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Abstract :

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment
is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using
an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman
filter at each time step. The estimation of the probabilistic distribution can be shown using an error ellipse for a constant
collision probability. Analytical forms of error ellipses can be obtained by quadratic inequalities. These quadratic
inequalities make the optimization problem nonconvex. Thus, these inequalities are relaxed by applying a linearization
approach. Finally, the optimization problem is reformulated to a convex optimization problem. There are some strong
algorithms for solving a convex optimization problem, so the consequent path planning method can be solved
efficiently with considerable performance that will be obtained in the end of this paper.
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1. Introduction

The trajectory planning of unmanned vehicles such as
UAVs! UGVs?and AUVS? in a dynamic environment,
has received a great interest in recent years [13, 15,
23]. In a dynamic environment the main challenge is
the existence of uncertainty in the path planning
strategy of an autonomous vehicle. These problems are
known as stochastic path planning or path planning
under uncertainty. It is necessary to consider these
uncertainty sources in a real word path planning of an
autonomous vehicle. Generally, path planning methods
can be divided into two main categories known as
myopic and nonmyopic. In the myopic methods, there
isn’t an implicit planning in future time intervals.
Unlike the myopic methods, for nonmyopic methods,
an implicit planning occurs in future time steps.
Myopic methods include graph-based method knows as
graph search algorithm [1], Fuzzy control [2], artificial
potential field [3], evolutional algorithms [4] and etc.
Unlike the myopic methods, there is an implicit
programming based the future evolution of the system
in the nonmyopic methods. Generally, the nonmyopic
methods have a better input control but in these
methods, the complexity of the problem increase by
increasing the number of the horizon steps. Model
predictive control (MPC) is the most popular approach
of nonmyopic method.

Model predictive control (MPC) also known as

receding horizon control (RHC) is a feedback control
method which is suitable for the control of
multivariable systems. MPC is a nonlinear control
policy that handles input and output constraints as well
as various other objective functions. The capability of
handling constraints in a systematic way makes MPC a
very attractive control strategy. Particularly, in those
applications where the process is required to work in
wide operating regions and close to the boundary of
admissible states and input sets, which are imposed by
constraints. In MPC, a model of plant is used to predict
the future evolution of the system [5]. Based on this
prediction, an optimization problem is solved at each
time step to determine a plan of action over a fixed
time horizon. The first input from this plan is applied to
the system, such that at the next time step, a new
optimization problem is solved with the time horizon
shifted one step forward. The graphical representation
of this procedure is obtained in the Fig. 1 for N time-
steps horizon.
MPC can be used for several types of control and
estimation problems including tracking problems,
regulator problems and stochastic control problems. It
has a variety of applications such as industrial and
chemical  process  control [6], supply chain
management [7], stochastic control in economic and
finance [8], revenue management [9], control of hybrid
vehicles [10], automotive applications [11] and
aerospace applications [12].
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In the context of autonomous control systems, the
vehicle must perform target tracking as well as obstacle
avoidance. For these types of problems, several
solutions have been proposed in the literature such as
potential field [13], A* with visibility graph [14],
nonlinear trajectory generation [15], vertex-graph
algorithm [16] and mixed integer linear programming
[17]. Since MPC can systematically handle some
constraints such as vehicle dynamics, envelop
limitations and no-fly zones, it can be a suitable
technique for path planning of an autonomous system
[18]. In [19], [20] a predictive controller is used for
minimal risk motion planning in the presence of both
dynamic and static obstacles. Falcone and colleagues
[11] presented two formulations for MPC to control an
active front steering system in an autonomous vehicle.
The first, uses a nonlinear vehicle model to predict the
future evolution of the system, thus the resulting MPC
requires a nonlinear optimization problem. The second
formulation is a successive linearization of the
nonlinear vehicle model at each time step resulting in a
linear time varying MPC. It is a suboptimal MPC of the
original  nonlinear  problem.  An  autonomous
exploration algorithm that is suitable for urban
navigation, but it is not limited to urban navigation is
proposed in [15]. This algorithm is a combination of
MPC-based obstacle avoidance and local obstacle map
which is built using onboard laser scanners. In [21], a
MPC is used for controlling a multivehicle system to
track multiple target points.

Since some uncertainty sources exist in a dynamic
environment, the perception of target location has some
uncertainty. Thus this setting gives rise to a complex
stochastic optimal control problem. Although it can be
solved by dynamic programming it is still a
computationally intractable approach. Bemporad and
colleagues in [22] introduced a decentralized linear
time varying MPC* to control a fleet of UAVs. Each
vehicle is a quadrotor type which is stabilized by the
controller at the lower level around desired set points.
These set points are generated from the high level
LTV-MPC trajectory planner with a slower rate.
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Fig. 1. Graphical representation of MPC planning
method for N time-steps horizon
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In the more complex situation, the autonomous
vehicle must perform target tracking as well as obstacle
avoidance. In other words, targets and obstacles can
move stochastically in the environment. The existence
of obstacles makes the feasible region nonconvex
inherently. Some optimization methods which were
used in the previous works for obstacle avoidance are
nonconvex, and therefore most of them are greedy
problem, that is, there is not a planning strategy to
move because the inherent nonconvex feasible region
makes the problem nonconvex entirely which would be
complicated to be solved as a real time optimization
problem.

Furthermore, most of the previous works are related
to deterministic and semi-deterministic environments
just as laboratory environment and so on. However, the
main mission of an autonomous vehicle is moving in
an unknown and dynamic environment where does not
exists any information about the incoming future
events. Therefore, it is obvious that the greedy
problems fail in these situations, so it is necessary to
involve the prediction of future environment states into
the process of determining current input control.
Indeed, model predictive control uses a systematic
structure to create a sequence of inputs based on the
prediction of future states of vehicle and environmental
objects.

In this paper we introduce a path planning method
for stochastic target tracking and obstacle avoidance in
a dynamic environment. In fact, the main contribution
of this paper is making the feasible region linear in
order to the entire MPC problem to be converted to
LTV-MPC problem firstly and secondly it can be
converted to a close-form MPC problem based on the
new state vector and new input control vector over the
horizon. Finally, the last MPC problem is converted to
close form optimization problem as authors have
mentioned in [26].

The reminding of this paper has the following order.
First, in the next section, the modeling of the problem
is described followed by the LTV-MPC modeling for
target tracking and obstacle avoidance mission. In the
next section i.e. section 4, constraints of obstacle
avoidance mission are described, also a desired
linearization approach is proposed in details. Finally,
the consequent model of predictive control is converted
to a convex optimization problem in the final section of
this paper.

2. Problem Modeling

Two coordinate frames are defined for navigation of
an autonomous vehicle, generally. The first one is fixed
to the vehicle called the vehicle-fixed reference frame.
The origin of the vehicle-fixed frame is chosen to
coincide with the center of gravity, which is in the
principal plane of symmetry. The position and

AN

orientation of the vehicle are described relative to this
inertial reference frame. In this section, a dynamic
model of the vehicle, target and obstacle are presented.
Then, a measurement model is used for estimation of
the object’s state by Kalman filter [24]. Based on this
state estimation, a trajectory prediction method is used
for predicting the future evolution of the vehicle,
target, and moving obstacles.

2.1. Vehicle Dynamic Modeling

In this paper, a point-mass model is used for the
motion modeling of the vehicle, target and obstacles.
The size of each ones is modeled by a circle
surrounding the center point of gravity. Therefore, it is
assumed that the size of the obstacle is known or can
be computed by the on-board sensor array of the
vehicle.

Since most earth-bound vehicles have dynamics that
naturally decouple into vertical and horizontal planes,
vehicle dynamics will be restricted to a plane. These
kinds of systems can be modeled with "unicycle"
dynamics by direction and speed controls. The unicycle
dynamics are typically written in Cartesian coordinates
as follows [23]:

X,y = VCUsé

Y. =Vvsing

=0 @
Where X, =[Xyq1» yve,]T is the point-mass location of

the vehicle and u =[v, ] is the input vector consists

of velocity and heading. The discrete-time state-space
of unicycle dynamic model has the following form:

Xyel (k+ 1) = Akxvel (k) + Bkuk (k) (2)

where A, and B, are the transition and input matrix
respectively, which are obtained as follows:

10
m oo

T, cos(0(k)) —T,vsin(O(k))
T, sin(@(K))  T,vcos(O(K))

Kk =

©)

2.2. Vehicle Trajectory Prediction

The state of the vehicle according to environmental
disturbance such as wind has some uncertainties; these
uncertainties can be modeled by a Gaussian
distribution. Thus, the discrete-time and linear dynamic
of vehicle in an unknown environment can be modeled
as follows:

X, K =Ax,Kk-1)+B, uk)+uv, (4)
therefore, the state of the vehicle can be estimated by
an extended Kalman filter (EKF) by giving the

previous estimated state and other measurements from
IMUS, GPS® and on-board sensors. In other words, it

vel
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estimates the new state of wvehicle from given
measurements at (k + 1)th time step. Suppose the
function f represents the nonlinear dynamic model of
the vehicle i.e.

Xvel = f(U) (5)

thus, the vehicle trajectory prediction based on EKF
state estimation over future horizon N can be computed
as follows:

Xyet (k+1]K)
f(Xyer (k+ 1K), U(k+1))
XE =1 £(f(x o (k+1|K), u(k+1)), u(k+2)) (6)

vel

(... F(xyer (KT 1K) ...u(k + N-1))

2.3. Object Dynamic Modeling

In this paper, the dynamic model of the moving object
(target or obstacle) is assumed to have a constant
acceleration motion [25], and it has the following
discrete-time state-space model:

Xopj (K+1) = F Xop; (K+1) +77, (7

where X, is the object state vector. The transition

obj
state matrix F is obtained as follows:

Ty T2
F, O
Fe=F=| 0 T, 1 ,F:{S F} (8)
0 01 Y

In the equation (7) 7, is white Gaussian noise that
models the uncertainty on the process with the
following covariance matrix:
1220 T8 T/6
Qx:Qy:q T54/8 T53/3 TSZ/Z

.Q:{QX 0} ©
B T2 T

0 Q

where q is the power spectral density.

2.4. Measurement Model

Objects in the environment, including targets and
obstacles are detected using the vehicle’s on-board
sensors. The location and angle of each sensor is
known: T, =[X,(t),Y,(t),6,(t)]. Each sensor site
namedi, is assumed to make distance and direction
observations to the target or obstacle as:
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|:Zir(k):| \/(X‘g — XI) +(y‘g _Y.) |:a)|r(k):[
= ~X + (10)

/()] arctan(x‘g—x‘)_a(k) o’ (K)

tg i
where the random vector o, (k) =[r", rlg] describes the

noise in the observation process due to both error and
uncertainty in the observation as the two main
uncertainty sources in dynamic environments.
Observation noise is taken to have a zero mean and
variance as below:

R,(K) = h 02} (11)

Oy

It should be noted that observation is strongly range
dependence and is lined up with the sensor bore-sight.
Since observations are related to the wvehicle-fixed
frame, the observation model is nonlinear and state
estimation must be executed using an extended Kalman
filter. Thus information can be converted to the inertial
reference frame and used for object state estimation by
a linear Kalman filter. The relations below describe this
mapping from the vehicle-fixed frame coordinate to the
inertial reference frame.

20| [X (0 +2 (Kcos(z! ()
2| | Y,()+2 (K cos(z’ (k)

(12)
o’ 0
R" (k) = Rot(z/ (k)| " Rot' (2’ (k
(k) = Rot(z( )){ 0 (Zig(k»ng ot'(z; (k)
where Rot(0) is the rotation matrix:
Rot(0) :{c?s(a) —sin(a)} 13
sin(@)  cos(0)

2.5. Object Trajectory Prediction

Using the global measurement vector computed in the
previous section, the object state can be estimated by a
linear Kalman filter (KF). Thus, the future evolution of
the object state (target or obstacle) can be predicted
over the N time-steps horizon. For this purpose, an
iterative execution of state estimation step leads to the
object trajectory prediction which it is represented by

the state estimation vector X' that can be computed
X, (k+1] K)
Fx,, (k+1] K)

as follows:

Xpred _

obj

(14)

F...Fx, (k+1]K)

AY
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3. LTV-MPC Modeling

General concepts of LTV-MPC and its stability
analysis are illustrated in [24]. Based on these materials
and definitions, the LTV-MPC formulation that is
suitable for the main goal of this paper, i.e. target
tracking and obstacle avoidance in a dynamic
environment, can be modeled as follows:

=

ain Q¢ (K-, (14 K[ +RAu(e+ Kl
k

st Xkt =Ax,K+BuK , k=0,..N-1
Au, <Au(t+k|)<Au, , k=L..N

mi

Uy SUtHK[) <UL , k=0,...N-1

|

i
=

(15)

where the first term of the objective function is target
tracking criteria. that is  equivalent  to
(X (t+ K[ 1) = X (t4+ K[ )T Q, (X, (t+ K[ ) — X (t+ (1))
and Q, is the its weight, X, (t+Kk|t) is the predicted
position of targe\t{ and it is computed by the target

A
Goal @

@ Vehicle's planning
Error ellipse
— Linear Constraint

0 > X
Fig. 2. linearization of error ellipses related to detected
obstacles

trajectory prediction procedure described in the section
2.5. The second term is the set-point weighting criteria
with the weight of R_ and it is equivalent to
Au(t+k | )" R, Au(t+ k| t) . Au(t+ k | t) is the predicted
set-point increment. The first constraint is the
linearization dynamic modeling of the vehicle and the
next two are predicted input increment constraints, and
predicted set-point constraints, that must be adhered to
the vehicle maneuverability constraints, respectively.

4. Linear Constraints for Obstacle

Avoidance

In the presence of obstacles, the feasible space for the
movement of autonomous vehicles becomes non-
convex. Thus, the equivalent optimization-based path
planning method is non-convex and hence difficult to
solve. Additionally, the existence of some uncertainty
sources in the dynamic environment causes
probabilistic obstacle avoidance constraints in the
optimization-based path planning problem. Therefore,
the computational complexity increases. The main goal

AY

of this paper is the conversion of these nonlinear
probabilistic  constraints to linear deterministic
constraints. It is shown that using this procedure, the
final MPC consists of a quadratic objective function
and multiple linear constraints. Thus the resulting
optimization problem is convex and easy to solve by
means of some available algorithms.

In the previous section the state of the obstacle was
assumed to be a Gaussian random variable. It was
estimated and then predicted using the optimal
Gaussian estimation filter i.e., kalman filter.

The geometric representation of this random variable
for a constant probability is a point with an ellipse
around it, known as the error ellipse. This point that is
the center of the ellipse is the mean vector of the
random variable and the covariance matrix of the
Gaussian random variable consisting of information
about the semi axis of the error ellipse. In other words,
the error ellipse is the probability distribution of the
obstacle’s state for a constant probability & . Based on
the concept of error ellipse [27], the analytical form of
this ellipse is given as below:

{ (X' y) : XT-I—obs DE)]BsTc;k;I:sX - kobs = 0} (16)

where T, .,

Tobs = ["1“’2]
Doys = diag(4, 4,) an
Kops = —2IN(1—5)

v,andv,are the eigenvectors corresponding to the

D and k are computed as follows:

eigenvalues A and A, . The semi-axis of the ellipse can

be computed as follows:

=VkxA (18)

Thus probabilistic constraints are transmitted to the
deterministic and nonconvex ones as follows:

T -1 1
XveITobs DobsTo_bsXveI - kobs 20 (19)

The size of the vehicle and the obstacle are considered
by a circle that surrounds each one. For this purpose, it
is assumed that the size of the obstacles can be
estimated using the on-board sensors of the vehicle. If
r, and r,  are the radius of the vehicle and the
obstacle, respectively, the error ellipse for the point
mass control of the vehicle expands, and the new semi-

axis lengths of it are computed as follows:
Ay = A+, +

vel obs

(20)
bexp =b+r_+r

vel obs
It means the size of both vehicle and obstacle are
transmitted to the semi-axis of the error ellipse. In
addition, this definition of size can solve the problem
of sharp shapes in path planning problems. That means
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an obstacle with a sharp corner or shape is simplified to
a circle and consequently a smooth path for the vehicle
can be generated. Although using the above procedure,
probabilistic constraint is converted to a deterministic
one; the non-convexity of the search space is still a
problem yet. The main idea is the linearization of the
search space at each time step. To reach this goal, in
the first step, a line passing from the gravity center of
vehicle to gravity center of obstacle, intersected with
the expanded error ellipse is drawn. In the second step,
a tangent line at this intersection point is computed and
used as the boundary of the optimization problem

A
Goal e

i lannl\n\x\\'\\\j

of feasible| ||| /,

g ](

¥
Current position
@ Vehicle's planning
... Error ellipse
— Linear Constraint

> x
Fig. 3. planning of linearized feasible region

constraint. It should be noted that at each time step, the
outer region of the error ellipse and this line is the valid
space for the vehicle to move in. Thus at each time
step, linear constraints exist for avoiding an obstacle as
follows:

A, (0, (1) <b, (1) (1)

where A (t) is a row vector and b_(t) is a scalar one.
In the Fig. 3 the linearization of expanded error ellipses
for multiple obstacles with different size and shape are
obtained. The intersection of valid regions for avoiding
each obstacle makes a feasible region for movement of
the vehicle and can be represented as follows:

Al Ox, <o) i=12..I (22)

where | is the number of detected obstacles at each time
step. As described, a prediction of the moving obstacle
is executed at each time step. There are N linear
constraints based on the number of horizon steps.
Furthermore, for | detected obstacles and N horizon
steps, there are I*N linear constraints in the
optimization modeling of the MPC problem as fa (23)

Al (X, (k+) <b () =120 ,k=12,..N

Moreover, as it is standard in all practical MPC, the
slack variable & is used to soften the above obstacle
avoidance constraints. Upon adding the term ps’to
the objective function, the violation of the constraints
on the position of the vehicle is penalized. Thus, the
final LTV-MPC that is used has the following form:

vel
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z

min 3 Q% (t K1) =, (2 K| Ry AUt K[
k

i
o

2

+ pe

st Xkt =Ax, K +Buk) , k=0,..N-1
Au, <Au(t+k[Y) <Au,, , k=1..N (24)
Uy SU(tHK[D) <UL, . k=0,..N-1

A, (KXo (k+t) <b (K) + ¢ , k=1...N
where o is the weight coefficient of penalizing.

5. Convex Optimization Modeling of
LTV-MPC

A Convex optimization problem is an easy problem in
the comparison of a non-convex problem in the
mathematic optimization problems. Moreover, in [26] a
very fast algorithm has been purposed for a convex
optimization problem with quadratic objective function
and linear constraints. As mentioned in this article, the
MPC problem can be solved in the millisecond scale.
Solving the tracking problem in the kilohertz causes
the stability of the vehicle and also decreasing the
uncertainty of the vehicle about its environment. Since
the decision making time can be chosen in the
millisecond scale. For Solving the MPC problem in
equation (24) using convex optimization, it must be
reformulated as a close form of the input vector and
increment input vector. For this purpose, the input
vector and increment input vector are defined as
U, (0) = [u(),u(t+2),...u(t+ N-1),&]" and
AU, (1) = [Au(t), Au(t+1),... Au(t+ N-1),&]"  respectively.
Moreover U (t) = [u(t), u(t+1),...u(t+ N—21)]" introduc
es the new input vector and
AU (t) =[Au(t), Au(t+1),...Au(t+ N-1)]" introduces the
new increment input vector. The relation between new
input vector and old one is expressed by the matrix
I"and the relation between the slack variable and old
input vector is expressed by the matrix T,
respectively as follows:

u(t) =Iu,(t)

(25)
e=T.U/1)
where coefficient matrices are defined as:
Ir= [INxN | Ole] (26)
I = [0N><N | 1N><l]

X, Is the trajectory prediction vector of the target and
X, I8 the trajectory prediction of the vehicle that must
be computed by the optimization problem. Based on

this definition, the problem in equation (24) can be
modeled as follows:

A¥
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Fig. 4. LTV-MPC based target tracking and obstacle
avoidance for the N=8 time-steps horizon

min - (X, - Xig) Q(Xe ~Xig) + AU TTRI AU +AUST (T) p T AU

s.t

Xy =ST U+ Ty
Umin < l“Us < Umax (27)
AU,y <TAUG <AU,

Airevaelsbi,epwcAUS Coi=12..1

Where

Q 0 o0 0] R, 0 0 01
o- 0 Q, _o 0 | R- 0 R, _0 0 |

0 0 -. 0| 0 0 -. 0.
0 Q| 0 0 0 RyJ

FZI:INXN [ Ole:' ’ FC:[ONX(Nxm) | lel] (28)

A 0 0 0 O A

AB A 0O 0 O A2

S=| A°B AB A 0 O T=| A2
AV1B AN2B .. AB A AN

This problem can be modeled as a function of the input
increment vector AU, by means of the variable
definitionx, () =u(t-1). The new state vector is
Xoew = [X(0), %, (©]" and consequently the new dynamic
model of the vehicle has the following form:

Xnew (t+ 1) = Anewxnew (t) + BnewAu(t)

{A B} {B} (29)
Anew = v Brew =
0 1 |

Also the relation between the new state vector, X
the state vector of the vehicle X
U, is as follows:

new

and the input vector

vel

Xvel =M Xnew
ry, = Mcxnew
I, Opm O 0 0 0
M = 0 0 |.n On.xm 0 0
0o 0 0 0 I, O (30)
Omsn I 0 0 0 0
M = 0 0 Opun I 0 0
0 0 0 0 . Oy, I

AD

By substituting the above relation in equation (27) and
simplifying, the closed form and final convex
optimization problem can be formulated as follows:

min %AUTH AU+FAU

s.t AU
umin
G;AU, <w; —Px’

1" new

<TAU, < AU, (31)

min =

~MTXE,, <MCSTAU, < U, —METX

new — new

where coefficient matrices are computed as follows:
H_|STMTQMS+R 0

0 p
F=(2xT'M'QMS-2X,QMS)T

(32)
G, =AMSI-T°®
Wi :bi

6. Simulations and Results

The simulation of the purposed method is executed by
the CVX toolbox [28] in MATLAB. To start, the initial
state of the target, obstacle and vehicle are selected
x; =[87,.1,0,86.5,1,.05]", X =[855,0,1755-8-9]
andx’, =[85,72.5]" respectively. The decision making
period is T, =.05and the covariance matrix of the
sensor noise, that is strongly range dependent, is
assumed as follows:

0.1lr 0
R = (33)
0 0.05 ¢

Boundary vectors of the input vector are assumed
as AUz, =[0.5,0.15]", AUy = —AUpay sV, =5
andV,;, =~V Finally the size of the vehicle and
obstacle are determined by circles with  radius 0.3
and 0.2 respectively and the collision probability ¢ is
assumed 0.7.
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Fig. 5. LTV-MPC based target tracking and obstacle
avoidance for the N=8 time-steps horizon

The simulation results are shown in the Fig. 4 and Fig.
5 for two different simulations using CVX toolbox in
Matlab. Since the motion of obstacle and target are
modeled stochastically, motion of target, obstacle and
consequently motion of vehicle must be different for
separate simulations. Based on these results, it can be
understood that the proposed method is independent of
the behavior of objects in dynamic environments and
can be used for planning of an autonomous vehicle in
cluttered environments.

As can be seen, for both figures, autonomous vehicles
have suitable planning to track and catch targets in
future time steps. It should be noted that the stochastic
behavior and movement of vehicle in the real dynamic
environment, is considered in these simulations. Also
from both simulation results, the performance of
linearization for obstacle avoidance mission can be
investigated and satisfied, this is clear from the
comparison between vehicle trajectory and intersection
points set that are shown in the both simulation results
in the Fig. 4 and Fig. 5. Moreover, the planning of the
vehicle in horizon steps is shown at the last time step
for both simulations.

The angle and velocity of second simulation are
represented in Fig. 6 and Fig. 7 respectively as time
goes on. As can been seen, the velocity curve is limited
to the 5 m/s i.e. the upper boundary of the velocity as
one of two control variables.

Also the estimated distance of the vehicle from target is
obtained in the Fig. 8. As it can be seen, this curve
have a local maximum witch is the effect of detected
obstacle in the path of vehicle and it can be interpreted
as the reaction of vehicle against the presence of a
stochastic and moving obstacle. Moreover, the curve of
set point cost

‘ YA Gl — e 0lowd —o3 o Sl — (ol 2! Sig iU 9 (32 owiee (p02! Ao
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Fig. 6.The angle control variable

Velocity Curve
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Fig. 7. The velocity control variable

is obtained in the Fig. 9. It can be interpreted as the
control effort of vehicle to achieve to the desired goal
i.e. target tracking and obstacle avoidance in a real and
dynamic environment in presence some uncertainty
sources. In the comparison with the related work in the
literature, the introduced method in this paper has two
main advantages. First, the inherent stochastic problem
is transformed to a deterministic one using the concept
of error ellipse in the probability theory. Second, the
nonconvexity of problem is relaxed using a successive
linearization approach. Thus we achieve a useful
deterministic and convex optimization method for path
planning of the autonomous vehicle in a cluttered
environment in the presence of some uncertainty
sources. Finally, for the consequent convex
optimization based path planning, there are some
strong algorithms to solve this problem in real time.
Furthermore, in this paper, we proposed an online
optimization based path planning approach.

Generally, this linearization procedure has two main
effects. The first one is related to decreasing of
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linearization error in the kinematic model and the
second one is related to the accuracy and complexity of
the problem compared to original and greedy problems.
As mentioned, the linearization makes a very fast MPC
problem which can be solved in millisecond scale, so
the limitation of processing on the decision making
period is eliminated so that the linear kinematic would
be very close to the original nonlinear one over time.
There are multiple criteria to examine the effect of
feasible region linearization including accuracy,
complexity and flexibility in dynamic environment. It
should be stressed that effect of linearization must be
examined from all of these criteria jointly not
separately. From the Fig. 2, it is clear that the
linearization makes the feasible region limited, but it
makes the original problem easy in order to make it
suitable for a real time application such as path
planning problem. On the other hand, this linearization
makes use of planning strategy in motion control of
vehicles possible compared to greedy method which
considers only one horizon step which obtained in the
Fig. 2. This planning strategy creates flexibility in
controller for dynamic environments due to state
prediction in the future time-steps which obtained in
the Fig. 3. Although there is difference between the
original feasible space and linearized version in the
Fig. 2, the sequence of predicted linear feasible regions
over horizon steps as obtained in the Fig. 3 is a good
interpretation of original feasible region at each time
step, that is, we have a planning of linearized feasible
region over horizon steps. As can be seen, the free
corner of original feasible space is followed by
sequence of linear feasible space over the horizon in
the planning strategy. It can be interpreted that these
sequence of linear constraints are good replacement of
quadratic constraints for greedy problem.

AY

Set-Point Cost

Cost

0 1b ZIU 3‘0 4‘[] Sb 60
Time Step
Fig. 9. Set-Point cost function

7. Conclusion and Future Work

In this paper we combine a model predictive control
and the linear quadratic regulator problem to plane
efficiency the trajectory motion of an autonomous
vehicle in presence of uncertainty sources in a dynamic
and cluttered environment. The main contribution of
this paper is the convex optimization modeling of the
proposed planning method. To do so, first the
probabilistic optimization problem is converted to the
deterministic one and then the nonconvex constraints
are relaxed to the linear ones. Finally, the consequent
problem is reformulated to a convex optimization
problem. Our future work is related “to apply this idea
to a network of vehicles using decentralized data fusion
approaches. In the networked control system, the main
challenge is the stability of network which must be
modeled in the final convex optimization problem.
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