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Abstract:

This paper presents a design procedure for an
adaptive power management control strategy based
on a driving cycle recognition algorithm. The design
goal of the control strategy is to minimize fuel
consumption and engine-out NOx, HC and CO
emissions on a set of diversified driving schedules.
Seven facility-specific drive cycles are considered to
represent different driving scenarios. For each
facility-specific drive cycle, the fuel economy and
emission are optimized and obtained proper split
between the two energy sources (engine and electric
motor). A driving pattern recognition algorithm is
subsequently developed and used to classify the
current driving cycle into one of the facility-specific
drive cycles, thus, the most appropriate control
algorithm is adaptively selected. This control scheme
was tested on a typical driving cycle and was found to
oper ate satisfactorily.

Keywords : Hybrid vehicle, torque distribution, fuzzy
rule base, neural network, drive cycle.

1. Introduction

A hybrid vehicle, using a combination of an internal
combustion engine and electric motor, is an important
concept to improve fuel economy and to reduce emission
of vehicles as well. Therefore, Hybrid electric vehicles
(HEVs) have great potential as new alternative means of
transportation.

Design and implementation of HEV's present a number of
chalenging problems. The objective of the power
management control strategy is to develop a near optimal
power management strategy that determines the proper
power split to minimize the fuel consumption and
emissions of the hybrid vehicle. In addition, the control
strategy also needs to ensure that the power demand from
the driver is satisfied and the state of charge (SOC) in the
battery is maintained within a pre-determined range under
all driving conditions. The main challenge of the power

management problem arises from the complex and
coupling nature of sub-system efficiencies, together with
the diverse driving scenarios. In particular, management
of energy and digribution of torque (power) are two of
the key issues in the development of hybrid eectric
vehicles[1]-[5].

These issues can be summarized as follows:

1- How to meet the driver's torque demand while
achieving both satisfactory fuel consumption and
emissions.

2- How to maintain the battery state of charge (SOC) a a
satisfactory level to enable effective delivery of torque to
the vehicle over awide range of driving stuations.

In order to address these issues, an extensive set of
studies has been conducted over the past two decades [1]-
[16].

In particular, some logic based control strategies for
distributing power demand have been suggested in Refs.
[1]-[6]. These approaches are adopted mainly due to their
effectiveness in dealing with problems appearing in the
complexity of hybrid drive train via both heuristics (and
human expertise) and mathematical models. However,
these approaches generaly do not address the driving
Situation that may affect the operation of the vehicle.

As noted in Refs. [7]-[9], the application of optimal
control theory to power distribution for hybrid vehicles
appears promising. In addition, a number of studies,
dating back to 1980s, have focused on the application of
dynamic programming to HEV's [10]-[11]. These and the
aforementioned optimal control strategies are, however,
generally based on a fixed drive cycle, and as such do not
deal with the variability in the driving situation.

In view of this issue a number of alternative approaches
have been proposed in the literature [12]-[13]. In
particular, [14] formulated a drive cycle dependent
optimization approach that selects the optimal power split
ratio between the motor and the engine according to the
characteristic features of the drive cycle.

With noting to their selective drive cycles that may not
track any chosen pattern, the risk of misclassification may
be high. Furthermore, they didn't mention anything about
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initial condition at the start times of vehiclé€'s driving,
thelir results may be far from optimal results.

Ancther issue explained in [15],[16] is Intelligent Energy
Management Agent (IEMA) that includes a driving
situation identifier whose role is to identify the roadway
type, the driving style of the driver as well as the current
driving mode and trend. This information is subsequently
integrated in afuzzy |l ogic based torque. Because of using
the experimental results to generate fuzzy rules, there
isn't any indicator to show how much it works optimally.
Hence, the concept of fuel consumption and emission in
hybrid vehicles is very senditive to a drive cycle. So, if
the driving control strategy of HEV is not suitable for a
current drive cycle, vehicle performance can be worse
than that of a conventional vehicle.

In this paper, there are three man topics. Fird, we
develop an algorithm to cluster a current drive cycle as
one of nine facility- specific drive cycles by using a
neural network. Second, we introduce a control agorithm
that adapts the driving control strategy to a current drive
cycle using the driving cycle identifier. Third, if during
the first 150s of driving, driving data is not sufficient to
extract a rich set of driving information, we develop an
algorithm to identify initial conditions.

In order to show the effectiveness of the proposed control
dtrategy, we run some simulations. The results are
promising. Finally, conclusions are drawn in the last part
of the paper.

2. Selection of Seven Facility-Specific
Drive Cycles

2.1. Facility-Specific Drive Cycles

we adopted a set of eleven drive cycles developed in
Sierra Research Inc.[15],[17], each of which has its own
facility-specific characteristics (for operation over arange
of facilities on congestion levels, LOSY).

In [17], authors claimed the original area-wide cycle
concept was to develop a family of composite driving
cycles to represent overall travel within urban areas with
different levels of congestion and average speed (facility-
specific drive cycles).

We used these cycles to identify current drive cycle but
some misclassification were occurred. So, we calculate
their correlation to choose quasi-independent facility
specific cycles. In order to do that, we should build
characteristic parameters vector by using Table 2 (in
section 2.2) for each facility-specific drive cycles and
calculate their correlation (see Table 1).
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Regard to Table 1 , we can choose the drive cycles

having correlation value more than "0.5" to be the same
cycle. This threshold is selected in order to have enough
drive cycles while they are quasi-independent. For
example , cycle 2 can be considered as representative of
cycles 1, 2, 3 and cycle 5 is representative of cycles5, 6
and cycle 11 is representative of 10, 11. Furthermore we
will use only seven facility specific cycles instead of
eleven cycles (see Fig. 1.).
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Fig. 1: Facility-specific driving cycles

2.2. Characteristic Parameters of aDrive
Cycle

The mission of this part is to extract the key statistical
features, or characteristic parameters of the driving
pattern. While according to Ericsson [18] up 40
characteristic parameters may be extracted from a given
drive cycle such as average speed, average acceleration
and etc.(see Table 2).
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Table 2: Driving pattern parameters that were calculated
for each driving cycle, v = speed , a = accderation , r =
decderation ,Ericsson [18]

Driving cycle parameter

Average speed

% of time 2.5>a>1.5,

m/s?

Standard deviation of

% of time 1L.5>a>1, m/s®

speed

Average acceleration % of time 1>a>0.5, m/s”
Acceeration Standard % of time 0.5>a>0, m/s”
deviation

Average deceleration % of time 0>r>-0.5, m/s”

Decel eration Standard
deviation

% of time-0.5>r>-1,

m/s?

Number of adjacent max
and min values of the
speed curve>2km/h per
100s

% of time -1>r>-1.5,
m/s?

Number of adjacent max
and min values of the
speed curve>2km/h per
100m

% of time—-1.5>r>-2.5,
m/s?

Number of adjacent max
and min values of the
speed curve>10km/h per
100s

% of timer<-2.5, m/s’

Number of adjacent max
and min values of the

% of time speed <2km/h

speed curve>10km/h per

100m

Relative positive Average stop duration
acceleration

Theintegral of Number of stops per
acceleration kilometer

% of time O<v<15, km/h

% of time when (v.8)<0

% of time 15<v<30, km/h

% of time when (v.a) is
0-3

% of time 30<v<50, km/h

% of timewhen (v.a) is
3-6

% of time 50<v<70, km/h

% of time when (v.a) is
6-10

% of time 70<v<90, km/h

% of time when (v.a) is
10-15

% of time 90<v<110,
km/h

% of time when (v.a) is
>15

% of timev>110, km/h

Average (v.a)

% of time a>2.5, m/s

Positive kinetic energy

2.3. A Neuro-based Drive Cycle
Recognition

For real-time drive cycle recognition, we employ the
Learning vector Quantization (LVQ) algorithm and its
modifications[19]. For the purpose of classification, in
this study a supervised competitive LVQ Network is

selected due to its effectiveness in the classification on
complex and nonlinearly separable target classes[20].

2.3.1. LVQ Network

A LVQ network classifiesitsinput vector into one of the
number of target classes through a two stage process. In
the firg stage, a competitive layer is used to identify the
subclasses of input vectors. In the second stage, alinear
layer is used to combine these subclasses into the
appropriate target classes. The structure of the LVQ
network is shown in Fig. 2.

L ~ear _aye”

s, RN L
Fig. 22 The LVQ network ar chitecture
Each neuron in the competitive layer of the network
computes the Euclidean distance between the given input
vector, p and a prototypical subclass vector w. With this
in mind, for instance, the ith neuron in the competitive

layer computes:
d=[w, - Ff

Subsequently, the competitive layer (designated as "C")
assigns a 1 to the closest subclass to the given input
vector and O to all other subclasses represented in the
network. The linear layer combines the given identified
subclasses into a (target) class.

2.3.2. Training of LVQ Network and
Validation

In order to train the LVQ network for roadway type
classification, the statigtics of nine facility-specific drive
cycles (Fig. 1) were caculated in terms of the
characteristic parameters defined in Table 1. The initia
training data set of the LVQ network is consisted of a
[40 7] matrix. When we validated this network, we
figured out that five of 40 parameter in Table 2 have
larger values in comparing with the others. They are:

Average speed
Max speed
Trip time
Relative positive acceleration
1 ova’dt,
RPA = X x = total distance,
+_dv
a'=—>0
dt , v=speed
2 2 2
- - - PKEa(Vf-Vs)
Positive Kinetic Energy, X .

X =distance, ' = final speed, V5= start speed
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Then, these parameters avoid other parameters to
contribute in training. Thus following [15], each
parameter value (input vector) was transformed into an
array with entries of 1 and -1 as to four levels. For
example, in case of first characteristic parameter (average
speed), the value at each facility-specific drive cycles is
60.8, 29.84, 18.71, 34.29, 24.6, 19.12, 12.16 (mph) , SO,
their average m is 28.5(mph) and their standard deviation
std is 16.04(mph). The level of each parameter is decided
by three standards, which are m+a” std, m, ma” std
for example, if the value of any parameter is larger than
m+a’ std, itslevel is1,etc. (see Table 3).

Table3: Each parameter transformsinto an array

P>mta sd Level 1:{1,1, 1}
mra std>P> | Level 2:{1,1, -1}
m

ma std<P<m | Level 3:{1,-1, -1}
P<ma g<d Level 4{-1,-1, -1}

a isatuning parameter and is chosen as 0.5.

Because of this transformation, number of neurons in
competitive layer is increased to avoid over training
phenomenon.

We validated this network again and because of using
single set of characteristic parameters for relatively long
drive cycles [15], we still found indispensable error.
Thus each drive cycle was divided into an appropriate
number of 150 seconds that constitute subclasses of the
whole drive cycle (its seven subclasses convert to
approximately 33 subclasses).

In order to enhance the training performance of the
network, we used LVQ 2.1 after LVQ for fine tuning of
decision borders. (Kohenen [19] recommended that the
learning process be started with LVQ, and if necessary
continued by LVQ2.1, with a low initial learning rate
value).

Learning here is similar to that in LVQ except two
vectors of layer 1 that are closest to the input vector may
be updated providing that one bel ongs to the correct class
and one belongs to a wrong class and further providing
that the input falls into a "window" near the mid plane of
the two vectors.

The window is defined by [19]:

1. One of them should belong to the correct class (as
the label of p) and the other oneto awrong class.

2. p should fall in the window that is defined  around
the mid-plane of W, and W; . (pisdefinedtofall in

the window
If
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1-w _d _1+w
< e
1+w d; 1l-w
where d; and d; are the Euclidean distance of p from wi

and Wj , respectively. A relative window width W in the
interval [0.2,0.3] isrecommended by Kohonen, whileits

legitimate rangeis O<w <1.)

In the case of fulfilling the afore-mentioned conditions,
the updateruleis

w(t+D =w(t) +a®p- W)
W, (t+1) = w,(0)- a (O p- W, ()]

Let p bean input vector (from training set): where Wi is
network weighting supposed to be in the same classas p
» and W; isnetwork weighting in a different class.

Our competitive network give perfect match because we
selected quasi-independent drive cycles in section 2.1
Then the results were verified with some test data which
were obtained from ADVISOR'S? default (for example,
Fig. 4. and Fig. 14.) and actual drive cycles library with
same Characteristic parameters. This LVQ network using
the facility-specific driving cycle data given in [17], will
be proper roadway type identifier (Fig. 3.).

Target = class 1 class 2 class 3

f A r
1 1 1 1 1 2 2 2 2 3 3

Metwork output =

1 1 1 1 1 2 2 2 2 3 3
| N I

Target = class 4

3 3-\(4 4-\( E

Network output =

a a 14 4 kE 5 5 3 L 5 5 ]

Target = class &

4 N Al
G G [ [ 4 [ 7 7 7 7 7
He twork_output =

& & 5 & & & 7 7 7 7 7
L J 7

Fig. 3: Theresult of network for classifying 7 drivecycles
with considering 33 subclasses

2 ADvanced Vehlcle SimulatOR
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Fig. 4: () HWFET, One of the highway drive cycles of
advisor'slibrary. (b)I dentified roadway type as will be
explained in Table 4.

3. Control Strategy | mplementation

3.1. Optimization of Control Parameters
at Each Facility-Specific Drivecycle

The control strategies’ objective was minimum
possible fuel consumption and emission for a given drive
cycle. The behavior and the limitations of the
powertrain’s components were adapted by optimization
process [13]. The method is an offline tool that is based
on optima control theory.

According to the mechanical arrangement, of the vehicle,
(Fig.5.), the relationship between torquesis[13]:

T = (1 (Ng) Tige +1 5. Tem) | D)

ice

ATy 1w

e

Fig. 5: Mechanical arrangement
Where T isthetotal torquerequired at wheel, T,

ice Isthe
torque provided by the ICE engine (positive only), T, is
the torque provided by the eectric motor (positive or
negative ), |,(n,) isthe gear ratio of the transmission
and a function of the gear selected N, | ,is the belt

ratio of coupling between the electric motor and the drive

shaft and | is the gear ratio of fina differential.

Equation (1) above is a two degrees of freedom of three
control variables T, T, and Ny, because the value of

ice’
T, is defined at each time. The optimization process is

performed under the mechanical constraints imposed by
thedrivelinedesign [13] .

0 < Tice(t) < Tice_max
< Ten) < Tom_ ma
OEw, (t)Ew,

Ew () Ew,

ice_max

T

em_min

W

Where W, is speed of engine and W, is speed of
electric motor.

Ancther constraint is that the battery state of charge
(SOC) is maintained within a prescribed range:

OC,,, < SOC(t) < OCyq,
Ideally the power distribution has to be chosen to
minimize the overall engine fud consumption over a
given driving cycle within the constraints listed above,
such as:

Min & iy (t) 2

{Tem (t).0g ()}

With 1, (t) = Engine fuel flow rate.

low

In this study, regardless of dynamic model of vehicle, we
consider a paralld HEV with datic and quasi-static
models in ADVISOR whose required power in driving is
supplied by 41kw engine and 75kw electric motor. Thus,
we have some efficiency map and lookup table for our
optimization. Then, we used the approach which is based
on static optimization methods.

We used equivalent fuel consumption M, defined

below instead of 1 (t) (see (2)). Where the equivalent

fuel flow rate cost function is simply defined as the sum
of the actual fuel consumption of the engine and the
equivalent fuel rate used due to the electric motor
(positive or negative):

mfeq =1, + 1y,
Commonly, electric power istranslated into an equival ent

amount of (steady-state) fuel ratein order to calculate the
overall fud cost [22].

Step 1: Define the range of candidate operating points,
represented by the range of acceptable motor torques for
the current torque request [22]:

This relationship between engine, motor, and requested
torqueis described by (3). [22].

T =T - ratio” T, ©)

engine request
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Where:
ratio = motor-to-engine gear ratio

Step 2: For each candidate operating point, calculate the
congtituent factors for optimization [22]:

- Fuel energy consumed by engine:
For a given torque request and motor torque, Equation (3)
sets the engine torque. At this torque and given speed, the
engine map provides the fuel consumed by the engine
(seeFig.6.).

Ymemm
II'H.
i

:'-h::—"'_
IL'\.

T
-ll---- 3
Y
.
=
R

Fig. 6: Engine ener gy efficiency map
- Calculate the effective fuel energy that would be
consumed by electromechanical energy
conversion(equivalent):

Find fuel energy with respect to motor torque:

Eid &
Mol Fe
] m

Bt or Taroe

Fig. 7: Fuel energy with respect to motor torque

Ereference iN Fig. 7 indicatesthe case where Tmotor iS
zero, or where engine supplies all of the requested torque.
Find psoc with respect to motor torque,(see Fig. 8.).
In general, the relationship between DSOC and motor
torque is nonlinear for two reasons. 1) the motor
efficiency map is nonlinear, and 2) charge and discharge
resistances of batteries typically differ.

rgocdk

T Lo
'I|L‘..‘:"‘h_'

T

LT

e
Fig. 8 DSOC with respect to motor torque

During operation, a hybrid vehicle recaptures a certain
amount of energy through regenerative braking. The

@ 1386 liuwe; 5 3851 = 093 8)lond = o L =l! Siig 58U g (32 copiie ol dne - AB

expected increase in SOC from regenerative braking is
deemed “free energy” because no fud energy must be
consumed to obtain it.

Then, in order to apply a strategy at nine given drive
cycles, we can run electric vehicle (the vehicle just have
an eectric motor) in ADVISOR and obtain DSOC, in

battery when vehicle is in braking mode. Braking act in
ADVISOR is distributed between driveline braking
(regeneration) and friction braking (normal).

So, we first ran vehicle simulator (ADVISOR) at nine
given drive cycles in eectric mode (only there exists an
electric motor in powertrain) when both of two kinds of
braking (regeneration and friction) are considered. The
second run incduded just friction braking. Difference
between two obtained SOC results, would bepsoc

Tegen )

To explain this procedure, we give an example. Consider
a simple drive cycle with one braking part (as shown in
Fig. 9. ). We obtain DSOC,,, 8 mentioned above and it

is shownin Fg.9.

N

I\lak;r.: -t I-. _.'.
Tl 18 =] 00 i) 1] E
~ 1t avec |
. [ im ] F- ] S o
. . .. DSOC
Fig.9: aDrive cycle with its regen

Finally, combine the two curves given in figures 7,9 and
into fuel energy as shown in Fig. 10.

Mol

Froedh mzdruT
’/ll-pln-.l:l HIB
f [S———
2
-
(LR P
et 2500
poehive fongLe

Fig. 10.: Fuel energy with respect to motor torque

- Emissions produced by engine:
The calculation of emissions produced over the range of
torque is very similar to the engine energy consumption
calculation (using emission maps).
Step 3: we first normalize each of them (energy and
emission), then apply our weighting to their curves and
finally compute the impact function (objective).
Step 4: Finaly, we find minimum of the objective
function and its corresponding torque.
This optimization scheme results in a proper split
between the two energy sources using steady-state
efficiency maps [13] , [21] . We carry out this
optimization scheme at each facility-specific drive cycles
and store engine torque (Tengine), demand torque (T request)
and gate of charge (SOC) in each step.

3.2. Extracting Fuzzy Rule Base
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After storing all data (Tengine s Treques » SOC) calculated
in the last part, we apply them to ANFIS toolbox in
MATLAB (Tiequest & SOC as inputs and Tengine @S an
output) to extract a proper fuzzy rule base to implement
the control strategy.(see Fig. 11.).

Fuzzy Logic
Controller

/A8

Fig. 11: Buzzy rule base controller

Tengine

h 4

‘SOC

Then, we can find e ectric motor torque using (3).

3.3. Selection of Control Strategy in
Current Driving Cycle

Fig.12. shows the concept of this control strategy, where
“l s” is the sampling time step for measuring vehicle
input signals and generating control commands. First,
characteristic parametersin the historica window ‘150 s’
are extracted, based on which the driving cycle over this
historical window will be determined. Next, the control
algorithm will be switched to the relative control
algorithm corresponding to the newly identified facility-
specific drive cycles. Finally, the control actions will
continue for the next 5 seconds.
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Fig. 12: Control strategy configuration
We run the program of characteristic parameter extraction
and drive cycle recognition less than ‘0.71s’; we should
notice that the sampling time step is 1 sec. Therefore, we
may consider it asareal time procedure.

4. Identification of First 150s of Driving

Noting that during the first 150s of driving, driving data
is not sufficient to extract a rich set of driving

information, so, we developed an algorithm to identify
first 150s. We used a standard competitive network to
identify initial conditions after starting the vehicle as we
did in section 2. Although because of insufficient data we
cannot extract all characteristic parameters that used in
section 2, we only used 8 of them that were found to
have large effects on either or al of emission factors of
CO2, HC, and NOx (g/km) and fuel consumption (per 10
kilometers). Those were [18]:
- Factor for acceleration with strong power

demand

Stop factor

Factor for acceleration with moderate power

demand

Extreme accel eration factors

Factor for speed 50-70mph

Factor for speed 70-90mph

Decel eration factor

Speed oscillation factor
We tramed our network with these parameters and
classified first seconds driving information as one of
seven facility-specific drive cycles and switch to the
corresponding control strategy.
Then we updated driving data each 5 seconds. So this
competitive network give fairly good match and itsresult
is better than that of random roadway type selection.

5. Simulation Results

In this section, we present the simulation study to
evaluate the proposed energy management system.For the
simulation study, a typical parald drivetrain with manual
5-gpeed transmission is used. The models of the power
train components are taken from [22]. The vehicle has a
total mass of 1350 kg. An interna

combustion engine with a displacement of 1.0 L, peak
power of 41 kW and peak efficiency of 34% is chosen. In
order to satisfy the requirement for acceleration, a motor
with a power of 75 kW and peak efficiency of 92% is
selected. The battery capacity of 26Ah (with 12v) with a
weight of 275 kg is chosen. The battery’s type is VRLA.
Typical parallel drivetrain is shown in Fig. 13.
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Fig. 13: Paralld hybrid vehicle configuration[22]
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In this section, the performance of the vehicle under the
supervision of our control strategy on the US06 is
investigated. This drive cycle (US06) was developed to
represent vehicle operation under urban driving
conditions characterized as ones over a relatively long
route that traverses numerous roadway links. The
preliminary simulation sudy on the US06 indicates that
the USO6 (see Fig. 14.a,14.b.) is a composite cycle that
can be decomposed into different types of roadway. For
instance, especially in this simulation, the US06 is
decomposed into the facility-specific drive cycles
considered (see Table 4) in this sudy as shown in Fig.
14.b.
Table 4: Facility specificdrive cycle

Type Facility specific drive cycle

Freeway under LOS A-C
Freeway under LOS E

Freeway under LOS F

Freaway ramp
Arterial under LOS A-B
Arterial under LOS C-D

Local roadway

N O O A W N

i
rinaae

-
@ = A

Fig. 14: (a) US06 drive cycle, (b) identified current drive
cycle, (c) SOC variesinrange0.4-0.7

As shown in Fig. 14. a. and Fig. 14.c. two parts that
marked A and B explain us some useful information. The
drive cycle types identified in part A, belong to roadway
types 1-4. So, in these road way types torque request will
be high and we have too little regenerative SOC then
SOC decrease fast. But in part B, current drive cycle
belongs to roadway type 4-7. So, the torque request is

@ 1386 liuwe; 5 3851 = 093 )lond =l L =)l Siig 58U g (32 copiie ol dme - 5]

low and there exists sufficient amount of regenerative
SOC that compensates the lack of battery's SOC.

We carried out the simulation in ADVISOR and
compared our control strategy results with those of fuzzy
logic control (baseline and emission mode [22]) in
ADVISOR. The results show that our applied control
strategy performance such as fuel-consumption and
emission are superior, see Table 5.

Table5: Performance result on the US06

(mile/ga (grams/mile)
1)
Uso6 Fuel HC Cco NO,
econom
y
Proposed 64.4 0.317 2.659 0.21
control
strategy
Emission 60 0.346 2.157 | 0.266
mode
Basdine 354 0.536 7.977 | 0.508

6. Conclusions

A proposed control strategy based on the driving pattern
recognition scheme was developed for a hybrid electric
vehicle to minimize fuel consumption and engine-out
emissions over various driving scenarios. So, we used
seven facility-specific drive cycles developed in Siera
Research. And we developed a real-time driving cycle
recognition agorithm usng LVQ network. final
algorithm was the control strategy which switches a
current driving control strategy to the algorithm
optimized in a recognized facility-specific drive cycle.
then we verified the performance of this control strategy
in fuel consumption and emission reduction by using an
initial interval of driving identifier. The smulation results
were very promising .
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