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Abstract:    

 
Signed digit (SD) number systems provide the possibility of constant-time addition, where inter-digit carry propagation 
is eliminated. Such carry-free addition is primarily a three-step process; adding the equally weighted SDs to form the 
primary sum digits, decomposing the latter to interim sum digits and transfer digits, which commonly belong to  
{–1, 0, 1}, and finally adding the transfers to the corresponding (i.e., with the same weight) interim sum digits. All the 
final sum digits are therefore obtained in parallel. The special case of radix-2h maximally redundant SD number systems 
is more attractive due to maximum symmetric range (i.e., [–2h+1, 2h–1]) with only one redundancy bit per SD, and the 
possibility of more efficient carry-free addition. The previous relevant works use three parallel adders that compute sum 
and sum±1, where some speed-up is gained at the cost of more area and power. In this paper, we propose an alternative 
nonspeculative addition scheme that uses carry-save encoding for representation of the primary sum and interim sum 
digits and computes the transfer digits via a fast combinational logic. The simulation and synthesis of the proposed 
adder, based on 0.13 µm CMOS technology, shows advantages in terms of speed, power and area. 
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1. Introduction 
Addition is the basic computer arithmetic operation. 
One study [1] shows that the share of add/subtract 
operations, among all the floating point arithmetic 
operations, is 55%. Multiplication, with its 37% share, 
is the next frequent operation that is often implemented 
via several add operations.  

Traditional ripple-carry adders are very slow due to 
the long chain of carry-propagation logic. 
Consequently, the latency of an n-digit carry-ripple 
adder is linearly depending on n (i.e., O (n)) [2]. Carry-
accelerating techniques, for example, in carry look-
ahead adders [3] or carry select adders [4] improve the 
order of latency to O (log n) and O ( n ), respectively. 
However, Constant-time (i.e., O (1)) adders are not 
possible if the sum, as usual, is to be represented in a 
conventional nonredundant format [5]. Otherwise, 
carry propagation may be totally eliminated if the sum 
is allowed to be represented in a redundant format [6]. 

Signed digit (SD) redundant number systems, 
where each digit may have a positive or negative value 
and there is not a single sign bit for the whole number, 
have been used in several computer arithmetic circuits 
[7]. SD number systems fall within the generalized 
signed digit (GSD) number systems that are fixed radix 
and contiguous number systems with digit set [–α, β], 
where α, β ≥ 0 [6]. A GSD number system is deemed 
redundant (nonredundant) if the redundancy index  
ρ = α + β + 1 – r is positive (zero), where r is the radix. 
In the ordinary SD number systems that have balanced 
digit sets (i.e., α = β), we have ρ = 2α+1 – r > 0. In 
practice r is a power of two (e.g., 2h), where the latter 
inequality leads to α ≥ 2h–1. The case of α = 2h–1 
corresponds to the minimally redundant digit set  
[–2h–1, 2h–1], where ρ = 1 and at least h +1 bits are 
needed to represent a digit. But with the same number 
of bits α could grow nearly twice up to 2h–1 
corresponding to maximally redundant digit set  
[–2h+1, 2h–1] with ρ = 2h – 1. The latter is particularly 
attractive due to maximum range of numbers with 
minimum number of redundancy bits. The higher radix 
SD number systems [8], where h ≥ 2, trade-off less 
storage and data paths for slower arithmetic [9]. For 
example, the radix-2 (i.e., h = 1) SD number system 
uses two bits to represent each digit in [–1, 1], thus 
doubling the storage and number of data paths with 
respect to conventional nonredundant binary systems. 
However, addition speed is the highest in comparison 
with the cases with higher radices (i.e., h ≥ 2). 

The main benefit of SD number systems is the 
possibility of constant time addition, where the latency 
is small and independent of the number of digits in the 
operands. A drawback, however, is that conversion of a 
redundant result to a conventional human readable 
representation (e.g., nonredundant binary or decimal) 
may require word wide carry propagation. Therefore, 
use of redundant representations is justifiable only 
when there are several arithmetic operations to take 
place before conversion. This situation occurs in the 

implementation of composite arithmetic operations, 
such as multiplication or division with several 
embedded additions or subtractions, respectively [2] or 
in floating point addition [10]. It can be found also in 
whole computations such as function evaluation in 
general purpose or special purpose hardware units 
(e.g., digital signal processors [11]). In such 
applications, the slow final conversion should be well 
compensated by the latency savings that are 
compounded over many constant-time redundant 
operations. Therefore, very fast redundant adders are 
on demand.  

In the addition of any two weighted numbers, the 
sum digit in position i obviously depends on the two 
operand digits in the same position. Moreover, for the 
cases of ρ = 0 (i.e., nonredundant), ρ = 1, and ρ ≥ 2, it 
also depends on all, two, and one less significant digit 
pairs, respectively. This is further explained below. 
� ρ = 0: In a conventional nonredundant number 

system the sum digit in each position i (≥ 0) is a 
function of 2(i+1) operand digits; namely two 
operand digits per each of the positions i, i – 1…1, 0.  

� ρ = 1: For minimally redundant number systems the 
sum digit in position i (≥ 2) is a function of the digits 
in positions i, i –1 and i – 2. The constant time 
addition in this case is called carry-limited [6]. 

� ρ ≥ 2: In this case, that includes the maximally 
redundant case of ρ = r – 1, the sum digit in each 
position i (≥ 1) depends on only four operand digits 
in positions i and i – 1 [12]. The constant time 
addition in this case is called carry-free [6]. 

Each of the three steps of conventional constant 
time SD addition algorithm (Algorithm 1) is roughly as 
slow as an h-bit adder. Therefore, it would be desirable 
to parallelize or fuse these steps for more speed. For 
example, the case of maximally redundant SD (MRSD) 
number systems are attractive due to its potential for 
improvements leading to less latency; noteworthy are 
the speculative MRSD addition in [8] and [10] that use 
three parallel h+1-bit adders, per each radix-2h 
position, and the nonspeculative approach of [13].  

In this paper we present an improved 
nonspeculative addition scheme for MRSD number 
systems with power of two radix r = 2h. The paper is 
organized as follows. The conventional three-step 
carry-free SD addition algorithm is explained in 
Section 2. Some previous works on improved 
maximally redundant SD addition schemes, including a 
recent one [13], are briefly reviewed in Section 3. The 
contribution of this paper is presented in Section 4. The 
results of synthesis and simulation of this work versus 
three previous contributions, all based on 0.13 µm 
CMOS technology, are reported in Section 5. Finally 
we draw our conclusions in Section 6. 

2. SD Carry-Free Addition Algorithm 
In the conventional nonredundant number systems, 
cardinality ξ of the digit set is equal to the radix r (e.g., 
the binary digit set [0, 1] or decimal [0, 9]). The 
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conventional radix-complement or diminished-radix-
complement number systems notwithstanding, in order 
to allow negative numbers, one could think of digit sets 
with signed values (e.g., nonredundant radix-10 digit 
set [–5, 4] and radix-16 digit set [–8, 7]). To build up a 
balanced range number system, however, it is 
necessary to allow ξ > r for even radices (e.g., binary, 
decimal, or hexadecimal digit sets [–1, 1], [–5, 5], or  
[–8, 8], respectively). The positive redundancy index  
ρ = ξ – r > 0, in such cases leads to redundant number 
systems, where some values may be redundantly 
represented by more than one digit combination. 

Example 1 (decimal redundancy): Consider the 
decimal digit set [–7, 7], where ξ = 15 > r = 10. In this 
redundant decimal number system, 2008 may be also 
represented as 201(–2), where 2008 = 2×1000 + 1×10 
+ (–2)×1, or 1979 represented also as 20(–2)(–1). 

The signed digit (SD) number systems, introduced 
by Avezienis [14], represent a special case of 
redundant number systems, where the radix-r digit set 
[–α, α] is balanced. The constraint α ≥ 2r  is required 

for continuity of the represented numbers. This leads to  
ξ = 2 α + 1 > r. The most useful property of redundant 
number systems is the possibility of carry-free 
addition, where the carry propagation chain is limited 
to a few number of digits [6]. 

This chain is only one digit long for SD numbers in 
case of r ≥ 3 and α ≥ ( )1 2+r  [14], where the carry 

generated in any position i will not propagate beyond 
position i + 1. A general carry-free addition scheme for 
radix-2h SD number systems with digit set [–α, α], is 
described by Algorithm 1, where α > 2h–1. Fig. 1 
depicts a block-diagram representation of the 
Algorithm. 
 
Algorithm 1 (Carry-free SD addition): 

 
Input : Two n-digit radix-2h SD numbers X = xn–1…x0 

and Y = yn–1…y0, where – α ≤ xi, yi ≤ α. 
 
Output : An (n+1)-digit radix-2h SD number S = sn…s0 

I. Compute the n-digit radix-2h SD number  
P = pn–1…p0 = X + Y, by digit-parallel 
computation of pi = xi + yi for 0 ≤ i ≤ n –1, where 
–2α ≤ pi ≤ 2α. 

II. Decompose pi to transfer ti+1 and interim sum wi, 
for 0 ≤ i ≤ n–1, such that – α +1 ≤ wi ≤ α –1,  
pi = wi + 2h × ti+1, and ti+1 = –1, 0, and 1 for  
pi ≤ – α, – α < pi < α, and pi ≥ α, respectively. 

III.  Form si = wi + ti, for 0 ≤ i ≤ n –1, and set sn = tn. 
No new transfer will be generated in this step. 

1i + i 1i −
1ix + ix 1ix −1iy + iy 1iy −

is 1is −1is +

it1it +
iw1iw + 1iw −

ip1ip + 1ip −

 
Fig. 1. The three steps of SD addition (Algorithm 1) 

Each of the Steps I and III, of Algorithm 1, involves 
an h-bit addition and Step II requires an h-bit 
comparison whose complexity is, in general, in the 
same order as that of an h-bit addition. It would be 
desirable to reduce the overall latency roughly to that 
of two or one h-bit addition. The representation or 
encoding of signed digits is greatly influential on the 
latency of SD addition. Two’s complement encoding of 
signed digits is believed to lead to the most efficient 
signed digit addition schemes [8], and is the encoding 
of choice in all the four designs studied in this paper. 

Example 2 (Decimal Carry-free addition): Consider 
the decimal SD digit set [–7, 7], where  
ξ = 15 > r = 10. Fig. 2 illustrates the application of 
Algorithm 1 on two 4-digit decimal SD numbers. 

 i 4 3 2 1 0 
 

ix
 

 2 3 −5 4 

 
iy
 

 5 6 −6 2 

Step I ip
 

 7 9 −11 6 

Step II 
iw
 

 −3 −1 −1 6 

it  
1 1 −1 0  

Step III is
 

1 −2 −2 −1 6 

Fig. 2. A decimal SD addition 

3. Efficient SD Addition Schemes 
We address three previous efficient MRSD addition 
schemes numbered as a. (Fig. 3), b. (Fig. 4), and c. 
(Fig.6). Steps I and III of Algorithm 1 are fused in a. 
and b., in order to simultaneously compute pi –1, pi, 
and pi +1. Each scheme, via Step II, derives ti+1, and the 
three corresponding speculated sum values, in its own 
way. Note that, in Figs. 3 (5) there are two (one) h+1-
bit operations in the critical delay path. The speculative 
approach, with three parallel adders as in a. and b., is 
probably the most straight forward approach. However, 
the nonspeculative scheme c., only computes pi and 
simultaneously extracts ti+1 directly from xi and yi. 

a. Fahmy and Flynn [10] have used 2’s complement 
encoding of the MRSD radix-16 number system 
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to represent redundant digit floating-point 
numbers with digit set [–15, 15]. The main idea, 
in their SD adder, is to speculatively compute  
pi –1, pi, and pi + 1 in parallel for all hexadecimal 
positions, decompose the primary sum digits to 
16ti+1 and the speculative interim sum values  
wi – 1, wi, and wi + 1, respectively. The transfer 
digit ti selects one of the latter three values as the 
correct si. 

1−1+

ip1ip + 1ip −

ix iy
1h + 1h +

1h +

1
1
it +

1
1

it +
−

1
0
it +

hx hy
hc

1h +1h +

1h +

is

1
it

1
it−

0
it

1h +

 
Fig. 3. Position i of MRSD adder of [10] 

 

b. The SD addition scheme of [8] is based on an 
alternative treatment of Step II of Algorithm 1, 
where pi is compared to 2h–1 instead of α. The 
corresponding speculative adder architecture is 
shown by Fig. 4. The rationale for comparison 
with 2h–1 can be understood from Fig. 5, which is 
primarily showing the valid transfer values based 
on Algorithm 1 for α ≤ 2h–1. This figure also 
shows two overlapping regions where either of 
the two corresponding values, whether on the 
dashed parts or solid parts, can be assumed by the 
transfer digit. However, the method in [8] only 
uses the dashed lines for transfer assignment, 
which is actually a translation of comparison of pi 
with 2h–1. This comparison can be done in 
constant time independent of the value of h.  

1−1+

ip1ip + 1ip −

ix iy
1h + 1h +

1h +

1
1
it +

1
0
it +

1h +

is

1
it

0
it

hw hw hw
1h + 1h +

h
h h

22 2

Fig. 4. Position i of MRSD adder of [8] 

1

1

it +
= −

1

0

it +
=

1

1
it +

=

iw

ip12 2h+− +

2h−

2 2h− + 12 2h+ −2h2 2h −

2 2h −

2 2h− +

2−12 −− h 12 −h

 
Fig. 5. The overlapping regions of valid values for ti+1 
 

c. The interim sum wi and the transfer ti+1 may be 
expressed directly as functions of xi and yi. 
However, these functions are hard and inefficient 
to implement even for moderate values of h (e.g., 
eight-input functions for h = 4). It has been shown 
in [13] that ti+1 can generally be defined as a 
function of just the most significant bits of xi and 
yi, except for few cases that may be detected by a 
moderately simple combinational logic. This 
architecture is depicted in Fig. 6, where the 
operation of the lower adder starts as soon as the 
transfer ti is available at a time that is 
considerably in advance of completion of 
operation of the upper adder. 

ip

1it +

is
it

AdderTransfer Logic

Adder

 
Fig. 6. The nonspeculative SD addition 

In the next section, we follow scheme c, but with 
some simplifications that lead to further improvements 
in latency, power dissipation and layout area. 

 
4. Improved SD Addition Scheme 
Algorithm 1 requires, as the first step, the actual 
addition xi + yi. However, one may consider xi and yi as 
the two components of a carry-save two’s complement 
encoding of pi, which is a special case of weighted bit-
set (WBS) encoding [15]. It is illustrated, via 
symbolic/dot notation, in Fig. 7, where posibits (i.e., 
normal bits) and negabits (i.e., negatively weighted 
bits) are represented by lowercase letters inside black 
dots and upper case letters inside white dots, 
respectively. With this encoding Step I is bypassed.  

h
iX 1h

ix −

1h
iy −h

iY

0
ix2h

ix −
L

1
ix

L
0
iy1

iy2h
iy −

 
Fig. 7. Carry-save two’s complement representation of the 

position sum pi 
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The two negabits h
iX and h

iY  weigh 2h, and as such 

may directly contribute to the value of the transfer ti+1, 
whose weight is also 2h. In fact, if we somehow mange 
to have one posibit and one negabit in position h, the 
bit-pair may collectively represent a valid ti+1 in [–1, 1]. 
To arrange this, observe that arithmetic value of the bit 
collection { h

iX , 1−h
ix , 1−h

iy }, with respect to position 

h–1, falls within [–2, 2]. The same range of values may 
be represented by an equivalent collection of a posibit 
in position h and two negabits in position h – 1, as 
shown in Fig. 8. Table I shows the details of this 
transformation, where the target posibit and negabits 
are represented by primed variables and it is easily seen 

that ′ =h h
i ix X , 1 1− −′ =h h

i iX x , and 1 1− −′ =h h
i iY y . 

h
ix

1h
iX −

1h
iY −h

iY

0
ix2h

ix −
L

1
ix

L
0
iy1

iy2h
iy −

 
Fig. 8. Equivalent representation of position sum pi  

via the transformation of Table I 

Table. 1. Justification of transformation from Fig.7 to Fig.8  
h
iX 

h
ix -1

 
h
iy -1 Value ′h

ix ′h
iX -1 ′h

iY -1 

0 0 0 0 1 1 1 
0 0 1 1 1 1 0 
0 1 0 1 1 0 1 
0 1 1 2 1 0 0 
1 0 0 –2 0 1 1 
1 0 1 –1 0 1 0 
1 1 0 –1 0 0 1 
1 1 1 0 0 0 0 

To extract the transfer value, let 1 2 1 0ˆ − −= L
h h

i i i i ix X x x x  

and 1 2 1 0ˆ − −= L
h h

i i i i iy Y y y y . Then an immediate conclusion 

of the arrangement (i.e., bit partitioning) of Fig. 8 
would be 

1
ˆ

+ = −h h
i i it x Y and ˆ ˆ ˆ= +i i iw x y . Unfortunately 

however, it turns out that 
1

ˆ
+it and ˆ iw are not always 

correct. The exceptions, which can be recognized by a 

flag 1 1 1 1 0 0− −ϕ = ∨ ∨ ∧ ∨ ∨ ∧ ∧L L
h h

i i i i i i ix x y y x y , and the 

correct ti+1 and wi are listed in Table II. The transfer 

1
ˆ

+it is corrected by simply subtracting 1 in all the cases 

that φi = 1 or ti+1 = 
1

ˆ
+it –  φi. This leads to the following 

equations.  

φ= ∧ ∨h h h
i i i ix Y x ,  = ∨h h h

i i iY Y x  (1) 

Similarly, the interim sum̂ iw gets corrected by 

adding 2h. This may be effectively done by adding 1 to 
both 1−h

iX and 1−h
iY in case of φi = 1. Note that this is 

always possible, since the value of the latter two 
negabits in all the correction cases are –1. This leads to 
Eqns. 2 and 3, respectively, where 1−h

iX and 1−h
iY are 

the sign bits in the carry-save two’s complement 
representation of wi. 

1 1 1

1

1 1 0 if φ 1
φ

else
− − −

−

− + = == ⇒ = ∨


ih h h
i i i ih

i

X X X
X

          (2) 

1 1 φ− −= ∨h h
i i iY Y                              (3) 

The transformation from Fig. 7 to Fig. 8 and the 
latter corrections (i.e., Eqns. 1, 2 and 3) are collectively 
shown in the first three parts of Fig. 9. The overall 
delay up to this point is the delay of flag φi and a two-
input gate in Eqns. 1 to 3. However, since the first (h–
1) bits of xi and yi remain intact, one may start adding 
them at time 0 (i.e, when computation of φi begins) to 
compute the first (h – 1) bits of wi. The carry out of 
position h–2, a posibit, and the two negabits in position 
h–1 feed the full adder in that position. For proper 
functioning of this full adder its two negabit inputs and 
the negabit carry-out should be inverted [16]. The 
result is shown in the first row of part 4 of Fig. 9. 
Recalling Eqn. 1, the two most significant bits of part 3 
are extracted to form ti+1. Moreover, to prepare for the 
last step, the transfer from position i (i.e., ti) is 
converted to 2’s complement number 1 0−

L
h h

i i iT t t using 

the logic of Fig. 10. 

0
iw2h

iw − L
1
iw

L
0
it

1
it

2h
it

−1h
it

−

0
is2h

is
− L

1
is1h

is −h
iS

h
iX 1h

ix −

1h
iy −h

iY

h
ix 0

ix1h
iX − 2h

ix −
L

1
ix

L
0
iy1

iy2h
iy −1h

iY −h
iY

h
ix

1h
iX −

1h
iY −h

iY

1it + it
1h

iw −h
iW

h
iT

0
ix2h

ix −
L

1
ix

L
0
iy1

iy2h
iy −

0
ix2h

ix −
L

1
ix

L
0
iy1

iy2h
iy −

 
Fig. 9. Digit slice of SD addition in position i 

Table. 2. The exceptions for easy extraction of transfer and the corrections 

h
iX h

iY Range of  
xi and yi 

ˆ
1i+t ˆ iw 

Exceptions for 
(xi, yi) pair 

Correction 

ti+1 wi 
0 0 xi ≥ 0, yi ≥ 0 1 –2h + pi (0, 0), (0, 1), and (1, 0) 0 pi 

0 1 xi ≥ 0, yi < 0 0 pi (0, –2h+1) –1 2h + pi 
1 0 xi < 0, yi ≥ 0 0 pi (–2h+1, 0) –1 2h + pi 
1 1 xi < 0, yi < 0 –1 2h + pi None None None 
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1 1
1 1 1, , ,h h

i i iT t t−
+ + +L

0
1it +

h
ix

h
iY

  
Fig. 10. Conversion of the transfer digit to an equivalent 

h+1-bit two’s complement number 
 

The last part of Fig. 9 is an illustration of Step III of 
Algorithm 1, which may be implemented using an h+1-
bit two’s complement adder. However, given that no 
new carry would be generated in this step, Eqn. 4 rules 
the most significant bit of the result, where h

ic is the 

carry into position h. 

( )= ∧ ∨ ∨ ∧h h h h h h
i i i i i iS c W T W T            (4) 

Fig. 11 depicts a digit slice of the overall SD adder 
based on Fig. 9, where the bold line is the critical delay 
path. However, the two full adder chains may be 
replaced by carry look-ahead (CLA) logic, as shown in 
Fig. 12, in order to reduce latency. The required CLA 
to replace the lower full adder chain is a simplified one, 
for the bits of one of the operands are all the same (i.e., 

1 1−= = = =L
h h

i i i iT t t t  as shown in Fig. 10). This leads 

to Eqn. 5, where 1ic  is the carry-into position 1 of the 

ith digit. For large h (e.g., h = 4k, k ≥ 2), a CLA tree 
with simplified group-generate and group-propagate 
signals may be used. Eqn. set 6 provides simplified 
equations for sum bits of digit slice i of the SD adder 

for h = 4, where  4 4
1 1− −= ∧i ia x Y  and 4 4

1 1− −= ∧i ib x Y . A 

regular implementation of these equations is depicted 
by Fig. 13, where the lower half adder in position zero 
of Fig. 11 and the logic of Fig. 10 are fused for further 
efficiency. However, in the actual synthesis, gates with 
higher fan-in may be used. 
 
 
 

 
 
 

1

1 1

( )
= =

= + +∑ ∏
kk

k j j
i i i i i i

j j

c t w t w c                                     (5) 

( )0 0= ⊕ ∨i is w a b  

( )1 1 0 0= ⊕ ∧ ∨ ∧i i i is w a w b w  

( )2 2 1 0 1 0= ⊕ ∧ ∧ ∨ ∧ ∧i i i i i is w a w w b w w , 

( )3 3 2 1 0 2 1 0= ⊕ ∧ ∧ ∧ ∨ ∧ ∧ ∧i i i i i i i is w a w w w b w w w ,

4 3 2 1 0 3 2 1 0 4= ∧ ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∧ ∧i i i i i i i i i iS a w w w w b w w w w W . (6) 

 

5. Synthesis and Simulation Results 
SD adders operate in a digit-parallel manner. 
Therefore, for comparison sake, synthesis and 
simulation of one digit-slice of the SD adder leads to 
reasonable performance measures for the whole adder. 
The SD adder of Fig. 11, as modified based on Fig. 12, 
has been checked for correctness by exhaustive test via 
VHDL code of one digit-slice. We consider, for the 
sake of comparison, three previous relevant designs as 
reference, namely [10], [8], [13]. Besides the delay 
improvement discussed earlier, considerable 
area/power improvement with respect to [10] and [8] is 
expected due to less active hardware redundancy. 
Some moderate improvement is also expected with 
reference to [13] due to less complexity of transfer 
logic and simplified CLA logic.  
To confirm the latter expectations, all the four designs 
were synthesized by Synopsis Design Compiler based 
on TSMC 0.13 µm CMOS technology. In this 
endeavour, with the goal of maximum possible speed, 
we looked for the maximum time constraint that could 
not be met by any of the four synthesized designs. This 
was found to be 0.4 ns. The results are compared in 
Table III, where the 34% less PDP (i.e., product of 
delay and power) of the proposed design with respect 
to the best previous one is quite noticeable. 
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Fig. 11. Digit slice of SD adder based on Fig. 9 

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

ae
ee

.c
om

 o
n 

20
25

-0
7-

15
 ]

 

                               6 / 8

http://jiaeee.com/article-1-209-en.html


1389پائيز و زمستان  - شماره دوم  - هفتم سال  - مجله انجمن مهندسين برق و الكترونيك ايران  

Journal of Iranian A
ssociation of E

lectrical and E
l

ectronics E
ngineers - V

ol.7- N
o.2- F

all &
  W

inter 2
010

  

 

 
 

13 

1h
iw − 0

iw

0
it
it

h
iW

h
iS 1h

is − 0
is

0
ix0

iy1
ix2h

ix −1h
ix −h

iX 1
iy2h

iy −1h
iy −h

iY

L L

L

L

L

1
iw

1
is

0
1it −

1it −

 
Fig. 12. The SD adder with CLA components 
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Fig. 13. The simplified CLA logic for h = 4 replacing  
the lower FA-chain of Fig. 11 

6. Conclusions 
We examined three previous efficient implementations 
of maximally redundant signed digit adders. Then, we 
proposed a new MRSD addition scheme based on 
carry-save two’s complement encoding of primary 
sum-digits that are readily available by simply aligning 
the equally weighted digits of the operands. The first 
step of conventional SD addition algorithm is thus 
bypassed. The primary sum digits are partitioned to a 
transfer part and an interim sum. Whereas this simple 
partitioning leads to invalid results in few exceptional 
cases of the operands, a flag is computed to indicate the 
exceptions and to enforce corrections. Finally, the last 
step of conventional SD addition (i.e., adding the 
interim sum digits with the transfer coming from the 
next less significant digit position) is performed by a 
simplified carry look-ahead logic. 
The new MRSD adder is checked for correctness via 
exhaustive tests based on VHDL code describing the 
adder. Synthesis and simulation of the proposed adder 
shows better performance in terms of delay, power 
dissipation and layout area in comparison with three 
previous contributions. Fig. 14, based on the results 
tabulated in Table III, depicts these advantages. 
 
 
 

 
Fig. 14. Performance comparison between the new MRSD 

adder and three previous ones. 

Research is on going for further performance 
improvement in SD adders, and use of them in more 
sophisticated hardware units such as multiplication, 
division, and floating-point arithmetic circuits. The 
through benefit of the proposed adder can be better 
evaluated in realistic benchmark applications of such 
complex hardware units. 
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