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Abstract:

The camera stabilizer stabilizes the camera’s line of sight by isolating the camera from the model uncertainties,
disturbances of operating environment and system movements. This paper presents a voltage-base optimal adaptive
fuzzy sliding mode control for camera stabilizer. In this proposed control method, a voltage-base sliding mode
controller is applied. But unfortunately, undesirable control input chattering is caused by employing the sliding mode
control. In the following, for the prevention of incidence of the control input chattering, a first order TSK fuzzy
approximator is employed. Although fuzzy sliding mode control prevents the chattering phenomenon, it has some
disadvantages such as disability in estimating the bounds of the existing uncertainties and lack of stability proof of the
closed-loop system. In what follows, to overcome the aforementioned problems, an adaptive fuzzy system is designed
such that it can estimate the bounds of the existing uncertainties. Ultimately, the chicken swarm optimization algorithm
is utilized to determine the optimal values of coefficients of the adaptive fuzzy sliding mode control and to decrease the
control input amplitude. To investigate the desirable performance of the optimal adaptive fuzzy sliding mode controller,
simulations in four steps are implemented on a camera stabilizer.
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1. Introduction

The electro-optical sensing equipment such as camera
systems are widely used in surveillance, monitoring,
searching and scan operations and target tracking
operations [1, 2]. Camera systems that are mounted on
various systems such as missiles, aircrafts, UAVS,
radars, boats and navigation instruments are subjected
to vibrations introduced by system movements, base
angular motion, the dynamics of camera system and
the camera mass unbalance. These vibrations cause the
line-of-sight (LOS) of the camera to shift, resulting in
serious degradation of the image or video quality. So, a
camera stabilizer is required to stabilize the LOS of
camera against system movements and disturbances [3,
4].

The camera stabilizer has two gimbal axes, namely,
yaw (azimuth) and pitch (elevation). The gimbal axes
are independently rotated through desirable angles by
two DC motors and gears which provides the required
actuating torque [5]. Camera stabilizers have complex
couplings and completely non-linear dynamic
equations in the form of multi-input/multi-output under
uncertainties [6]. In a camera stabilizer, there are extra
nonlinearities that make the stabilization task more
difficult [7]. Due to the complex couplings, non-linear
dynamics and the adverse effect of structured and un-
structured uncertainties, control of a camera stabilizer
is a challenging problem. For applying the controllers
on the camera stabilizer and other gimbaled systems as
flight motion simulators, at first, these systems have to
be linearized and then controlled using linear control
design methods [8, 9].

Camera stabilization controllers generally use
classical PID. Although the PID framework solves
many control problems and is sufficiently flexible to
incorporate additional capabilities, it is reported that
many PID feedback loops are poorly adjusted. In
addition, these control strategies are known to lack
adaptability and robustness against changes in the
operation environment [10]. In the literature, several
improvements to PID controllers are provided [11-13].
For example, in order to decrease accumulating
integration error, which causes actuator saturation,
self-adjusting integral action is developed. In these
approaches, experimental results illustrate that this
self-tuning method yields higher precision and perfect
control performance under linearity; however, serious
disadvantages exist since nonlinear distortion destructs
stability in such systems [13]. According to the above
description, the controller based on the linear
approximation model has good control performance
around the set work point. However, when the system
is set away from the work point, the system function
will deteriorate sharply, and even the instability will
occur.

According to the above descriptions, to avoid the
disadvantages of the control based on the linear
approximation model and to overcome the extant
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uncertainties, variable structure control to be
introduced. Variable structure control (VSC) as one of
the nonlinear control methods was first proposed in the
early 1950’s [14]. The dominant role in VVSC theory is
played by sliding modes, and the core idea of designing
VSC control algorithms consists of enforcing this type
of motion in some manifolds in system state spaces
[15]. Sliding mode control (SMC) is a nonlinear
control technique featuring remarkable properties of
accuracy, robustness and easy tuning and
implementation. Due to sliding mode control’s
capability in facing model uncertainties and system
disturbances, it has attracted considerable attention in
controlling uncertain nonlinear gimbaled systems [16-
18]. Despite these advantages, very often, a sliding
mode controller yields high-frequency switching
control action that leads to the so-called chattering
effect, which is difficult to avoid or attenuate [16, 19].
This chattering leads to activation of the system’s
dynamic modes which in turn reduces the performance
of control input [20].

Fuzzy logic in sliding mode control design has been
commonly used for numerous electrical systems,
robotic systems and mechanical systems in recent
years. A direct benefit of the fuzzy sliding mode
control in controlling of gimbaled and robotic systems
is that the chattering often existing in conventional
sliding mode control can be effectively eliminated
through construction of fuzzy boundary layers instead
of crisp switching surfaces [21-25]. Afterwards, to
improve the performance of the resulting control
scheme, the coefficients of the fuzzy sliding mode
controller are determined by using optimization
algorithms [26, 27]. In proposed approaches [28, 29],
the number of calculations of the control input is low,
the amplitude of control input is the optimal, the
proposed control capable overcome structured and
unstructured uncertainties and it is very simple to
design and implement. Despite these benefits, the
proposed controllers do not have the mathematical
proof of the closed-loop system stability.

At the present time, by combining SMC, fuzzy
logic, and adaptive control concepts, the adaptive fuzzy
sliding mode control (AFSMC) has been presented for
controlling a class of nonlinear systems [30-32]. By
proposing these solutions, the adverse phenomenon of
chattering is eliminated at the control input and the
researchers have proven that the closed-loop system
with adaptive fuzzy sliding mode control has global
asymptotic stability in the presence of structured and
un-structured uncertainties in the dynamic equations of
this category of nonlinear systems. By examining
camera stabilizer dynamic equations and comparing
them with the dynamic equations of this category of
nonlinear systems, it is concluded that some of the
proposed approaches can be used to control the camera
stabilizer. In this case, by proposing an adaptive fuzzy
sliding mode control for controlling camera stabilizer,
the following results can be obtained:
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1. Elimination of unfavorable phenomenon of
chattering in the control input.

2. Proof of global asymptotic stability of the closed-
loop system in the presence of structured and un-
structured uncertainties in the dynamic equations of
the camera stabilizer.

3. In adaptive fuzzy sliding mode controllers, an
adaptive fuzzy approximator approximates the
bounds of the existing uncertainties. Therefore, the
input coefficients of the control is updated online
and the input control amplitude is placed in an
acceptable range. As a result, the costs of practical
implementation of the proposed control are
decreased.

4. Reduction of the coupling effect in the camera
stabilizer, and as a result, reduction of tracking
error and an increase in the accuracy of camera
stabilizer performance.

Although we can achieve the aforementioned
advantages using the adaptive fuzzy sliding mode
control. The various techniques of adaptive fuzzy
sliding mode control that are presented so far have
several merits and demerits; moreover, in some cases,
they are not implemental for controlling the camera
stabilizer.

In [33], an AFSMC controller has been presented to
overcome the existing uncertainties in a nonlinear
system. In this method, two adaptive type-2 fuzzy
systems have been used to estimate unknown
functions. Simulation results show that the proposed
control has a good performance in overcoming the
existing uncertainties and it makes the tracking error
converge to zero. Research shows although the type-2
fuzzy logic is very flexible in overcoming the existing
uncertainties in a camera stabilizer, it greatly increases
the computational burden of the control input. As a
result, there are some problems with the practical
implementation of the proposed controller.

An AFSMC controller has been designed in [34].
The proposed approach is only capable of overcoming
parametric uncertainties, but, in addition to parametric
uncertainties, camera stabilizer encounter un-structured
uncertainties and external disturbances. The AFSMC
controllers are also presented in [35-37]. Simulation
results and mathematical proof show the desirable
performance of the proposed controller. However, in
the proposed approaches, many adaptive fuzzy systems
have been used to estimate the unknown functions of
nonlinear systems. Therefore, the control input has a
high computational burden. Therefore in case of using
this method for control of camera stabilizer, if a delay
occurs during the calculation of the control input, it
will be impossible to guarantee the stability of the
closed-loop system.

In addition to above subjects, like many of the
mechatronic and robotic systems [38, 39], the reality is
that the camera stabilizer is set up using actuators.
Thus to control the camera stabilizer, the actuators
must be controlled [40]. This standpoint converts the
problems of camera stabilizer control to that of actuator

control. For this reason, in this paper a voltage-based

AFSMC method is presented for controlling camera

stabilizer.

In this paper, it is attempted to propose solutions
having the following advantages:

1. Its design steps should be easy.

2. The control input should be based on voltage. In
other words, in the design of the proposed control
the dynamic equations of the camera stabilizer
actuators should be considered.

3. It should have the ability to overcome every type of
uncertainty existing in the dynamic equations of the
camera stabilizer such as parametric uncertainties,
un-modeled dynamics and external disturbances.

4. Single-input, single-output fuzzy rules are used in
the proposed approach so that the volume of
calculations of the control input are reduced and the
number of sensors for the practical implementation
of the proposed control is decreased.

5. Chattering is lacking in the amplitude of control
input and should be in an allowed range.

6. The number of adaptive rules in the control input
should be very few.

This paper is organized as follows: Section 2
describes the statement of the problem and control
strategy. In section 3, proposed control methods is
introduced in four sub-sections. At first, using dynamic
equations of the camera stabilizer as well as using
inverse dynamic method, a sliding mode controller is
designed. Mathematical proof demonstrates that a
closed-loop system with this controller has global
asymptotic stability. Next, to eliminate the control
input chattering, a first order TSK fuzzy approximator
is designed. Despite the ability of the fuzzy sliding
mode control in restraining the control input chattering;
moreover, the proposed control has some problems
such as inability in approximating the bounds of
uncertainties as well as lack of stability proof of the
closed-loop system. To overcome these problems, an
adaptive fuzzy sliding mode control is designed.
Afterwards, to determine the optimum coefficients of
the adaptive fuzzy sliding mode controller, chicken
swarm optimization (CSO) algorithm is used. In
section 4, design’s process steps of the proposed
control is explained. In section 5, to display the
performance of the proposed controllers and to
compare their function, simulations in four steps are
implemented on a camera stabilizer. In section 6,
advantages of the proposed control is presented.
Ultimately, conclusions of the present research are
given in Section 7.

2. Statement of the problem and control
strategy

As seen in figure 1, the camera stabilizer has two
spinning gimbals perpendicular to each other, namely,
inner gimbal and outer gimbal. The outer and inner
joints, named the azimuth axis and the elevation axis
respectively, both axes are driven by armature-
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controlled DC motors. Two encoders measure the
azimuth and elevation angles. The camera is mounted
at the center of the inner joint. The high frequency
rotational vibrations can lead to darkness in the camera
images, for this reason the inner joint has a freedom to
move a few degrees.

Azimuth T

o Elevation

Fig. 1. The two-axis gimbal configuration

Dynamic equations of the camera stabilizer with
double-revolute joints including both motor electrical
and mechanical dynamic, are expressed as:

{(D(q) +7%m)G + (B(q,4) +7°Bn)q + G(q) + Ta = rKyi o)
Li+Ri+ Kpg =,

In which:
D(q) =
[Ifz1 + IEsin®q, + Igjcos®q, + Iiysin(2q,)  I57cosq, — Ifzzsinqz] (2)
I57cosq, — I¢Zsing, 152 ’
B(q,9) =
G, (152 sin(2q,) — I3 sin(2q,) + 2155 cos(2q,)) =G (I52sing, + 157 cosq,) (3)
[ — 24 (U — 12 )sin(2q,) + 2152 cos(2,)) 0

Where q(t) € R? is the vector of joint positions,
q(t) € R? is the vector of joint velocities, §(t) € R? is
the vector of joint accelerations, i € R? is the vector of
armature currents, D(q) € R¥*? is the inertia matrix,
which is symmetric and positive-definite, B(q,q) €
R%*2 represents the centrifugal and Coriolis forces, IS}
is one of the moment of inertia of link 1 matrix entries
with respect to its center of mass, I5%, 152, I5Z, 53, 152
and ¢ are the entries of matrix of moment of inertia of
link 2 with respect to its center of mass, G(q) € R? is
the gravitation vector, which due to the symmetrical
structure of the system, its elements are zero, T4 € R? is
a vector including disturbances or un-modeled
dynamics, J,,, is the actuator and gear inertia matrix, B,,
is the diagonal matrix of damping coefficient, L is the
armature inductance matrix, R is the armature
resistance matrix, K,, is the diagonal matrix of motor
torque constant, K, is the matrix which characterizes
the electromechanical conversion between current and
torque, r is the gear ratio matrix and u € R? is the
armature voltages vector. With respect to second part
of the equation (1) we obtain:

. u L Km .

i=_—zLi=-—"q, 4
Equation (4) in the first part of the equation (1) is
substituted as:
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(D(@) +7%)G + (B(q, ) +r°Bp)q + G(q) + T,

5

=K G = p i ), ©
Equation (5) is simplified as:

Zru = (D(q) + )i + (B(@, @) + 12Bp + 25 g + o

KyL
R G(Q) + Ty,

For simply more,w =™ M(q) =D(Q) + ¥

R
€(@.9) =B(4,@) +72B, +75=  and  H(q,q) =
ZI4G(q) +T, are defined. Where we R is a
diagonal matrix. By the mentioned substituting,
equation (6) is simplified as:

u=W(M(q)j+C(q,9)q+H@q), U]
Equation (7), has the following specifications:
Specifications 1: inertia matrix M(q) is symmetric and
positive-definite.

Specifications 2: M(q) — 2¢(q,q) is a skew-symmetric
matrix, as follows:

xX"M(q)x =2x"C(q,{)x , Vx,q,4 € R*. ®)

In this system, outer and inner joints of the camera
stabilizer is driven by a permanent magnet dc motor.
The executed torque on the joint to drive the camera
stabilizer is the load torque of motor. According to this
concept, the dynamic equation can be considered as
[38]:

T = Jniim + Bl + £7, ©
Where T, is the motor torque, T is the load torque and
G IS the rotor position. The gear ratio relates the
position of motor to the joint position as follow:

q="0m, (10)
According to the following equation, torque of the
motor is proportional to the armature current [41]:

T, = K,i, (11)
According to the first and second order derivatives of
equation (10) and by substituting equation (11) in (9)
we obtain:

K i =71%],G +1%Bpq + T, (12)
In which:
T=D(@§+B(qqq+G6(@+Ty. (13)

Based on equations (9) to (13), we can plot the
general schematic of the system along the controller
according to figure 2. As seen in figure 2, control
strategy is based on the control of the motor voltage of
each joint. The desired trajectories q,4 , .4 and their
first and second order derivatives are preset for
controller while the joint positions ¢, , g, and their first
order derivative and the motor current i are feedbacks
to controller in the real time processing.
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Fig. 2. The camera stabilizer control system

After the general schematic of the system is
determined, in the next section, a controller for this
system is designed in four steps according to a
consolidated procedure.

3. Proposed control methods

The dynamic equations of the camera stabilizer is
extremely non-linear and due to existence of the
coupling between joints 1 and 2, the design of the
controller for this system is difficult. On the other
hand, due to existence of uncertainties such as un-
modeled dynamics, disturbances and unknown
parameters, it is difficult to propose a precise dynamic
model for the camera stabilizer [5, 6]. For this reason,
the use of a nonlinear robust controller for controlling
this system can be considered as an appropriate choice.
In this section of the present paper, the method of
sliding mode control which is one of the mostly
applied methods of nonlinear robust control is utilized.

3.1. Design of sliding mode control

To robust control of the camera stabilizer, the sliding
mode controller is designed. Consider a sliding surface
vector described as follows [42]:

S() = (Y 4o+ Me, (14)
In equation (14), e =q—qq is the tracking error

vector in which q=[q, q,]T is the vector of joint
positions and qq = [q:4 924]" IS the vector of desired
trajectories and A = diag[A,,2,] is a diagonal matrix in
which 2,,2, are constant and positive coefficients.
Usually, to design sliding mode controller, the variable
q™ ™ is defined as:

¢ =g =50, (15)
Inasmuch as the camera stabilizer is expressed by the
second order differential equation, hence equation (15)
withn = 2 is specified as:

Gr=q—s), (16)
Taking the derivative of the equation (16), we have:
Gr=q—-3@1). (17

Point 1: Inasmuch as q, q , § and s(t) are 2x1
vectors, therefore ¢, and g, are 2 x 1 vectors.

Yy

To design sliding mode controller, according to the
equations (16) and (17), equation (7) is modified to:

u =W (M@, +M@)3®) +C(q,9)dr +

Clq, Ps®) +H(g, §)),
Here, the control law on the sliding mode is proposed
as:

u=14a-u, (19)
In which case ug is the switching control law and @ is
determined as:

=W (M@, + €(q, i, + Aq.), (20)

In fact, in equations (19) and (20), w1t , M(q) , C(q, @
and H(q,q) are estimations of W=, M(q) , C(q,q) and
H(q, q), respectively. Substituting equations (19) and
(20) in (18) we have:

W (M@, + M(@)3(t) + C(q, g + C(q, §)s(t) +

(18)

(21)

H(q,9) = W (M(@)d, + (@, 9)ar + A, 9)) — s,
Equation (21) is simplified, in four steps, as:

(M(@)ijy + M(@)3() + C(q. )¢ + C(q, Ps(t) + H(q, ) = 22)
W= (@i + €@, + A@,d) - Wus,
M(@)3(t) + C(q,@)s(t) = WWM(q) — M(q))ijy +
WW1E(q,)~C(q, @i, + WW(q,4) — H(q, ) - 23)
Wus,
M(@)3(t) + C(q,@)s(t) = WWM(q) — M(9))ijy +
WW16(q,9)~C(q.a)ar + W -1(q,§) — H(q, @) (24)
Wugs +ug —ug,
M(@)3(t) + C(q,@)s(t) = WWM(q) — M(q))ijy +

(25)

WWC(q,9)~C(q,4) 4, + WW T H(q,4) — H(q, ) =
1 -W)us —uy,

To simplify the mentioned equations, AM(q) =
WW~M(q) - M(q), AC(q,q) = WW™'C(q,9) — C(q, @),
AH(q,q) = WW™'H(q, ) - H(q,d),  Af=AM(q)d, +
AC(q, )4, + AH(q, q) + (1 — W)u, are defined and u, =
Ksgn(s(t)) is determined, where in, K = diag[ky, k,] is
a positive-definite diagonal matrix. Equation (25) is
simplified as:

M(@)3(t) + C(q,@)s(t) = AM(q)Gr + AC(q, @) G- + AH(q, ¢) +
(1 —W)us — Ksgn(s(®)) = Af — Ksgn(s(®)).

Point 2: Af € R? is a vector including all structured
and un-structured uncertainties.

In order to prove closed-loop system stability of
equation (26), based on the dynamic features of camera
stabilizer, Lyapunov function candidate is proposed as:

(26)
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V(s(t) = 55" OM@s(®), @7

Taking the derivative of the Lyapunov function in
equation (27), we have:

V(s(®) = sTOM@3() + 55T (OM(Q)s(t), (28)
Due to the equation (8), equation (28) is rewritten as:
V(s(®) = s"(OM@3(t) + C(a, Pst)) (29)

With respect to equations (25) and (29), the following
equation is obtained:

V(s(®) = s"(OIAf — Ksgn(s()] = Xy (s«(D[Af; —

Kisgn(si(t))])
Due to the equation (30), s;(t) is the i entry of sliding
surface vectors, Af; represents the i entry of the vector
Af and K; is the i entry of the main diagonal of matrix
k. To prove closed-loop system stability, equation (30)
must be less than zero, as follows:

(30)

V(s(t) = Zii(s:(O[Af; = Kisgn(s: DD <0, ()
Now, the mentioned equation is satisfied if:
K > 1Afill - (32)

As a result, by selecting appropriate K which satisfies
equation (32), closed-loop control system will possess
the global asymptotic stability.

Point 3: Although the closed-loop system with the
sliding mode control has a global asymptotic stability
in the presence of the existing uncertainties, due to the
use of the sgn(*) function in the control input, the
occurrence of the unfavorable chattering phenomenon
in the control input is unavoidable. Therefore, the
practical implementation of this controller is
problematic. For this reason in the next section, a fuzzy
system is proposed to eliminate the adverse
phenomenon of chattering in control input. This fuzzy
system prevents abrupt changes in the control input and
eliminates the unfavorable phenomenon of chattering
to a great extent.

3.2. Design  of
controller

A typical fuzzy system has one or more inputs and a
single output. A fuzzy system with multiple outputs
could be intended as a combination of several single-
output systems [43].

Basically, a fuzzy system consists of four fundamental
components. The fuzzifier, the fuzzy rule base, fuzzy
inference engine and the defuzzifier. The fuzzification
and defuzzification play the role of an interface
between the fuzzy systems and the crisp systems. The
rule base is composed by a set of ““if . . . then . ..”
rules which can be defined based on human
experience. Each of fuzzy rules demonstrates a
relationship between the input and output variables.
For each fuzzy rule, based on the relationship
determined by the rule, the input fuzzy sets are mapped
to an output fuzzy set by the inference engine. Next, it
combines the fuzzy sets from all the rules that exist in
the rule base into the output fuzzy set. Ultimately, this

fuzzy sliding mode
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output fuzzy set is translated and changed to a crisp
value output by the defuzzification. The TSK fuzzy
model was proposed by Takagi, Sugeno and Kang in
an effort to develop a systematic approach to
generating fuzzy rules from a given input-output
dataset. Similarly, a first-order fuzzy TSK system is
delineated by fuzzy if-then rules which show the
relations between inputs and outputs. Generally, first-
order fuzzy TSK control system rules are introduced
as:

if x,is Al and ...and x, is AL then 33)

E=al+alx, + - +alx,,

Where in i=12,..,M and M is the number of
fuzzy rules. &’s are the output of these M fuzzy rules
and al,al,..,al, are constant coefficients. In the
following, to design fuzzy sliding mode controller,
equation (19) could be stated as:

u,=U+K , s<0

{uz:L:ﬁ—K , §s>0 (34)
According to equation (34), controller fuzzy rules
could be stated as:

if sis A} and u, is A} and u,, is A} then
& = ag + ajs(t) + azu, + ajuy,
(35)
if sis A? and u, is A5 and u,, is A3 then
&% = aj +ais(t) + aju, + aju, ,

In the aforesaid relation, a} = a3 =al =a% =a? =a} =
0 and a} =a% =1 and membership functions will be
determined as:

1 , s()<-0.5
= Jl —2(s(t)+05)2 , —05<s(t)<0 (36)
1T} 2(s(t) = 0.5)2 , 0<s(t)<05
Lo . s(t) =05
0 , s()<-0.5
a2 = 2(s(t) + 0.5)% , —05<s(t)<0 @7)
Pl 1-2(s(6) =052 , 0<s(t) <05
1 , s()=05 ,
Ay =A3=1, lower bound of u < u, < upper bound of u,  (38)
Ay =4A%=1, lower bound of u <u, <upper boundof u. (39)

Point 4: To design the controller for camera stabilizer,
designers need to have access to the information of
dynamic equations of camera stabilizer. In this case,
the uncertainties bound of the dynamic equations of
camera stabilizer is specified. As a result, for favorable
performance of camera stabilizer, the bound of exerted
voltage to motors is specified.

Suppose x = [s(t),up,un]T to be input vector of
fuzzy TSK system, its output will be determined
according to the combination of fuzzy rules (35) and is
expressed as:

DY BYACIIC))

V=T
fi(x) is the firing strength of the i*" rule, that is obtained
from the following relation:

(40)
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F1GO = pi (n) * gy () * i (x3) (41)
"% " is the marker of a t-norm and uA}(X]-) demonstrates

the membership degree of the input x; in the
membership function A} from the i" rule. In other
words, the output of the fuzzy system could be

described by the following equation:

y=¢&""(x), (42)
Where, & = [£%,&2]T is the vector of the centers of the
membership functions of y, W(x) = [W(x)!, ¥ (x)?]"
represents the vector of the height of the membership
functions of y where in:

{‘z”(ac)1 =fr)/f1C0) + f2(x)

Y2 =f20)/f100) + f2(x)
The proposed fuzzy sliding mode control includes
some advantages which are mentioned below:

1. The proposed fuzzy system prevents the abrupt
changes in the control input and thereby prevents
chattering.

2. The rule base of the fuzzy system has only two
rules. Therefore, the control input has a small
number of calculations.

3. By suitable adjustment of the scaling factors of the
fuzzy system inputs, the tracking errors of the joints
of camera stabilizer can converge to zero.

Despite the aforementioned advantages, the proposed
control has some disadvantages which are as follows:

1. The proposed control is not able to approximate the
bounds of the existing uncertainties. In other words,
the vector of coefficients K is determined based on
the information in the system and by the designer.
As a result, in case a large vector of coefficients K
is selected, the amplitude of control input also
increases.

2. The proposed fuzzy sliding mode control lacks
proof of the closed-loop system stability.

Given the above disadvantages, in the next section
of the present paper, an adaptive fuzzy system is
designed such that it approximates the bounds of the
existing uncertainties and also possesses the proof of
the closed-loop system stability.

43)

3.3. Design of adaptive fuzzy sliding
mode controller

According to equations (19) and (26), definitely this
theme can be deduced that the reason for the
occurrence of chattering phenomenon in conventional
classic sliding mode control rooted in the existence of
the constant coefficient K and the Sign function. With
these qualities, assume that the control gain ksgn(s(t))
is replaced by a fuzzy gain P. Henceforth, the new
control input could be written as:
u=tl—a—P. (44)

In equation (44), a is a positive constant. To design the
adaptive fuzzy controller, the following candidate
Lyapunov function is proposed:

Ya

V(s(®) = 35" OM@s(®), (45)

In equation (45), V(s(t)) is considered as an indicator
of the amount of energy of s(t). The system stability is
guaranteed by selection a control law such that
V(s(t)) <0 and V(s(t)) =0 only when s(t)=0. In
order to avoid undesirable effects of the system
uncertainty and reduce the energy of s(t), a fuzzy gain
P is used in the adaptive fuzzy sliding mode control.
Equation (45) is differentiated with respect to the time,
we have:

V(s(£)) = sTOM(@3(t) + 5sT(OM(Q)s(t), (46)
According to the equation (8), equation (46) is
rewritten as follows:

V(s(®) = s"(M(@)$(8) + C(q, §)s(1)), (47)
With respect to equations (26), (44) and (47), the
following equation is obtained:

V(s@®) = s"(OAf — P —al = T (si(O[Afi = Pi—ail) (48)
From equation (48), it can be concluded that v (s(¢)) <
o only if:

{Pi < Af; — s;(t) <0

P, > Af; —a; s;(t) >0
In the other words, if ||s;(t)]| is too small, a smaller
value of P; can further guarantee the system stability.
And so on, if ||s; ()| is too large then, a larger value of
P; can further guarantee the closed-loop system
stability with adaptive fuzzy sliding mode control.
Ultimately, if s;(¢) = 0 then, the value of P; could be
selected to be equal to zero.

According to the above description, This concept is
similar to the idea of applying the function Sat (x). The
difference is that the control gain is different along
with the sliding surface at all times. Furthermore, for
the sake guarantee that P is able to compensating the
disadvantages caused of system uncertainty, an
adaptive law is designed. It is clear by these analyses
that the value of P could be determined by the value of
the sliding surface s(t). With these qualities, the fuzzy
system for P must be a SISO system, with s(t) as the
input and P as the output variable. The rules in the rule
base are in the following specified format:
if s(t) is A™ then P is B, (50)

In which A™ and B/™ are fuzzy sets. In this paper, the
same type of membership functions, i.e. NB, NM, NS,
ZE, PS, PM, PB are selected for both s(t) and P where,
N stands for negative, P positive, B big, M medium, S
small and ZE zero. These are all Gaussian membership
functions defined by considering to the following
equation:

aCe) = expl— (227, (51)

In which, “*A”’ represents one of the fuzzy sets NB, ...,
PB and x; denotes s(t) or P. 9 is the center of ‘*‘A”” and
o is the width of ““A’’. In spite of the fact that the
membership functions for s(¢) and P have the similar
titles, proportionally, the values of the center and the
width of the membership function with a similar title
for s(t) and P are different; respectively. The

(49)
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parameters of the membership functions of P are
updated online insomuch, those of s(¢) have predefined
quantities. Therefore, the controller is an adaptive
controller.
According to the definitions of the input and output
membership functions and base on the above discussed
topics, the following rules could be determined as the
rule base:

if s(t) is NB then P is NB

if s(t) is NM then P is NM

if s(t)is NSthenPis NS

if s(t)is ZE then P is ZE (52)

if s(t) is PS then P is PS

if s(t) is PM then P is PM

if s(t) is PBthen P is PB .
In addition, on the basis of our knowledge of fuzzy
systems and considering the equations (40) and (42),
fuzzy gain P can be written as follows:
YR O))

— T
p T ©) §T¥(s(1), (53)
Where M is the amount of the rules.
And also, E=[&1, -, &L, EMT, Y(s(t) =

[W(s(O)L, -, P(s(0), -, P(s()™]” and W(s(t))! denoted
as follows:

V()" = [mn gt (50)/ZH Tl by (5C0) (54)

& is chosen as a parameter to be updated and for this
reason it is called the parameter vector. W(s(t)) is
known as the function basis vector and can be intended
as the weight of the parameter vector. Next, define &*
so P = &Tw(s(t)) is the optimal compensation for af.
According to the Wang’s theorem [43], there exists
B > 0 which satisfies the following inequality:

Af =P =Af —&T¥(s() < B, (55)
In the mentioned inequality, g is approximation error
and it can be as small as possible. After that, define:

f=¢-¢, (56)
According to equations (53) and (56) it is concluded
that:

P =EMP(s(6) + & TW(s(1)) - (57)
When all the details of designing adaptive fuzzy
control are analyzed, for the design it, the candidate
Lyapunov function is modified and the equation (45) is
rewritten as follows:

V(s(®) = 55" OM@s(0) +-§7¢, (58)
In which, € is a constant parameter that is greater than
zero. Equation (58) is differentiated with respect to the
time and the following equation is obtained:

V(s(t) = sTOM@3() + 5sT(OM(@)s() + (59)

—ErE+ 79,

Based on equations (8), (47) and (48), simplifying
equation (59) results in:

() 71 s e 2sloi 033, faz s ] S 55U 5 3 posits o oo

V(s(t) = sT®[Af —P —a] + éf'Té, (60)

Equation (57) is substituted in equation (60) and the
result is rewritten as follows:

V(s@®) =sT®O[af = TP (s@®) — TP (s(t) —a] +

(61)
Lere,
Then, equation (61) is reorganized as follows:
V(s = sTO[Af = £TW(s®) — a] + ET[2€ - 2

STOP(s®)]

According to equation (62), the adaptive rule could be
selected as follows:

§=es"(OP(s(O) (63)
By choosing the aforementioned adaptive rule,
equation (62) is simplified as follows:

V(s(t) = sT®[af — & (s®) —a] , (64)

With respect to equations (55) and (64) it is concluded
that:

V(s(®) < B - a)lls"®Il, (65)
Equation (65) demonstrates that by properly choosing
the coefficient a, V(s(t)) < 0 is satisfied. Accordingly,
the closed-loop system with adaptive fuzzy sliding
mode control is globally asymptotically stable in
presence of all structured and unstructured
uncertainties. Finally, to summarize our discussion, the
proposed control input is expressed as follows:

u=i—-a—"~P

=W (M@, +C(q, i, + Aq,9)

P=¢"P(s(t)

E=esTOY(s®).
Point 5: In the proposed control, although the vector P
is updated during the control of the camera stabilizer,
there are coefficients such as o, € and the coefficients
of the sliding surfaces in the proposed control which
should still be adjusted using trial and error method.
The suitable choice of these coefficients has a
considerable effect on the reduction of the tracking
error as well as the amplitude of control input.
Therefore, in the next section, it is attempted to adjust
these coefficients via chicken swarm optimization
algorithm.

(66)

3.4. Chicken
Algorithm

In this section, a novel bio-inspired algorithm, Chicken
Swarm Optimization (CSO) [44], is studied. To
mathematical development of the CSO, chickens’
behaviors is idealized by the rules stated below:

1. Several groups is available in the chicken swarm.
Each group possesses a predominant rooster, a pair
of hens and chicks.

2. How to distribute the chicken swarm to various
groups and specify the certain identity of the
chickens (roosters, hens and chicks) all depending
on the physical fitness values of the chickens
themselves. The chickens with best various

Swarm Optimization
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physical fitness values would be acted as roosters,
either one of which would be the head rooster in a
specified group. The chickens with weakest fitness
values would be determinate as chicks. All the
others would be hens. The hens at random select
which group to live in. The mother-child
relationship between the hens and the chicks is as
well as accidentally specified.

3. The hierarchical regularity, overlord relationship
and mother and child relationship in a group will
remain without changes. These situation just update
every various (G) time steps.

4. Chickens pursue their group- helpmate rooster to
seek food, whereas they may rebuff the ones from
eating their own food. Consider chickens would at
random grab the good food formerly obtain by
others. The chicks search for food surrounding their
mother. The predominant individuals have
excellence in rivalry for food.

Suppose RN, HN, CN and MN demonstrate the
number of the roosters, the hens, the chicks and the
mother hens, respectively. The best RN chickens
would be supposed to be roosters, whereas the weakest
CN ones would be considered like chicks. Others are
under treatment, as hens. All N figurative chickens,
portrayed by their special positions x{; (i€
[1,..,N],j €[1,..,D]) at time step t, looking for food
in a D-dimensional space. In these situations, the
optimization problems are the minimal of those.
Hence, the best RN chickens is equivalent to the ones
with RN minimal physical fitness values. The roosters
with superior physical fitness values have precedence
for food accessibility than the ones with worse physical
fitness values. To simplify the expression of issue, this
item can be simulated with the condition that the
roosters with better physical fitness values can looking
for food in a broader range of places than that of the
roosters with weakest fitness values. This can be
formulated as:

Xl =l (1 + Randn(0,7?)) . (67)
1 , if  fi<fe )
v?= ex; (—(fk_m) otherwise ’ k€N k#i . (68)
PUiaer)

Which Randn(0,v?) is a gaussian distribution with
mean 0 and standard deviation V2. I" which is utilized
to prevent zero-division-error, is the smallest constant
value in the computer. k a rooster’s indicator, is at
random chosen from the roosters group, f is the
physical fitness value of the corresponding x
parameter.

But about the hens, they can pursue their group-
helpmate roosters to looking for food. Furthermore,
they would also haphazardly rob the good food
detected by other chickens, although they would be
suppressed by other chickens. The more prominent
hens would have benefit in competition for food than
the more docile ones. These expressed phenomenon

can be formulated mathematically as follows:

Y

x{f' = x{; +Zy * Rand = (x;,_; — x{;) + Z, * Rand =

"’ (69)
(7,5 = xip) -
Z, = exp((f; — f,) /(abs(f;) + ) . (70)
Zy = exp(f, - f;) - (71)

In which Rand is a monotone random number in
the range of [0, 1]. , € [1,..,N] is an indicator of the
rooster, which is the i hen’s group-helpmate, while
r, € [1,..,N] is an indicator of the chicken (hen or
rooster), which is at random selected from the swarm.
r, # 1, . Itis obvious that, f; > f. and f; > £, thus Z, <
1< Z, . Suppose Z; = 0, then the i"" hen would fodder
for food only followed by another chickens. The
paramount the difference of the two chickens’ physical
fitness values, the lesser Z, and the bigger the split
between the two chickens’ positions is. Therefore the
hens would not comfortably rob the food found by
another chickens. The sake that the formula form of z,
distinct from that of Z, = 0 is that there exist rivalries
in a group. For simplicity's sake, the physical fitness
values of the chickens compared to the physical fitness
value of the rooster are simulated as the rivalries
between chickens in a group. Suppose Z, = 0, then the
i hen would fodder for food in their own scope. For
the specified group, the rooster’s physical fitness value
is distinctive. Therefore the lesser the i hen’s physical
fitness value, the closer Z, approaches to land the
lesser the split between the positions of the i hen and
its group-helpmate rooster is. Therefore the more
predominant hens would be more probable than the
more docile ones to eat the food. The chickens move
around their mother to fodder for food. This concept is
formulated as follows:

Xt =xf; + FL* (xf; — x{}) . (72)
In which xf, ; signify the position of the i chick’s
mother(m € [1,N]). FL(FL € (0,2)) is a parameter,
which denotes that the chick would pursue its mother
to fodder for food. Consider the exclusive distinctions,
the FL of each chick would at random choose between
0 and 2. The framework of the CSO is expressed in
[44].

4. Design's  process
proposed control

In this section of the paper, the details of

implementation of the proposed control is discussed.

To implement this control method, the following steps

should be pursued:

1. Determination of the tracking errors e, (t) and e, (t).

2. Determination of the sliding surfaces, through the
initial choice of the constant and positive values of
Ay and A,.

3. Determination of ¢, and g, through equations (16)
and (17).

4. Determination of the estimated dynamics W1,
M(q), C(q,q) and H(q, q). In this case, the vector
in the input of the proposed control is determined.

steps of the
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5. [Initial determination of the constant and positive
coefficient &; and &,.

6. Determination of the membership functions of the
sliding surfaces and determination of W(s(t))!
through equation (54). In this case, the vector
Y(s(t)) is determined.

7. Determination of the vector ¢ through integrating
equation (63).

8. Determination of the vector P through equation
(53) and initial determination of the vector of
coefficients a according to the information

available from the bounds of the uncertainties of
the system.

9. Use of chicken swarm optimization algorithm to re-
determine the optimal values from the entries of the
vectors 1, € and a.

5. Simulation results

In this section of the paper, simulations in four steps
are applied on the camera stabilizer to investigate the
performance of the proposed controllers. In these
simulations, the matrix of the inertia moment of the
links 1 and 2 is considered according to table 1.

Table. 1. Moment of inertia matrices of camera stabilizer links

N . . 4.0088 0.0124 0.0469
Moments of inertia 1;1Caltr1x of link 1 [0'0124 44970 0.0092|Kg.m?
0.0469 0.0092 2.5414
N . . 0.1104 0 —0.0116
Moments of inertia r[réz;trlx of link 2 [ 0 0.1117 0 Kg.m?
—0.0116 0 0.0074

Furthermore, the parameters of the electrical motors 1
and 2 are specified according to Table 2. It is worth
remembering that the angular position of the electrical

motor 1 determines azimuth angle and the angular
position of the electrical motor 2 determines angle of
sight.

Table. 2. Parameters of permanent magnet dc motors

Jm, = 0.000146 Jm, = 0.0001 Jm, = 0.000155 Jm, = 0.00011
B, = 0.2276 B,,, = 0.0721 B, = 0.2286 B,,, = 0.0732

K, = 119 K, = 25.6 Ky, =125 K, = 28.6

K, =27 K,, = 0.274 K, =28 K,, = 0.288

R, =0.176 R, = 0.4695 R, =0.186 R, =047

7 =0.011 r, =0.178 7 =0.0111 7, = 0.182

L, =0.08 L, = 0.04 L, =0.085 L, =0.045
Point6: T, , Jm, B, + B, + Kin, s Kin,  Kry Ky, Ry 0.02
R,,# ,% , L, and L, are the estimations from the actual S
quantities of J,.,, , Jm, » Bm, » Biny + Ky » Ky » K 4 Koy & 0.015
Ry, Ry , 71,1, Ly and L, which have been used in E T
calculation of . S99 foom — -
The assumed values of disturbances or un-modeled ‘g ] o
dynamics are considered as T,, =5 and T,, = 2. The F%9% 4 oo
quantities of parameters in controller (25) which have i OO g zdoz  aios

0 2 8 10

been used in this simulation are presented in Table 3.

Table. 3. Parameters of controller (25)

k;=10
=50

k,=5
A,=30

5.1. Step 1 of simulation (SMC)

In step 1 of simulation, sliding mode control of
equation (25) is applied for camera stabilizer. After
performing the simulation, desired and actual
trajectories have been shown in figure 3. It is worth
mentioning that the desired trajectory begins at

(qlo ’ QZO) = (0 ’ 0)

W“ Ol = 0, 8 jlowd —o23 )0 Sl — 2l Sig U 5 (32 Cymiie (o2l oo

Yy

4 6
Time (Sec)

(a) Desired and actual trajectory for azimuth angle
0.0871| ]
0.0871}‘ h % ‘

0.0871] 27 l

°
N

Actual Trajectory —— 0.0877] N

L LN\ ]
= 8.3482 8.3483 8.3483 8.3483
< Desired Trajectory =====« X
e 0.1 Ay
= ) g
3
2 o
S
=3
<
Sn-0.1
=]
-

% 2

4 6 8 10
Time (Sec)

(b) Desired and actual trajectory for angle of sight

Fig. 3. Desired and actual trajectories for joints 1 and 2
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Tracking errors of joints 1 and 2 are shown in figure 4.

sx 10

Azimuth angle error —

Tracking Errors (Rad)

2 4 6
Time (Sec)

Fig. 4. Tracking errors of the joints 1 and 2, in sliding
mode control

According to figures 3 and 4, it is evident that the
precise tracking in joints 1 and 2 have been occurred,
such that the maximum tracking error for azimuth
angle and angle of sight are 13.5 x 107* Rad and 5.17 x
1075 Rad , respectively. Figure 5 shows control inputs
for azimuth and elevation motors.

W
o

N
o

-
=]

a
o

Voltage of Motor 1 (Volt)
S °

&
)

o 2 4 6 8 10
Time (Sec)
(a) Exerted control input to motor 1

10
3
Z s
o
s
s
=
e
=3
&
5
3
-

4 6 8 10
Time (Sec)

(b) Exerted control input to motor 2

Fig. 5. Exerted control inputs to motors 1 and 2, in sliding
mode control

As can be seen in figure 5, the chattering domain of
exerted control inputs to motor 1 (azimuth motor) and
motor 2 (elevation motor) are 0.26 to 42.17 volts and
0.68 to 12.35 volts, respectively. This chattering can
lead to the activation of the nonlinear dynamic modes
of the camera stabilizer and erosion of the azimuth and
elevation motors, and finally causes instability in the
control system and damage to the physical structure of
the camera stabilizer. In addition, as it is understood
from figure 8, the maximum of input voltage amplitude
of motors 1 and 2 are 23.78 volt and 6.27 volt,
respectively. In figure 6, the chattering of the sliding
surfaces s; and s, is obvious.

Y

0.02 Sliding Surface 1 — |
Sliding Surface 2 -======
2 e LT
% V x10° 1] U
= -0.02
w2
o0 0.5 i
= z
= -0.04 e
@
-0.06 0.5
2 3
20:08 2 8 10

4 6
Time (Sec)

Fig. 6. The sliding surfaces in sliding mode control

According to equations (25), (26) and (32) it is
evident that knowing the bounds of structured and un-
structured uncertainties (Af) has a significant role in
determining the coefficients of the vector K and finally
in determining the stability of the closed-loop system.
Thus Af is shown in figure 7.

Delta f 1
S A N o N s o

:
P

2

4 6 8 10
Time (Sec)

(a) All structured and un-structured uncertainties for
joint 1

Delta f2

4 6
Time (Sec)

(b) All structured and un-structured uncertainties for
joint 2

Fig. 7. All structured and un-structured uncertainties

According to figure 7, it is obvious that the bounds
of structured and un-structured uncertainties for the
joints 1 and 2 are completely specified. For this reason,
the equation of ||Af;|| can be depicted in joints 1 and 2
as in figure 8.
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(a) llaf |l for joint 1 (i=1)
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S N U )
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Norm?2 of ( Delta f2)
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P
~

4 6
Time (Sec)

(b) llaf;ll for joint 2 (i=2)

Fig. 8. ||Af;|l for joints 1 and 2 (i=1,2)

According to figure 8 and equation (32), the
allowed range for determining the coefficients of the
vector K is completely specified. On the other hand,
according to table 3 and the values of the control
parameters mentioned, it can be concluded that the
values of K; and K, are truly determined and used in
the structure of the control system. Next, according to
the mentioned values of k; and K, the diagram of the
changes in Ksgn(s(t)) in terms of time is plotted in
figure 9.

5
0

5]

0

5

K1*sgn(S1)

1
1
-1

0

-15

o
N

4 6
Time (Sec)

(a) The control gain K,sgn(s4(t))
10

5|.-.-
-5

-10

K2 *sgn(S 2)
(=]

=)
N

4 6
Time (Sec)
(b) The control gain K,sgn(s,(t))

Fig. 9. The control gain Ksgn(s(t)), in sliding mode
control
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According to figure 9, high chattering and non-
smooth variations in the diagrams of K;sgn(s,(t)) and
K,sgn(s,(t)) is observed. In the next step of simulation,
to overcome the adverse chattering phenomenon in
control inputs, fuzzy sliding mode control input is
applied and simulated for camera stabilizer.

5.2. Step 2 of simulation (FSMC)

After applying the fuzzy sliding mode control input to
camera stabilizer, simulation is executed. Tracking
errors of joints 1 and 2 are shown in figure 10.

By comparing figures 4 and 10, it is obvious that a
more precise tracking in comparison with the previous
step of simulation is conducted in joints 1 and 2, such
that the maximum tracking error in azimuth and
elevation are 11x10™°Rad and 5.1x107°Rad
respectively. In figure 11, the applied control inputs to
the azimuth and elevation motors are displayed.

5
2X 10
B O
& 2 :
@ Azimuth angle error
H 4 - Angle of sight error -eaee---. 1
> 10
= f
6 |
é" 0
o -8 -2
£ 4
= -10 5
"% 2 8 10

Time (Sec)

Fig. 10. Tracking errors of the joints 1 and 2, in fuzzy
sliding mode control
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(a) Exerted control input to motor 1
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(b) Exerted control input to motor 2

Fig. 11. Exerted control inputs to motors 1 and 2, in fuzzy
sliding mode control

According to figure 11, it is observed that the
control inputs have negligible chattering in a limited
time intervals. In addition, the maximum input voltages
of the motors 1 and 2 are 19.6 Volt and 4.96 volt,
respectively. According to the remarks stated in section
3-2, the adaptive fuzzy sliding mode control input is
applied to the camera stabilizer in the next step of the
simulation.

5.3. Step 3 of simulation (AFSMC)

In this step of simulation, according to Table 4, entries
of vectors € and « are adjusted.

Table. 4. Quantities of controlling parameters e, , ¢, , a,
and a, utilized in adaptive fuzzy sliding mode

€,=5 €,=52

o, =473 a,=3.42

After applying input of the adaptive fuzzy sliding
mode control to the camera stabilizer, and conducting
the simulations, the results are presented as follows:

After performing the simulation, the diagram of the
variations in the vector P in terms of time is plotted in
figure 12.

4

2

P1
S A =)

&

4 6
Time (Sec)

(a) The fuzzy gain P4

Yo

4 6
Time (Sec)

(b) The fuzzy gain P,

Fig. 12. The fuzzy gain P, in adaptive fuzzy sliding mode
control

By comparing figures 9 and 12, lack of chattering
and smooth approximation of the control gains P; and
P, is observable. This suitable approximation shows
that the adaptive fuzzy system functions satisfactorily
and has specified the bounds of the existing
uncertainties. Tracking errors of joints 1 and 2 are
shown in figure 13.

x10°
J

Azimuth angle error

Tracking Errors (Rad)

735——4 0404505 Angle of sight error ...
4 6 8 10
Time (Sec)

Fig. 13. Tracking errors of the joints 1 and 2, in adaptive
fuzzy sliding mode control

By comparing figure 13 with figures 4 and 10, the
considerable reduction of the tracking error in this step
of the simulations is remarkable. The maximum
tracking error in the azimuth is 11.6 X 107 Rad and in
the elevation, it is 8.9 x 1077 Rad. Figure 14 shows
exerted control inputs for azimuth and elevation
motors.

20 e

15

10

5

Voltage of Motor 1 (Volt)

4 6
Time (Sec)

(a) Exerted control input to motor 1
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Voltage of Motor 2 (Volt)
(=]

a 6
Time (Sec)
(b) Exerted control input to motor 2

Fig. 14. Exerted control inputs to motors 1 and 2, in
adaptive fuzzy sliding mode control

According to figure 14, it is clear that control inputs
have no chattering. In addition, the maximum
amplitude of the input voltage of motors 1 and 2 are
18.4 Volt and 4.46 Volt, respectively. Figure 15 shows
the sliding surfaces s; and s,.

0.4
0.2
0

[

Sliding Surfaces
5 b
»

s 5
® o

|Sliding Surface 1

‘Sl‘iding Surface 2 -------
8 10

a
o
N

4 6
Time (Sec)

Fig. 15. The sliding surfaces in adaptive fuzzy sliding
mode control

By paying attention to figure 15 and comparing it
with figure 6, it is evident that the sliding surfaces s,
and s, have no chattering and have smooth vibrations
around the zero sliding surface. As was predicted, in
this step of the simulations with smooth and desirable
approximation of vector P, the control targets such as
lack of the chattering of the control input and minimum
tracking error, to a great extent are more favorable
compared to the previous steps of simulation.
However, it should be remembered that in addition to
the vector P, the suitable choice of the coefficients of
vector ¢ can lead to far more precise tracking and lower
tracking error. Therefore, to investigate the effect of
different values of the vector ¢ in decreasing the
tracking error, different values of the coefficients of the
vector ¢ is used in the adaptive fuzzy sliding mode
control of camera stabilizer according to table 5.

Table. 5. Quantities of ¢, and &, utilized in adaptive rule
of equation (63)

1 g, =10 g, =125
2 e, =112 e, = 1100
3 g =543 e, = 5420

In three steps, different values of the coefficient of
vector ¢ is applied to the adaptive fuzzy sliding mode

W“ Ol = 0, 8 jlowd —o23 )0 Sl — 2l Sig U 5 (32 Cymiie (o2l oo

control input structure of the camera stabilizer. After
executing the simulation, tracking errors of joints 1 and
2 are indicated in figure 16.
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=
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e
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= _g AR epsilon 1 =112 ; epsilon 2 =1100 —==ncmmn
A W Lol || . "
psilon 1 =543 ; epsilon 2 = 5420
q5. 18 2 22
0 2 8 10

4 6
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(a) Tracking errors for various quantities of ,.and ¢, in
azimuth angle

epsilon 1 =10 ; epsilon 2 =125

Tracking Errors (Rad)

4 6
Time (Sec)

(b) Tracking errors for various quantities of e,and ¢, in
angle of sight

Fig. 16. The tracking errors for various quantities of
g,and g, in azimuth angle and angle of sight

By concentrating on figure 16, the reduction of the
tracking error in the joints 1 and 2 is observable by the
increase in the control coefficients of ¢; and ¢,. As it is
evident, by applying e =543 and e, = 5420, the
minimum tracking error results is obtained such that in
this case, the maximum tracking error is 3.47 x
1077 Rad in the azimuth and 3.44 x 1078 Rad in the
elevation. According to figure 17, by applying these
coefficients of the vector &, despite the considerable
reduction in the tracking error, the amplitude of control
inputs has not substantially increased.

Voltage of Motor 1 (Volt)

a 6 8 10
Time (Sec)

(a) Exerted control input to motor 1
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(b) Exerted control input to motor 2

Fig. 17. Exerted control inputs to motors 1 and 2 for
g, =543 and g, = 5420

So far in previous three steps of simulation, a
constant quantity of disturbance is applied to the
camera stabilizer. In the next step of simulation, to
establish more challenges in performance of controller
and also to test the robustness of the adaptive fuzzy
sliding mode control against disturbances, the control
system is challenged and external time varying
disturbances are applied to the camera stabilizer.

5.4. Step 4 of simulation (OAFSMC)

In this step of the simulation, to show the impact of
control input coefficients on the performance of
adaptive fuzzy sliding mode control, the controller
parameters ¢ , A and « are searched and adjusted in the
allowable range by the CSO algorithm. The related
parameters of the CSO algorithm are listed in table 6.

Table. 6. The related parameter values of CSO algorithm

RN =0.18 * N HN = 0.63* N
CN =N—RN—HN MN =0.11+ N
G =13 FL € [0.33,0.85]

The optimal values of control input coefficients are
presented in table 7.

Table. 7. Quantities of controlling parameters e, A
and « utilized in optimal adaptive fuzzy sliding mode

e, =504 e, = 4960
A, =39 A, =24
a, = 4.28 a, =3.16

Until now in all steps of simulation, a constant
quantity of disturbance (T,, = 5 and T,, = 2), is applied
to the camera stabilizer. In this step of the simulation,
to test the robustness of the proposed control system
against disturbances, the closed-loop control system is
challenged and disturbances are applied to the camera
stabilizer as indicated in figure 18.

v

Td1 & Td2 (NM)

4 5 6
Time (Sec)
Fig. 18. Exerted challenging disturbances to the camera
stabilizer

To clarify the design of the optimal adaptive fuzzy
sliding mode control for the camera stabilizer, the
diagram block of the closed-loop system is depicted in
figure 19.

Camera Stabilizer

G0 &G &G &G &G, Geared DC

T2 Motors
I Chicken Swarm Optimization Algorithm
Derd Optimal Controlling Parameters Controlling Parameters
Tty (£, 6& A M & ap,a))  (8,5,&A4,,0,&a,q,)
Adaptive Fuzzy Sliding Mode
v iR )
1a& 18 e Controller vz
208 G2a& i, [ Vi
924%924% Q24 &y T, s
9:&4; i

Fig. 19. The schematic diagram of optimal adaptive fuzzy
sliding mode control (step 4 of simulation)

After executing the simulation, tracking errors of joints
1 and 2 are shown in figure 20.

4x 107
3 os]=
=t
®
R e
=
.%0—0.5 % e
2 8. =
£ F
b= 0 ]
<l 2 1.2 1 4‘ Angle of sight error --------,
% 2 4 6 8 10

Time (Sec)

Fig. 20. Tracking errors of the joints 1 and 2, in optimal
adaptive fuzzy sliding mode control, by applying
disturbances are shown in Fig. 18

By comparing figures 16 and 20, it is concluded
that the adaptive fuzzy sliding mode control has
functioned satisfactorily and has considerably reduced
the tracking error in joints 1 and 2. So that in this case,
the maximum tracking error in azimuth and elevation
are 6.98 x 1078 Rad and 5.2 x 107° Rad , respectively.
Figure 21 shows the control inputs.
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Fig. 21. Exerted control inputs to motors 1 and 2, in
optimal adaptive fuzzy sliding mode control, by applying
disturbances are shown in Fig. 18

According to figure 21, it is clear that control inputs
are free-of-chattering. On the other hand, the maximum
amplitude of the input voltages of motors 1 and 2 are
17.8 Volt and 4.23 Volt, respectively. Therefore, by
comparing figure 21 with figures 17, 14, 11 and 5, we
can conclude that the control inputs in this step of the
simulation have the lowest amplitude and completely
lack chattering. To wrap up the issues presented in
section 5 of this paper and also to compare the results
of the four-step simulations, four important control
factors including the maximum tracking error for the
joints 1 and 2, Euclidean norm of errors vector and the
maximum amplitude for the control inputs as well as
the chattering domain of control inputs for the
proposed controllers are displayed in table 8.
According to table 8, desirable performance of the
proposed controller can be concluded.

Table. 8. Comparison of the simulation results

Control Method Maximum Tracking Euclidean Norm of Maximum Amplitude of ~ Chattering Domain of
Errors (Rad) Errors Vector (Rad) Control Inputs (Volt) Control Inputs (Volt)
e; =13.5x107* _ 4 {V1 = 23.78 {Vl - 0.26 To 42.17
! SMe {ez —517x10-5  NEI=1351%10 V, = 6.27 V, - 0.68 To 12.35
e, =11x107° B . {Vl =19.60 .
2 FSMC {ez —51x10-6 E]| = 11.01 x 10 V, = 4.96 Very Negligible
AFSMC =11.6 x107° V, = 18.40 .
31 (£ =5 &€ =52) {:1 B 89(6) i 18_7 |IE|l = 11.63 x 1076 {Vlz — 446 Free of Chattering
1 2 2= O .
AFSMC e, =347 x1077 _, V, = 21.50 .
3-2 (=543 & &, = 5420) {ez = 3.44 % 10-° [IE]l = 3.487 x 10 {Vz _c3s Free of Chattering
e, =6.98x107° B g Vv, =17.80 .
4 OAFSMC {ez e0n1oe  NIEI=6999x10 {Vz s Free of Chattering

6. Advantages of the proposed control

In the design of the proposed control, there are some
creativities and innovations which are mentioned
below:

1. In the proposed control, the bounds of the existing
uncertainties are decreased by  accessing
information of the system dynamics via the vector
u.

2. Using the vector @ leads to the reduction of the
opposite effects of the joints g, and q,. Therefore,
by designing two independent controllers, we can
control this two-input, two-output system.

3. To estimate the bounds of the remaining
uncertainties, the rule base of the adaptive fuzzy
system has seven single-input, single-output fuzzy
rules. Since the system has only one adaptive rule,
the volume of calculations of the control input is
minimal. Hence, low-speed and inexpensive

“““ Ol = 0, 8 jlowd —o23 )0 Sl — 2l Sig U 5 (32 Cymiie (o2l oo
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processors can be used in the practical
implementation of this control. On the other hand,
since the vector P is determined through the
adaptive fuzzy system, the bounds of the remaining
uncertainties can be satisfactorily estimated and the
amplitude of control input would have smooth
changes; moreover, abrupt changes in the control
input are prevented.

4. In most of the controllers designed for the camera
stabilizer, some coefficients are considered in the
controllers through which the tracking accuracy of
the closed-loop system can be improved. However,
this accuracy in tracking conjoins the increase in
the amplitude of control input. Therefore, motors
having high powers are required in the practical
implementation of these controllers. In the design
of the proposed control, the coefficient ¢ is taken
into account. The increase in this coefficient can
enhance the increase in tracking precision of the
closed-loop system. However, an increase in this
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coefficient has a negligible effect in the increase of
the amplitude of control input. This fact is
demonstrated in the simulation section.

5. CSO algorithm is used in selecting the input
coefficients of the proposed control. Therefore, the
choice of these optimum coefficients prevents the
increase in the amplitude of control input.

6. The proposed control has a small input amplitude
and lacks the unfavorable phenomenon of
chattering. The closed-loop system with the
proposed control in the presence of uncertainties
has global asymptotic stability.

7. Conclusions

In this paper, for controlling camera stabilizer a
voltage-base optimal adaptive fuzzy sliding mode
control was presented. At first, the known terms of
dynamic equations of camera stabilizer was eliminated
by utilizing inverse dynamic method. Afterwards, for
the sake of overcoming the remaining uncertainties
such as un-modeled dynamics and external
disturbances, a voltage-base sliding mode controller
was designed. Although the closed-loop system with
the sliding mode control has a global asymptotic
stability in the presence of the existing uncertainties,
due to the use of the sgn(*) function in the control
input, the occurrence of the unfavorable chattering
phenomenon in the control input is unavoidable. To
eliminate the unfavorable phenomenon of chattering,
by using the fuzzy logic, a fuzzy sliding mode
controller was proposed. Although proposed controller
prevents the chattering phenomenon in the control
input, choice of the coefficients of the control input
should still be done using trial and error method. On
the other hand, the proposed fuzzy sliding mode
control lacks proof of the closed-loop system stability.
In the following, to resolve the above problems, by
using the fuzzy logic and concepts of the adaptive
control, a voltage-base adaptive fuzzy sliding mode
controller was proposed. In the proposed control, due
to use of the adaptive fuzzy approximator, some of the
most important coefficients of the control are updated
by the adaptive rule; thereby, the possibility of
chattering in the control input is eliminated. The
mathematical proof reveals that closed-loop system
with proposed control in the presence of structured and
un-structured  uncertainties, will possess global
asymptotic stability. Ultimately, to access an optimum
controller, other values of the control input coefficients
are adjusted by the chicken swarm optimization
algorithm. In the design of the optimal adaptive fuzzy
sliding mode control, some points are considered
which facilitates the practical implementation of this
control method. Simulation results demonstrate the
favorable performance of the proposed control.
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