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1. Introduction

In the recent years, there has been an increasing interest
in developing theory of decentralized control for large-
scale systems. Decentralized control issues naturally arise
from controlling many complex systems found in the
power industry, aerospace and chemical engineering
applications, telecommunication network, and so on. The
main advantage of decentralized control is that they can
alleviate the computational burden associated with a
centralized control and enhance the robustness and reliab-
ility against interacting operation failures [1]. Knowing
that most of actual large-scale systems are nonlinearly
coupled to the dynamics of the processes, researchers are
still trying to control these systems [2-6]. Most of them
either investigated subsystems that are linear in a set of
unknown parameters [2-4], or considered isolated subsys-
tems to be known [5, 6].

Based on the fact that nonlinear functions and the
nonlinear interconnections parameters of subsystems in a
large-scale system are almost unknown, thus in the
literature neural networks (NNs) and fuzzy models have
been considered as general tools for modeling nonlinear
functions [7-9]. In [10], an indirect adaptive control
method using self-recurrent wavelet NNs has been
proposed for nonlinear dynamic systems. In [11], an
adaptive single neural controller has been presented for a
class of uncertain nonlinear systems subject to a
nonlinear input. For multi input-multiple output (MIMO)
non-affine nonlinear systems with completely unknown
dynamics, an adaptive fuzzy control approach for was
proposed in [12]. The Authors in [13] have considered a
neuro-fuzzy network with dynamical structure to solve
the adaptive tracking problems of MIMO uncertain
nonlinear systems. In [14], radial basis NNs were utilized
for a class of nonlinear decentralized large-scale systems
with unknown subsystems. Also, the authors in [15]
proposed a decentralized neuro-adaptive control scheme
for large-scale non-affine nonlinear systems with
unknown dynamics under the assumption that the
interconnections are unknown high-order, nonlinear
functions.

Beside the uncertainty and nonlinearity, time delay is
an impressive issue in many physical and technological
systems, particularly in large-scale systems. Regarding
the information transmission among subsystems, time-
delay often causes deterioration of control system
performance. Moreover, time delay is one major potential
source of instability in practical system. Therefore, some
studies have focused on decentralized control of time-
delayed large-scale systems, such as [16-19]. In [20], a
dynamic output feedback tracking control problem was
studied for stochastic interconnected time-delay systems.
In [21], a decentralized adaptive output feedback control
scheme was proposed for a class of interconnected
nonlinear time delay systems with subsystems involving
unknown parameters and being preceded with hysteresis
described by the saturated Pl model. In [22], the tracking
control of a class of time delay large-scale systems with
output-feedback by utilizing backstepping technique has
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been investigated. In [23, 24], the problem of model
reference control of large-scale systems with time delays
was considered, while the isolated subsystems of the
considered large-scale systems were linear with stringent
matching conditions.

This paper proposes a decentralized neuro-adaptive
control schemes for large-scale non-affine nonlinear
systems with unknown time-varying delay interconne-
ctions. The NNs are used to compensate the unknown
nonlinear interactions. This paper also carries out a
stability analysis of the closed-loop system based on
Lyapunov-Krasovskii stability theory to make sure that
proposed decentralized adaptive control scheme makes
all the signals in the closed-loop system bounded and
tracking errors asymptotically tend to zero.

The rest of the paper is organized as follows: problem
formulation and derivation of the error dynamics are
introduced in Section 2. In Section 3, the main results of
decentralized adaptive neural network control and
stability analysis are presented. Simulation results are
given in Section 4. Section 5 concludes the paper.

2. Problem Formulation and Derivation
of the Error Dynamics

Consider a large-scale nonlinear system composed of N
interconnected subsystems described by

Xi1=Xi2

Xy =50 06U+ 200 5 O (=73 5 ()

Yi =Xj1 1)
where Xj =[Xj 1, X 2,000 I, 1<i <N, is the state
vector of the ith subsystem; u; e R and y; e R are the
input and output signals, respectively. The function
f; (X;,u;) is unknown and sufficiently smooth and

zjilhi,j(xj (t—7 j(t))) denotes unknown nonlinear
time-delay interconnection among subsystems where
7 j(t) is time-varying delay satisfying 7 j(t)<r,
7, ; () <7 <L with 7 and 7, are known constants.
Assumption 1: The desired continuous time
trajectory vector Xid’1 and its time-derivatives up to order
n; -1 for i =1..,N | are given and bounded.
Assumption 2: For each subsystem, there exist a
positive constant fi" such that [25]:
o<t < Milit) (a);ii’”i) (2)
and H; such that
dtf oy, Armax (R) ®)
V(x;,u;) e [IxR,ITc R"™
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where Q; and P, are the positive-definite matrices

properly selected by the user. Equation (2) is a direct
extension of Assumption 1 in [26] for affine systems,
Assumption 2 for an affine system implies that the input
gain must be bounded and nonsingular. Note that this
condition is also obviously valid for an LTI system. A
condition on the rate of change is also used in Assum-
ption 1 of [26]. Although condition [22] seems to be
restricting, it is more applicable to the special class
of non-affine systems rather than affine systems in this
paper.
Assumption 3: The interconnection

N .
ijlhi'j (X (t =7 ; (t))) is bounded by:

|hi,j X t-7 (t)))|§’7i,j €} -7 ; ®)P;b;) 4
where ni'j(eTijbj), i=1...,N, j=1..,N is an
unknown smooth nonlinear function. This assumption
indicates that the interaction term in the ith subsystem
must be bounded by some arbitrary functions of a certain
form of variables. This form can be expressed in the

terms of a linear combination of errors generated by other
subsystems.

N .
Let zjzlhi,j (xjt—7 ;) =0 in (1), and then the
isolated subsystem would be obtained as follows:

X -y vi =fi(x.u;) (5)

1,n; 1

where ui* is the ideal control function and v; is
commonly referred to as the pseudo control signal. The
pseudo control system is chosen in this derivation as a
linear operator. Generally, It may be nonlinear, for
example if a sliding mode component is included [27,
28]. The transformation (5) is defined locally by invoking
the implicit function theorem [29]. Since, the pseudo
control signal v; is not generally a function of the
control signal u; but rather a state dependent operator,
and reminding assumption 2 one would have:
olv; —f, (x:,u;)
|: I I I 1 :|¢ 0
ou;
The fact that the expression in (6) is nonsingular
implies that in neighborhood of every (x;,u;)eIlxRE,

there exists an implicit function a(x;,v;) such that:

(6)

v, —f; (% ,a(x,u;)) =0 ()
and
U =alx ;) ®)

The union of all such neighborhood can be utilized to
extend the existence of the transformation to the entire
domain. Let the tracking error be €; =Yy; 4 —Y;, where
Yig4 is the desired output and vectors e; ¢ are defined
as
- e,'(”i —1) ]T (9)
& =1¢,,e?,...,.e") (10)

e =[e; €

From tracking error definition one would have:
e () =y (M) —Yi(,rli )=, b - yi(f&i)
N _ (11)
=fi (x.u)+ 20 h —yi(,rlil)
i=1

From Mean Value Theorem in [30], it is obvious that
there exists 4 €(0,1) such that

fi (x,u) =1 (% ,Ui*)+(l.li _ui*)fui (12)
where f,, =[of; (x;.u; )/ ou; |

Uy =AU +0-4 ;.
Substituting (12) into (11), one obtains:

uj =y, with

N
") =1, (x ,up)+(U; —u; it +D 0 —Yi(,rg) (13)
=
Substituting (5) into (13), it can conclude that:
N
i=1
The pseudo control v; is design as
Vi =—(8 08 +81€; +---F ai,/1,~—1ei(ni )+ yi(,r(]ji) (15)
where the coefficients are chosen, so that each
Li(s)=s" +a o 48" “+a, 8" Fteta o has its
roots in the open left-half plane, i.e. L; is Hurwitz. From
(14) and (15), one has:
") =—( o8 T € Tty ")

16
+(U; —u)f, +ihi'j (10
i1

Substituting (16) into (10) the error dynamics can be f-
urther written in a matrix form as follows:

¢, =Ae, +b {(ui —unf, +_Nzlhi,j (17)
1= a
where A, is Hurwitz matrix with the following form:
0 1 0 - 0 |
0 0 1 .0
A= : P (18)
0 0 o - 1
8o Ty T T, |

and b; =[0 0 -1 . Since A, is Hurwitz, a unique
positive-definite solution P; to the following Lyapunov
equation exists:

AP +PA =-Q (19)
where the matrix Q; is an arbitrary positive-definite
matrix.

3. Decentralized Adaptive Neural Netw-
orks Design and Stability Analysis

This section presents a NN-based controller for (17) with
unknown time-delay interconnection functions. Note that
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f; and flJi are also assumed to be unknown. The ideal

local control signal u; may be represented by a Radial

Basis Function Neural Networks (RBNN) or any
approximation structure such that

u; =B Wy, (i) +Uj (X)) +¢
7 =Dg VT (20)
where ¥y, (z;) = [y, (20, , (Z) W @) eR™ | s

T
the neural network (NN) basis vector, and Bi' s the
vector of ideal control parameters [26]. The term
U;  (X;) is a prior control term developed based on a

prior model (experience) to improve the initial control
performance.The integer Ki denotes the NN’s number of
nodes, and the term €& is called the NN approximation
error satisfying |& ISSMi , Em >0, Then, an adaptive
algorithm is proposed as

u; =B Py, (z; )-sgn(ej Pb; )C Y (e] Pib;)

+Uj g (%) ——— € Pib; +U; g (21)
2(f "
with
Ui g =—¢; sgn(ej Pib; )6 sgn(e] P;b;) (22)

AT
In (21), Bi ¥y, (z) represents a RBNN employed to
approximate the ideal controller for system and the
T AT T
(& Pib;)Ci W, (& Pib;) term is used to compensate for

the interconnection nonlinearity. The term Ui (X;) is a

prior continuous controller (possibly Proportional-
Integral (PI), Proportional-Integral Derivative, or some
other type of controllers) designed in advanced via
heuristics or past experiences with the application of

conventional control methods, and NeT Pb; / 2(fiL)21
i son(e; Pby) and €SI Piby) are utilized for

countering uncertainties in the NN approximation error
and system interconnections. The following adaptive

T oAT 2
rules are proposed to update the parameters Bi .G &
and 6 :

B =Ty & Pb ¥, (z) (23)
Cl =T, el Pib; |, € Piby) (24)
G =7 el Pty | (25)
é =7 ‘ell— Pib; | (26)

where T, :FtTai >0 T, :F; >0, 7. >0 and

Yo > 0 are constant design parameters.
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Lemma 1: Consider system (1) satisfying the
conditions given in Assumption 2. The following
inequality holds for each subsystem:

eTQ, ei + e‘:’ Pi ei f‘u,

27
2, i 27
Proof: see [25].
Theorem: Consider a decentralized system

comprising N subsystems described by (1) for which
Assumptions 1-3 hold. Then, the control law (21) with
adaptation laws (23)-(26) makes the tracking error
asymptotically converge to zero and all signals in the
closed-loop system are bounded.

Proof: Consider the following Lyapunov-Krasovskii
function

N
V=D Vi Vi, 4V ,) (28)
i1
with
.
e P.e.
Vo, =it
1T o (29)

Ui

V.. = 1 ij-t 7’ (€ (r)P:b;)d 7 10
2 2(1_7max)j:1 t—g ) N i¥i (30)
& i

ot misg A7 15
Vis :E{BT I, By +C{FCI C +=+

31
7ao 7 ey

Wwhere B| :EI _BT’ C~:| :él —C:, él :éi _§Mi and

A

C.i =i —ém; o ( 5|v|i will be explained later.) and use

the error dynamic (17) to write the time derivative of V
as

N
Vo= L (é,TP,e, +eTP,é,)
i=1 2fui

T )
e Pef,
- LV, Y,
2fu? 1,2 3
N T 0. e ef . (32)
= {_e,z(f),e, : If .2 -+l Pb; (U —u;)
1= uj uj
Tohn o ]
e Pib; Zhi,j |
+ . 2Ly, PR T

Ui

L
From Assumption 2, we have 0<f; Sfui which, in

trn, yields (/f, )<@/T) then, we can obtain the
following upper bound for the time derivative of V:

. N Qe e Pef, .
VoY Lt+el P.b; (u; —u;)
o of of 2 i MM T

uj uj
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N
€] Piby 120
i Tili ng i,j ‘ . (33)

+ +V,Y2+V,.’3]

fi-
From Assumption 3, (33) can be rewritten as

N ePef .
4 <Z{ kel 2|f| "L +e] Pib; (U; —u;)

2
K (34)
|e P b; | . . 1
f L JZ_;U. j(e (t 7 JJ (t))ijj )+V|,2 +vi,3

By using inequality Xy <(/2)(x 2+y?) , one obtains

N e Pef .
v <Z{ [0 L 2Ifl “+ef Pb; (U —u;)

2
Ui uj

W AT SO

j=1
N (el P. b |
+%Z—(el ' '2) +V, 5B
o L
() | (35)
N eIQie, € Fi€ u *
_E{_ 2, u? e; Pb; (U; —u;)

N

+%Zn.2,(e (-7, O)P,b;)
j=1

N (e{ Pibi> 1

2t ) e

Substituting (20) and (21) into (35) yields

+

"Pef .
v <2 “ T oy (& P E Y )
2f '
—(eTPibi)ei— ! Pib; |CT W, (6 Pb;)+(e] Pb; )u; g
1y, o o]
+EZ77i,j(ej (t_Ti,j(t))ijj)+V|,2+vi,3J (36)
j=1

Using (30) to re-write (36) as

N EOE eT‘Pleifu,
v Z{ - 2

Ui Ui
~(e] Pibi )5 —fel

+(e; b, )B; ¥y, (2;)

i|C W, (€] Piby)+ (€] Piby uj g

Zn. ;€ ©P;b;)

+= zm ](e (t_TI J(t))PJbJ)+ 2(1—Tmax)

.
2(1 &, O’ (€] Ti,j(t))ijj)+V|,3J

2(1 Tmax)

N el Pe;f. .
R Q. LN @ Pby )B] Y, (2))
= U. 2fui

(|G, (€] Piby)+(e] Piby U g

N
o 2715 (€] ©)P;b))
#5200 (€ =5 O)P;by) + =
2 =i 1) ] 17 2(1_ Tmax) (37)
—;i(l—r W2 € (=7 (O)P:b: )4V 1
2(1_Tmax)j=1 max /i, j \*~j i,] ] |,3—I

2f 2f 2

Uj uj

N| o € Pef .
:Z{‘e' UGS (6] Ry B, (7))

(|G, (€] Piby)+(e] Piby U g

+ = +V‘| 3
21Ty ’

N 2 T

ZUi,j(ej (t)P;b;)
Define e Rbi|<i (6l RDY) == ——— and (37)

max
becomes
T .
P -
V <Zl: € Q| 1 _t‘| 2,:,2)‘u, +(e{P[b[)B{lpb,-(zi)
i=1 uj

~[el Piby |é? W, (€ Pby) + (6] Py ui 38)

+|eT Pib; |‘9Mi +|eT Pib; |§i (ef Pib; )+Vli,3:|
Knowing that the function Gi (eiT P bi) is smooth, a

radial basis Neural Network can be utilized to
approximate the following function

G (€ Rby)=C ¥, (€] Pby)+5 (39)
where ‘¥; (€] Rby) =[ vi1(e] Bby), v o (6] Bby), ..

T *
Vi o, (€ Pib; )J is the RBNN basis vector, and Ci is
unknown vector of network weights and we estimate it
with Ci, the term & in (39) is called the NN approxi-
mation error  satisfying |5, [<Su,, Ow; >0,
Substituting (22) and (39) into (38) produces:

T .
v <Z te |_eip'eij“|
2f 2f 2

uj uj

+(€] Pb,)B] ¥, (z,)

_|e-=— Pibi|CT\PcI (e?Pibi)_‘elTplbl‘é:I (40)

_|eT F)i bi |é| +V‘| ,3:|
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with employing time derivative Vi3, we have

% eQ.e._

o 2y, of ;

T .
e Pieify,

+B! (r;llléi +e Prbj P, )

+G (Fgléi |el b, )

[l ]

By applying the adaptive rules (23)-(26), V' can be
rewritten:
T .
e Pieify,
2
2fui

N

e e;
v <Z Q' Ly (42)
To complete the proof, one needs to show that
T - . . S
ei Qiei /2fy, + el Pieyfy /272 >0 is positive, which is

AT 2
a direct result of Lemma 1., Thus, € , Bi , Ci , ¢i and

A

& become bounded. Since (4) is ensured to be bounded,
the functions 77 j (eTj P;b;) will also be bounded. Given
(20)-(22), it is concluded that the entire variable on the
right-hand side of (17) and €, are bounded. Moreover,
since V is positive definite, we can conclude that:

IZ e Qieg N i |e|2fuI
0i=l 2fui 2fui

t <V (0)-V (0) <o (43)

Since the right side of (43) is bounded, e; €L, , by using

Barbalat’s lemma, we get to the conclusion that
lim ¢; (t) =0 . This completes the proof.
t—oo

4. Simulation

In this section, the proposed decentralized adaptive
controller is applied to control two inverted pendulums
connected by a spring [14]. The nonlinear equations
which describe the motion of the pendulums are defined

by

X11=X12
. mgr  kr kr
X1 =| —=————[sin(X )+—(I—)
L2 [ I 4J1J M2 (44)
sat (u kr?2
tog——— (l) —sin(x 1t —712(t)))
J 4J1
Y1=X11

/ . o
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Xo1=X22
. mygr  kr kr
Xogg=|—* sin(x )+—(I -b)
22 [ J2 412] 27 2],
+QZM kr? —sin(xy1t —725(t)))
J2 P
Y2 =Xo1 (44)

where @ =X1 and 62=X1 are the angular
displacements of the pendulums from vertical. The
parameters M =2Kg and M» =2.5kg are the pendulum
end masses, J1=0.5kg and J»=0.625kg are the
moments of inertia, K =100N /m s the spring constant
of the connecting spring, ' =0.5M s the pendulum
height, | =0.5m s the natural length of the spring,
o =a,=25 gre the control input gains and
g =9.81m/s? js the gravitational acceleration. The fun-
ction sat (") represents the actuators nonlinearity, which,
in this simulation, is implemented by tanh(). The

distance between the pendulum hinges is b =0.4m. b <1
indicate that the pendulum repel one another when both
are in the upright position [28].
T2 =172 = 05(1+S|n(t))| 72 (t) and Tz’z(t) Satisfy
T 2(0) < Tmax <L (i =1,2). Here we will attempt to
regulated the angular positions to zero, so that
e, =—6 lie.x? =0,i =1,2].

To show the effectiveness of the proposed method,
two controllers are studied for the purpose of comparison.

We will first demonstrate how a simple decentralized Pl
controller

t
Uj ZZO[ei +%J‘eidfj, i =12 (45)
0

would control the system. While the pendulums exhibit
an undesirable response with relatively large oscillatory
behavior due to the lack of damping, as shown in Figs. 1
and 2.

The decentralized adaptive controller based on the
RBNN proposed in Sect. 3 is then applied to this system.

The controller is taken as (21), where Bi,Ci, & and ¢i
are updated by adaptive rules (23-26), and

t
Uj k =20(; +1/ 2OJ‘Oeidt) . The RBNN structure is used
as given in (22). The radial basis functions ¥b; (i) are

2, 2
chosen as Wb, o =&P(11Zi ¢y, . |l /Gbiq)’ where
Ch; q and %b; , are the centers and size of influences of
the basis function, respectively (i =12,0=12,..,K;).

The input vector for the RBNN basis Y is

\t4d
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.
Zi =[Xj1,Xi 2.Vi] . The RBNN nodes are chosen as
K; =100(i =1,2), with the centers

Shi :[éybivqlebiyqz,éwbivqgl]T evenly spaced between
[-1,1], [-5,5], and [-35,35], respectively, and the size of
influences %b; o =0-5,(1 =1.2,4 =12,...,100). The basis

. T
function we, (& Pibj) are  chosen as

T 2, 2
Vei o =XP-1ei Pibi —Cop  [7og ) where i g

I,
and O¢; , are the centers and size of influences of the
basis function, respectively (i =12, =12,...,D;). The
input vector for the RBNN basis V¢, is € Pibj. The
RBNN nodes are chosen as Di =5( =12) nodes, with

centers evenly space between [-1,1] and the size of
influences 9¢; , =0-5 (i =12, =12,..,25). The init-

ial RBNN weights B (0), C; (0), & (0) and & (0) are
simply set to zeros. The controller parameters are taken
as fi- =1 Iy, =T, =100, and 74 =75 =5 Figs. 3
and 4 show the simulation results for the designed
controller and illustrate that, after a short transient period,
the states very closely track the given trajectories.
Comparing the results in Figs. 1-4, it can be concluded
that with the proposed method, the weights of neural
networks have fast convergence and the performance is
more satisfactory compared to Pl counterpart. Figs. 5 and

6 also show the history of the control input Ui, =12
under proposed controller.

o 0.5 1 1.5 2 2.5 3 3.5 4
Time(sec.)

Fig. 1. PI controller for the first subsystem.

o 0.5 1 1.5 2 25 3 3.5 4
Time(sec.)

Fig. 2. Pl controller for the second subsystem.

0.5 1 1.5 25 3 3.5 4

2
Time(sec.)

Fig. 3. Performance of the proposed controller for the first

subsystem.
0.05
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Fig. 6. The control input U, for the second subsystem.

5. Conclusion

In this paper, a new decentralized adaptive RNBB control
was developed for a class of large scale nonlinear non-
affine systems with unknown nonlinear time-varying
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delay interconnections. Using the stability analysis of
Lyapunov-Krasovskii functional method, the
asymptotically stability of the closed-loop system was
proved. Finally, simulation results confirmed the good
performance of the proposed controller compared to
traditional PI controller.
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