measurement model is used for estimation of 
the object’s state by Kalman filter [24]. Based on this 
state estimation, a trajectory prediction method is used 
for predicting the future evolution of the vehicle, 
target, and moving obstacles. 

2.1. Vehicle Dynamic Modeling 
In this paper, a point-mass model is used for the 

motion modeling of the vehicle, target and obstacles.
The size of each ones is modeled by a circle 
surrounding the center point of gravity. Therefore, it is 
assumed that the size of the obstacle is known or can 
be computed by the on-board sensor array of the 
vehicle.  

Since most earth-bound vehicles have dynamics that 
naturally decouple into vertical and horizontal planes, 
vehicle dynamics will be restricted to a plane. These 
kinds of systems can be modeled with "unicycle" 
dynamics by direction and speed controls. The unicycle 
dynamics are typically written in Cartesian coordinates 
as follows [23]:

Where vel vel vel
T[x , y ]x is the point-mass location of 

the vehicle and [ , ]vu is the input vector consists 
of velocity and heading. The discrete-time state-space 
of unicycle dynamic model has the following form: 

vel k vel k k(k+1) (k) (k)x A x B u
where kA and kB are the transition and input matrix 
respectively, which are obtained as follows: 

2.2. Vehicle Trajectory Prediction 
The state of the vehicle according to environmental 
disturbance such as wind has some uncertainties; these 
uncertainties can be modeled by a Gaussian 
distribution. Thus, the discrete-time and linear dynamic 
of vehicle in an unknown environment can be modeled 
as follows: 

vel vel k k(k) (k-1) B (k)kx A x u
therefore, the state of the vehicle can be estimated by 
an extended Kalman filter (EKF) by giving the 
previous estimated state and other measurements from 
IMU5, GPS6 and on-board sensors. In other words, it 

vel

vel
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estimates the new state of vehicle from given 
measurements at (k + 1)th time step. Suppose the 
function f  represents the nonlinear dynamic model of 
the vehicle i.e.

vel f( )x u

thus, the vehicle trajectory prediction based on EKF 
state estimation over future horizon N can be computed 
as follows:   
  

2.3. Object Dynamic Modeling 
In this paper, the dynamic model of the moving object 
(target or obstacle) is assumed to have a constant 
acceleration motion [25], and it has the following 
discrete-time state-space model: 

obj obj k(k 1) (k 1)x F x

where objx  is the object state vector. The transition 

state matrix F  is obtained as follows: 

x
x y

y

T T 12 0
0 T 1 ,

0
0 0 1

s

s
F

F F F
F

In the equation (7) k  is white Gaussian noise that 
models the uncertainty on the process with the 
following covariance matrix: 

5 4 3

x4 3 2
x y

y3 2

T 20 T 8 T 6
0

T 8 T 3 T 2 ,
0

T 3 T 2 T

q
s s s

s s s

s s s

Q
Q Q Q

Q

where q  is the power spectral density. 

2.4. Measurement Model
Objects in the environment, including targets and 
obstacles are detected using the vehicle’s on-board 
sensors. The location and angle of each sensor is 
known: [ ( ), ( ), ( )]i i i iX t Y t t . Each sensor site 
named i , is assumed to make distance and direction 
observations to the target or obstacle as: 

2 2( ) ( )
(k) (k)

(k) (k)arc tan( ) ( )

tg i tg ir r

i i

tg i
i i

tg i

x X y Y
z

x X
z k

x X

where the random vector (k) [ , ]r

i i ir rω  describes the 
noise in the observation process due to both error and 
uncertainty in the observation as the two main 
uncertainty sources in dynamic environments. 
Observation noise is taken to have a zero mean and 
variance as below:

2

2

0
(k)

0
r

rR

It should be noted that observation is strongly range 
dependence and is lined up with the sensor bore-sight. 
Since observations are related to the vehicle-fixed 
frame, the observation model is nonlinear and state 
estimation must be executed using an extended Kalman 
filter. Thus information can be converted to the inertial 
reference frame and used for object state estimation by 
a linear Kalman filter. The relations below describe this 
mapping from the vehicle-fixed frame coordinate to the 
inertial reference frame.

2
T

2 2

(k) (k) cos( (k))

(k) (k) cos( (k))

(k)
(k)

0
(k) ( ( )) ( (k))

0 ( (k))

x r

i i i

y r

i i i

i

i

xy r
i i

i

z X z z

z Y z z

z k z
z

R Rot Rot

where ( )Rot is the rotation matrix: 

cos( ) sin( )
( )

sin( ) cos( )
Rot

2.5. Object Trajectory Prediction 
Using the global measurement vector computed in the 
previous section, the object state can be estimated by a 
linear Kalman filter (KF). Thus, the future evolution of 
the object state (target or obstacle) can be predicted 
over the N time-steps horizon. For this purpose, an 
iterative execution of state estimation step leads to the 
object trajectory prediction which it is represented by 
the state estimation vector pred

objX that can be computed 
as follows:

vel

vel
pred

velvel

vel

(k 1 k)
f( (k 1 k), (k 1))

f(f( (k 1 k), (k 1)), (k 2))

f( f( (k 1 k) (k N 1))

x
x u

X x u u

x u( f( (k 1 k) (k N 1))vel( f( (k 1 k) (k N 1))vel( f( (k 1 k) (k N 1))(k NN1 k) (k N1 k) (k N(k 1 k)(k 1 k)vel (k 1 k)1 k)

(8)

(9)

(10)

(11)

(12)

(13)

(6)

(5)

(7)

(14)

obj

objpred

obj

obj

(k+1 | k)

(k+1 | k)

(k+1 | k)

x

x

x

F
X

F F jobj (k+x (k+

 [
 D

O
R

: 2
0.

10
01

.1
.2

67
65

81
0.

13
96

.1
4.

4.
8.

5 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

ae
ee

.c
om

 o
n 

20
25

-1
1-

05
 ]

 

                             4 / 10

https://dor.isc.ac/dor/20.1001.1.26765810.1396.14.4.8.5
http://jiaeee.com/article-1-463-en.html


Jo
ur

na
l o

f I
ra

ni
an

 A
ss

oc
ia

tio
n 

of
 E

le
ct

ric
al

 a
nd

 E
le

ct
ro

ni
cs

 E
ng

in
ee

rs
 -

V
ol

.1
4-

N
o.

4
W

in
te

r2
01

7

1396 ستانزم -مچهارشماره  -چهاردهمسال  -ن برق و الکترونیک ایرانمجله انجمن مهندسی  

3. LTV-MPC Modeling 
General concepts of LTV-MPC and its stability 
analysis are illustrated in [24]. Based on these materials 
and definitions, the LTV-MPC formulation that is 
suitable for the main goal of this paper, i.e. target 
tracking and obstacle avoidance in a dynamic 
environment, can be modeled as follows: 

where the first term of the objective function is target 
tracking criteria that is equivalent to 

T
vel tg k vel tg( (t k t) (t k t)) ( (t k t) (t k t))x x Q x x

 and kQ  is the its weight, vel (t k t)x  is the predicted 
position of target and it is computed by the target  

Fig. 2. linearization of error ellipses related to detected 
obstacles

trajectory prediction procedure described in the section 
2.5. The second term is the set-point weighting criteria 
with the weight of kR  and it is equivalent to 

T

k(t+ k | t) (t+ k | t)u R u . (t+ k | t)u  is the predicted 
set-point increment. The first constraint is the 
linearization dynamic modeling of the vehicle and the 
next two are predicted input increment constraints, and 
predicted set-point constraints, that must be adhered to 
the vehicle maneuverability constraints, respectively. 

4. Linear Constraints for Obstacle 
Avoidance 
In the presence of obstacles, the feasible space for the 
movement of autonomous vehicles becomes non-
convex. Thus, the equivalent optimization-based path 
planning method is non-convex and hence difficult to 
solve. Additionally, the existence of some uncertainty 
sources in the dynamic environment causes 
probabilistic obstacle avoidance constraints in the 
optimization-based path planning problem. Therefore, 
the computational complexity increases. The main goal 

of this paper is the conversion of these nonlinear 
probabilistic constraints to linear deterministic 
constraints. It is shown that using this procedure, the 
final MPC consists of a quadratic objective function 
and multiple linear constraints. Thus the resulting 
optimization problem is convex and easy to solve by 
means of some available algorithms.  
In the previous section the state of the obstacle was 
assumed to be a Gaussian random variable. It was 
estimated and then predicted using the optimal
Gaussian estimation filter i.e., kalman filter.  

The geometric representation of this random variable 
for a constant probability is a point with an ellipse 
around it, known as the error ellipse. This point that is 
the center of the ellipse is the mean vector of the 
random variable and the covariance matrix of the 
Gaussian random variable consisting of information 
about the semi axis of the error ellipse. In other words, 
the error ellipse is the probability distribution of the 
obstacle’s state for a constant probability . Based on 
the concept of error ellipse [27], the analytical form of 
this ellipse is given as below: 

T -1 1
obs obs obs obs{ (x, y) : k 0}x T D xT

where obsT , D  and k  are computed as follows: 

1 and 2 are the eigenvectors corresponding to the 

eigenvalues 1 and 2 . The semi-axis of the ellipse can 

be computed as follows:   

Thus probabilistic constraints are transmitted to the 
deterministic and nonconvex ones as follows: 

-1 1
obs obs obs vel obs

T
vel k 0x T D xT

The size of the vehicle and the obstacle are considered 
by a circle that surrounds each one. For this purpose, it
is assumed that the size of the obstacles can be 
estimated using the on-board sensors of the vehicle. If 

velr  and obsr  are the radius of the vehicle and the
obstacle, respectively, the error ellipse for the point 
mass control of the vehicle expands, and the new semi-
axis lengths of it are computed as follows: 

It means the size of both vehicle and obstacle are 
transmitted to the semi-axis of the error ellipse. In 
addition, this definition of size can solve the problem 
of sharp shapes in path planning problems. That means 

N 1
2 2

k vel tg k
k 0

vel k vel k

min max

min max

min (t k t) (t k t) (t k t)

s.t (k 1) (k) (k) , k 0, N 1

(t k t) , k 1, N

(t k t) , k 0, N 1

Q x x R u

x A x B u

u u u

u u u

N 1N

N

N 1N

1 2

1 2

obs

obs

obs

[ ]
diag( , )

k 2ln(1 )

T
D

1

2

k

k

a

b

(15)

(16)

(17)

(18)

(19)

exp vel obs

exp vel obs

a a r r

b b r r
(20)
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an obstacle with a sharp corner or shape is simplified to 
a circle and consequently a smooth path for the vehicle 
can be generated. Although using the above procedure, 
probabilistic constraint is converted to a deterministic 
one; the non-convexity of the search space is still a 
problem yet. The main idea is the linearization of the 
search space at each time step. To reach this goal, in 
the first step, a line passing from the gravity center of 
vehicle to gravity center of obstacle, intersected with 
the expanded error ellipse is drawn. In the second step, 
a tangent line at this intersection point is computed and 
used as the boundary of the optimization problem  

Fig. 3. planning of linearized feasible region

constraint. It should be noted that at each time step, the 
outer region of the error ellipse and this line is the valid 
space for the vehicle to move in. Thus at each time 
step, linear constraints exist for avoiding an obstacle as 
follows: 

  

where (t)oA  is a row vector and ob (t) is a scalar one.
In the Fig. 3 the linearization of expanded error ellipses 
for multiple obstacles with different size and shape are 
obtained. The intersection of valid regions for avoiding 
each obstacle makes a feasible region for movement of 
the vehicle and can be represented as follows: 

where l is the number of detected obstacles at each time 
step. As described, a prediction of the moving obstacle 
is executed at each time step. There are N linear 
constraints based on the number of horizon steps. 
Furthermore, for l detected obstacles and N horizon 
steps, there are *l N  linear constraints in the 
optimization modeling of the MPC problem as follows: 

vel
i i
o ok b k 1, 2, , k 1, 2,( ) k t ( )( ) i l NA x , k 1, 2, Nk

Moreover, as it is standard in all practical MPC, the 
slack variable  is used to soften the above obstacle 
avoidance constraints. Upon adding the term 2 to
the objective function, the violation of the constraints 
on the position of the vehicle is penalized. Thus, the 
final LTV-MPC that is used has the following form: 

N 1
2 2

k vel tg k
k 0

vel k vel k

min max

min max

2

o vel

min (t k t) (t k t) (t k t)

s. t (k 1) (k) (k) , k 0, N 1

(t k t) , k 1, N

(t k t) , k 0, N 1

, k 1, N(k) (k t) b (k)o

Q x x R u

x A x B u

u u u

u u u

A x

N 1N

N

N 1N

N
where  is the weight coefficient of penalizing. 

5. Convex Optimization Modeling of 
LTV-MPC   
A Convex optimization problem is an easy problem in 
the comparison of a non-convex problem in the 
mathematic optimization problems. Moreover, in [26] a 
very fast algorithm has been purposed for a convex 
optimization problem with quadratic objective function 
and linear constraints. As mentioned in this article, the 
MPC problem can be solved in the millisecond scale. 
Solving the tracking problem in the kilohertz causes 
the stability of the vehicle and also decreasing the 
uncertainty of the vehicle about its environment. Since 
the decision making time can be chosen in the 
millisecond scale. For Solving the MPC problem in 
equation (24) using convex optimization, it must be 
reformulated as a close form of the input vector and 
increment input vector.  For this purpose, the input 
vector and increment input vector are defined as 

T
s (t) [ (t), (t 1), (t N 1), ]U u u u

p
(t N(t N and 

T
s (t) [ (t), (t 1), (t N 1), ]U u u u

(
(t N(t N(  respectively. 

Moreover T(t) [ (t), (t 1), (t N 1)]U u u u
), ]

(t N(t NN introduc
es the new input vector and 

T(t) [ (t), (t 1), (t N 1)]U u u u
p

(t N(t N(  introduces the 
new increment input vector. The relation between new 
input vector and old one is expressed by the matrix 

and the relation between the slack variable and old 
input vector is expressed by the matrix c ,
respectively as follows: 

where coefficient matrices are defined as: 

tgX is the trajectory prediction vector of the target and 
velX  is the trajectory prediction of the vehicle that must 

be computed by the optimization problem. Based on 
this definition, the problem in equation (24) can be 
modeled as follows: 

vel ob(t) (t)(t)oA x

vel
i i
o ob 1, 2,(t) (t)(t) i lA x l

(t) (t)

(t)
s

c s

U ΓU
Γ U

1

1

[ ]

[ ]

|

|
N N N

c N N N

Γ I 0

Γ 0 1

(22)

(21)

(23)

(24)

(25)

(26)
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new new new new

new new

(t 1) (t) (t)

,
0

x A x B u
A B B

A B
I I

Fig. 4. LTV-MPC based target tracking and obstacle 
avoidance for the N=8 time-steps horizon

  

Where  

1 1

2 2

N N

× 1 ×( ) 1

2

2 3

1 2

0 0 0 0 0 0
0 0 0 0 0 0

,
0 0 0 0 0 0
0 0 0 0 0 0

| , |

0 0 0 0
0 0 0

,0 0

c
N N N N N m N

N N N

Q R
Q R

Q R

Q R

Γ I 0 Γ 0 1

AA
AB A A

S TA B AB A A

A B A B AB A A

0 0 0 00
,,

This problem can be modeled as a function of the input 
increment vector sU  by means of the variable 
definition u (t) (t 1)x u . The new state vector is 

T
new [ (t), (t)]ux x x  and consequently the new dynamic 

model of the vehicle has the following form: 

Also the relation between the new state vector, newX
the state vector of the vehicle velX , and the input vector 

sU  is as follows: 

By substituting the above relation in equation (27) and 
simplifying, the closed form and final convex 
optimization problem can be formulated as follows: 

min s max
c 0 c c 0

min new s max new
0

i s i i new

1min
2

s.t

TU H U F U

U U U

U M Tx M S U U M Tx

G U w P x

where coefficient matrices are computed as follows: 

T T T T
0 tg

i

i

i

0
0

(2 2 )

T T

c
i

i

i

S M Q MS RH

F x T M QM S X QM S Γ

G A MSΓ Γ
w b
P A MT

6. Simulations and Results   
The simulation of the purposed method is executed by 
the CVX toolbox [28] in MATLAB. To start, the initial 
state of the target, obstacle and vehicle are selected 

0 T
tg [87,.1, 0 ,86.5,1, .05]x , 0 T

obs [85.5, 0, 1, 75.5, .8, .9]x
and 0 T

vel [85,72.5]x  respectively. The decision making 
period is sT .05 and the covariance matrix of the 
sensor noise, that is strongly range dependent, is 
assumed as follows: 

0.1 0

0 0.05

r
R   

Boundary vectors of the input vector are assumed 
as T

max [0.5 ,0.15]u , min maxu u , max 5v
and min maxv v . Finally the size of the vehicle and      
obstacle are determined by circles with   radius 0.3
and 0.2  respectively and the collision probability  is 
assumed 0.7.   

T T T T
vel tg vel tg s s s s

0
vel s

min s max

min max

rep vel rep s

min ( ) ( ) ( )

s.t

b , i 1,2, l

T
c c

vel

s
i i c

X X Q X X U R U U U

X S U Tx
U U U

U U U

A X U l

vel new
c

s new

c

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

n n m

n n m

n n m

m n m

m n m

m n m

X M X

U M X
I

I
M

I

I
I

M

I

0
000

0000

0
000

000

(33)

(32)

(27)

(29)

(28)

(31)

(30)
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Fig. 5. LTV-MPC based target tracking and obstacle 
avoidance for the N=8 time-steps horizon

The simulation results are shown in the Fig. 4 and Fig. 
5 for two different simulations using CVX toolbox in 
Matlab. Since the motion of obstacle and target are
modeled stochastically, motion of target, obstacle and
consequently motion of vehicle must be different for 
separate simulations. Based on these results, it can be 
understood that the proposed method is independent of 
the behavior of objects in dynamic environments and
can be used for planning of an autonomous vehicle in 
cluttered environments.    
As can be seen, for both figures, autonomous vehicles 
have suitable planning to track and catch targets in 
future time steps. It should be noted that the stochastic 
behavior and movement of vehicle in the real dynamic 
environment, is considered in these simulations. Also 
from both simulation results, the performance of 
linearization for obstacle avoidance mission can be 
investigated and satisfied, this is clear from the 
comparison between vehicle trajectory and intersection 
points set that are shown in the both simulation results 
in the Fig. 4 and Fig. 5.   Moreover, the planning of the 
vehicle in horizon steps is shown at the last time step 
for both simulations.  
The angle and velocity of second simulation are 
represented in Fig. 6 and Fig. 7 respectively as time 
goes on. As can been seen, the velocity curve is limited 
to the 5 m/s i.e. the upper boundary of the velocity as 
one of two control variables.  
Also the estimated distance of the vehicle from target is 
obtained in the Fig. 8. As it can be seen, this curve 
have a local maximum witch is the effect of detected 
obstacle in the path of vehicle and it can be interpreted 
as the reaction of vehicle against the presence of a 
stochastic and moving obstacle. Moreover, the curve of 
set point cost  

Fig. 6.The angle control variable

Fig. 7. The velocity control variable

is obtained in the Fig. 9. It can be interpreted as the 
control effort of vehicle to achieve to the desired goal 
i.e. target tracking and obstacle avoidance in a real and 
dynamic environment in presence some uncertainty 
sources. In the comparison with the related work in the 
literature, the introduced method in this paper has two 
main advantages. First, the inherent stochastic problem 
is transformed to a deterministic one using the concept 
of error ellipse in the probability theory. Second, the 
nonconvexity of problem is relaxed using a successive 
linearization approach. Thus we achieve a useful 
deterministic and convex optimization method for path 
planning of the autonomous vehicle in a cluttered 
environment in the presence of some uncertainty 
sources. Finally, for the consequent convex 
optimization based path planning, there are some 
strong algorithms to solve this problem in real time. 
Furthermore, in this paper, we proposed an online 
optimization based path planning approach. 

Generally, this linearization procedure has two main 
effects. The first one is related to decreasing of  
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Fig. 8. Estimated Distance from the target

linearization error in the kinematic model and the 
second one is related to the accuracy and complexity of 
the problem compared to original and greedy problems. 
As mentioned, the linearization makes a very fast MPC 
problem which can be solved in millisecond scale, so 
the limitation of processing on the decision making 
period is eliminated so that the linear kinematic would 
be very close to the original nonlinear one over time. 

There are multiple criteria to examine the effect of 
feasible region linearization including accuracy, 
complexity and flexibility in dynamic environment. It 
should be stressed that effect of linearization must be 
examined from all of these criteria jointly not 
separately. From the Fig. 2, it is clear that the 
linearization makes the feasible region limited, but it 
makes the original problem easy in order to make it 
suitable for a real time application such as path 
planning problem. On the other hand, this linearization 
makes use of planning strategy in motion control of
vehicles possible compared to greedy method which 
considers only one horizon step which obtained in the 
Fig. 2. This planning strategy creates flexibility in
controller for dynamic environments due to state 
prediction in the future time-steps which obtained in 
the Fig. 3. Although there is difference between the 
original feasible space and linearized version in the 
Fig. 2, the sequence of predicted linear feasible regions
over horizon steps as obtained in the Fig. 3 is a good 
interpretation of original feasible region at each time 
step, that is, we have a planning of linearized feasible 
region over horizon steps. As can be seen, the free 
corner of original feasible space is followed by 
sequence of linear feasible space over the horizon in 
the planning strategy. It can be interpreted that these 
sequence of linear constraints are good replacement of 
quadratic constraints for greedy problem.   

.

Fig. 9. Set-Point cost function 

7. Conclusion and Future Work     
In this paper we combine a model predictive control 
and the linear quadratic regulator problem to plane 
efficiency the trajectory motion of an autonomous 
vehicle in presence of uncertainty sources in a dynamic 
and cluttered environment. The main contribution of 
this paper is the convex optimization modeling of the 
proposed planning method. To do so, first the 
probabilistic optimization problem is converted to the 
deterministic one and then the nonconvex constraints 
are relaxed to the linear ones. Finally, the consequent 
problem is reformulated to a convex optimization 
problem.   Our future work is related `to apply this idea 
to a network of vehicles using decentralized data fusion 
approaches. In the networked control system, the main 
challenge is the stability of network which must be 
modeled in the final convex optimization problem.   
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