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Abstract:

Signed digit (SD) number systems provide the pd#gilbf constant-time addition, where inter-digiarry propagation

is eliminated. Such carry-free addition is primaal three-step process; adding the equally weigBtesd to form the
primary sum digits, decomposing the latter to imlesum digits and transfer digits, which commonlgidng to
{-1, 0, 1}, and finally adding the transfers to tberesponding (i.e., with the same weight) intesinm digits. All the
final sum digits are therefore obtained in paralléle special case of radif-thaximally redundant SD number systems
is more attractive due to maximum symmetric rarige, (-2'+1, 2-1]) with only one redundancy bit per SD, and the
possibility of more efficient carry-free additiohhe previous relevant works use three parallel edttat compute sum
and sumz+1, where some speed-up is gained at th@to®wre area and power. In this paper, we proposalternative
nonspeculative addition scheme that uses carry-sageding for representation of the primary sum eerim sum
digits and computes the transfer digits via a fasnhbinational logic. The simulation and synthedighe proposed
adder, based on 0.18n CMOS technology, shows advantages in terms afdsggower and area.
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1. Introduction

Addition is the basic computer arithmetic operation
One study [1] shows that the share of add/subtract
operations, among all the floating point arithmetic
operations, is 55%. Multiplication, with its 37%ash,

is the next frequent operation that is often imm@eted

via several add operations.

Traditional ripple-carry adders are very slow doe t
the long chain of carry-propagation logic.
Consequently, the latency of amdigit carry-ripple
adder is linearly depending ar(i.e., O )) [2]. Carry-
accelerating techniques, for example, in carry ook
ahead adders [3] or carry select adders [4] impthee
order of latency to O (log) and O (/n), respectively.
However, Constant-time (i.e., O (1)) adders are not
possible if the sum, as usual, is to be represented
conventional nonredundant format [5]. Otherwise,
carry propagation may be totally eliminated if gwm
is allowed to be represented in a redundant fof&jat

Signed digit (SD) redundant number systems,
where each digit may have a positive or negativeeva
and there is not a single sign bit for the wholenbar,
have been used in several computer arithmetic itsrcu
[7]. SD number systems fall within the generalized
signed digit (GSD) number systems that are fixefixra
and contiguous number systems with digit set B},
wherea, B > 0 [6]. A GSD number system is deemed
redundant (nonredundant) if the redundancy index
p=a+p+1-ris positive (zero), whereis the radix.

In the ordinary SD number systems that have bathnce
digit sets (i.e.a = B), we havep = 20+1 —r > 0. In
practicer is a power of two (e.g.,"2 where the latter
inequality leads too > 2" The case ofx = 2™
corresponds to the minimally redundant digit set
[-2™, 2", wherep = 1 and at leash +1 bits are
needed to represent a digit. But with the same mumb
of bits o could grow nearly twice up to "2l
corresponding to maximally redundant digit set
[-2"+1, 2-1] with p = 2'— 1. The latter is particularly
attractive due to maximum range of numbers with
minimum number of redundancy bits. The higher radix
SD number systems [8], whefe> 2, trade-off less
storage and data paths for slower arithmetic [9r F
example, the radix-2 (i.eh = 1) SD number system
uses two bits to represent each digit in [-1, kst
doubling the storage and number of data paths with
respect to conventional nonredundant binary systems
However, addition speed is the highest in compariso
with the cases with higher radices (itez 2).

The main benefit of SD number systems is the
possibility of constant time addition, where theetey
is small and independent of the number of digitthin
operands. A drawback, however, is that conversfan o
redundant result to a conventional human readable
representation (e.g., nonredundant binary or ddrima
may require word wide carry propagation. Therefore,
use of redundant representations is justifiabley onl
when there are several arithmetic operations te tak
place before conversion. This situation occurshia t

implementation of composite arithmetic operations,
such as multiplication or division with several
embedded additions or subtractions, respectivglpi2
in floating point addition [10]. It can be foundsalin
whole computations such as function evaluation in
general purpose or special purpose hardware units
(e.g., digital signal processors [11]). In such
applications, the slow final conversion should ballw
compensated by the latency savings that are
compounded over many constant-time redundant
operations. Therefore, very fast redundant addess a
on demand.
In the addition of any two weighted numbers, the
sum digit in positioni obviously depends on the two
operand digits in the same position. Moreover,thar
cases op = 0 (i.e., nonredundant),= 1, andp > 2, it
also depends on all, two, and one less signifidagit
pairs, respectively. This is further explained elo
=p = 0 In a conventional nonredundant number
system the sum digit in each positior(> 0) is a
function of 2(+1) operand digits; namely two
operand digits per each of the positigris- 1...1, O.

= p = 1: For minimally redundant number systems the
sum digit in positiori (> 2) is a function of the digits
in positionsi, i =1 andi — 2. The constant time
addition in this case is called carry-limited [6].

=p > 2 In this case, that includes the maximally
redundant case gf = r — 1, the sum digit in each
positioni (> 1) depends on only four operand digits
in positionsi andi — 1 [12]. The constant time
addition in this case is called carry-free [6]. S

Each of the three steps of conventional constgnt
time SD addition algorithm (Algorithm 1) is roughdy g
slow as arh-bit adder. Therefore, it would be desirab@
to parallelize or fuse these steps for more spEed. =3
example, the case of maximally redundant SD (MRSP)
number systems are attractive due to its potefial &
improvements leading to less latency; noteworthy &
the speculative MRSD addition in [8] and [10] thiae ~
three parallel h+1-bit adders, per each radi%-28
position, and the nonspeculative approach of [13]. o

In this paper we present an improve@i
nonspeculative addition scheme for MRSD numi@r
systems with power of two radix= 2". The paper is'y
organized as follows. The conventional three-sigp
carry-free SD addition algorithm is explained
Section 2. Some previous works on improvéd
maximally redundant SD addition schemes, including
recent one [13], are briefly reviewed in SectionTBe
contribution of this paper is presented in Sectiofihe
results of synthesis and simulation of this worksus
three previous contributions, all based on Oifi
CMOS technology, are reported in Section 5. Fina
we draw our conclusions in Section 6.
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2. SD Carry-Free Addition Algorithm

In the conventional nonredundant number syste
cardinality& of the digit set is equal to the radiXe.g.,
the binary digit set [0, 1] or decimal [0, 9]). Th,é
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conventional radix-complement or diminished-radix-
complement number systems notwithstanding, in order
to allow negative numbers, one could think of dggits
with signed values (e.g., nonredundant radix-10t dig
set [-5, 4] and radix-16 digit set [-8, 7]). Tolduiip a
balanced range number system, however, it is
necessary to alloy > r for even radices (e.g., binary,
decimal, or hexadecimal digit sets [-1, 1], [-5, &

[-8, 8], respectively). The positive redundancyeixd
p=&—r >0, in such cases leads to redundant number
systems, where some values may be redundantly
represented by more than one digit combination.

Example 1 (decimal redundancy) Consider the
decimal digit set [-7, 7], wheie= 15 >r = 10. In this
redundant decimal number system, 2008 may be also
represented as 201(-2), where 2008 = 2x1000 + 1x10
+ (—2)x1, or 1979 represented also as 20(-2)(-1).

The signed digit (SD) number systems, introduced
by Avezienis [14], represent a special case of
redundant number systems, where the radligit set
[~a, o] is balanced. The constraiat> r/2 is required

for continuity of the represented numbers. Thisl¢et

& =2a+ 1 >r. The most useful property of redundant
number systems is the possibility of carry-free
addition, where the carry propagation chain is tiuehi
to a few number of digits [6].

This chain is only one digit long for SD numbers in
case ofr > 3 anda > (r +1)/2 [14], where the carry

generated in any positianwill not propagate beyond
positioni + 1. A general carry-free addition scheme for
radix-2' SD number systems with digit setof-o], is
described by Algorithm 1, where > 2" Fig. 1
depicts a block-diagram representation of the
Algorithm.

Algorithm 1 (Carry-free SD addition):

Input : Two n-digit radix-2' SD numbersX = Xq1...Xo
andY =Yy ;...Yo, Where -a < x;, y; < a.

Output: An (n+1)-digit radix-2' SD numbeiS=s,...S

|. Compute the n-digit radix-2' SD number
P = pri..po = X + Y, by digit-parallel
computation ofg;=x +y; for 0<i <n-1, where
—20.<p; < 20.

II. Decompose; to transfetti+1 and interim sumwv,
for 0<i <n-1, such that e +1 <w < a -1,
p=w + 2 x t,, andt,, = -1, 0, and 1 for
pi<—oa, —a<p <a, andp; > a, respectively.

. Forms =w; +t, for 0<i<n-1, and ses, =t,.
No new transfer will be generated in this step.

ENPAR (bians 9 505 — 90 03k — i Jluw — oo ol Sy 55Ul 3 (8 1 (ki (ol alozo 9

Positioni —1

X Yia

Positioni +1 Position i

)g+1 yi+1

Pia

—t ’ W,

$+1 Sfl
Fig. 1. The three steps of SD addition (Algorithm 1)

Inc/Dec Inc/Dec

Each of the Steps | and 1ll, of Algorithm 1, inveks
an h-bit addition and Step Il requires ah-bit
comparison whose complexity is, in general, in the
same order as that of dnbit addition. It would be
desirable to reduce the overall latency roughlyhiat
of two or oneh-bit addition. The representation or
encoding of signed digits is greatly influential tre
latency of SD addition. Two’s complement encodifig o
signed digits is believed to lead to the most &ffit
signed digit addition schemes [8], and is the emgpd
of choice in all the four designs studied in theper.

Example 2 (Decimal Carry-free addition): Consider
the decimal SD digit set [-7, 7], where
& = 15 >r = 10. Fig. 2 illustrates the application of
Algorithm 1 on two 4-digit decimal SD numbers.

[ 4 3 2 1 0
X 2 3 -5 4
Yi 5 6 -6 2
Step | o} 7 9 -11 6
W -3 -1 -1 6
Step Il ------g---mmme e
t 11 -1 0
Stepll' § 1 -2 -2 -1 6

Fig. 2. A decimal SD addition

3. Efficient SD Addition Schemes

We address three previous efficient MRSD addition
schemes numbered as a. (Fig. 3), b. (Fig. 4), and ¢
(Fig.6). Steps I and Il of Algorithm 1 are fused a.
and b., in order to simultaneously comppte-1, p;,
andp; +1. Each scheme, via Step I, deritgg and the
three corresponding speculated sum values, inwts o
way. Note that, in Figs. 3 (5) there are two (oln€)-

bit operations in the critical delay path. The spatve
approach, with three parallel adders as in a. anisb
probably the most straight forward approach. Howeve
the nonspeculative scheme c., only compuyieand
simultaneously extracts, directly fromx; andy;.

a. Fahmy and Flynn [10] have used 2’'s complement
encoding of the MRSD radix-16 number system
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to represent redundant digit floating-point
numbers with digit set [-15, 15]. The main idea,
in their SD adder, is to speculatively compute
pi —1,p;, andp; + 1 in parallel for all hexadecimal
positions, decompose the primary sum digits to
16t., and the speculative interim sum values
w;, — 1,w;, andw; + 1, respectively. The transfer
digit t; selects one of the latter three values as the
corrects.

Y
h+1} —
) )
Adder J [ Adder J
b p-1
h+1 h+1
il
4
Multiplexer t,

h+1

S
Fig. 3. Positioni of MRSD adder of [10]

. The SD addition scheme of [8] is based on an

alternative treatment of Step Il of Algorithm 1,
where p; is compared to 2! instead ofa. The
corresponding speculative adder architecture is
shown by Fig. 4. The rationale for comparison
with 2" can be understood from Fig. 5, which is
primarily showing the valid transfer values based
on Algorithm 1 fora < 2-1. This figure also
shows two overlapping regions where either of
the two corresponding values, whether on the
dashed parts or solid parts, can be assumed by the
transfer digit. However, the method in [8] only
uses the dashed lines for transfer assignment,
which is actually a translation of comparisorppf
with 2% This comparison can be done in
constant time independent of the valuédn.of

T
)

Fig. 4. Positioni of MRSD adder of [8]

-2'+2|

Fig. 5. The overlapping regions of valid values fot,

. The interim sumw; and the transfet,; may be

expressed directly as functions of and y.
However, these functions are hard and inefficient
to implement even for moderate valueshdk.g.,
eight-input functions foh = 4). It has been shown

in [13] that t,; can generally be defined as a
function of just the most significant bits mfand

yi, except for few cases that may be detected by a
moderately simple combinational logic. This
architecture is depicted in Fig. 6, where the
operation of the lower adder starts as soon as the
transfer t; is available at a time that is
considerably in advance of completion of

10y ra Obiwno) 9 il — g9 0 jlot — ok Jlw— )l 1) Souig Sl g (3 (yawciiten (ol alra

operation of the upper adder.

1

Transfer Logic

b

Fig. 6. The nonspeculative SD addition

. Winter 2010

In the next section, we follow scheme c, but wmh

some simplifications that lead to further improvense $
in latency, power dissipation and layout area.

4. Improved SD Addition Scheme

LL

Vol.7- No.2-

Algorithm 1 requires, as the first step, the actyal

additionx; +y;. However, one may considgrandy; as
the two components of a carry-save two’s complem

encoding ofp;, which is a special case of weighted big-

set (WBS) encoding [15]. It is illustrated, vi

4
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symbolic/dot notation, in Fig. 7, where posibite (i &
normal bits) and negabits (i.e., negatively weightg

bits) are represented by lowercase letters insidekbg

ﬂS

dots and upper case letters inside white d@s

respectively. With this encoding Step | is bypassed

OeP® 00
e 00

Fig. 7. Carry-save two's complement representationof the
position sump;
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The two negabitsXand Y" weigh 2, and as such

may directly contribute to the value of the trangfg,
whose weight is also2In fact, if we somehow mange
to have one posibit and one negabit in positiptthe
bit-pair may collectively represent a vatjd in [-1, 1].
To arrange this, observe that arithmetic valuehefhit
collection {X", x"™*, y""}, with respect to position
h-1, falls within [-2, 2]. The same range of valuesy
be represented by an equivalent collection of abjtos
in positionh and two negabits in position — 1, as
shown in Fig. 8. Table | shows the details of this
transformation, where the target posibit and ndgabi
are represented by primed variables and it isyeasin

thaty” = X[, X[ =X and Y™ =y,

00® 0600
DO® 0@

Fig. 8. Equivalent representation of position sunp;
via the transformation of Table |

Table. 1. Justification of transformation from Fig.7 to Fig.8

XP ||yt | value | x| x|yt
0 0 0 0 1 1 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 2 1 0 0
1 0 0 -2 0 1 1
1 0 1 -1 0 1 0
1 1 0 -1 0 0 1
1 1 1 0 0 0 0

To extract the transfer value, I&t= X™'X"2...xx°

and § =Y"y"?...y'y°. Then an immediate conclusion
of the arrangement (i.e., bit partitioning) of Fi§.
would be f,, = x"-vrand % =% +¥ . Unfortunately
however, it turns out thaf  and W are not always
correct. The exceptions, which can be recognized by
flag ¢, =x"" 0---Ox" Oy 0---Oy' 0x°0y°, and the
correctti;; andw; are listed in Table Il. The transfer
f..,is corrected by simply subtracting 1 in all theesas
thate; = 1 orti,1 = f,,,— @;. This leads to the following
equations.

X' =Y 0x' Do, YhEYtO (@)

Similarly, the interim suni gets corrected by
adding 2. This may be effectively done by adding 1 to
both x"-* and y,"-*in case ofg; = 1. Note that this is
always possible, since the value of the latter two
negabits in all the correction cases are —1. Fads to
Egns. 2 and 3, respectively, whege"+ and vy are

the sign bits in the carry-save two’s complement
representation of;.

-1+1=0 ifg =1 -

Xih—l — N Xih—l — Xih—1 Oo, (2)
X else

Y =Yg, ®

The transformation from Fig. 7 to Fig. 8 and the
latter corrections (i.e., Egns. 1, 2 and 3) aréectilely
shown in the first three parts of Fig. 9. The ollera
delay up to this point is the delay of flagand a two-
input gate in Eqns. 1 to 3. However, since thd fiis
1) bits ofx, andy; remain intact, one may start adding
them at time O (i.e, when computation¢@fbegins) to
compute the firsth — 1) bits ofw,. The carry out of
positionh-2, a posibit, and the two negabits in position
h-1 feed the full adder in that position. For proper
functioning of this full adder its two negabit irtpiand
the negabit carry-out should be inverted [16]. The
result is shown in the first row of part 4 of Fig.
Recalling Egn. 1, the two most significant bitpaft 3
are extracted to formy,;. Moreover, to prepare for the
last step, the transfer from positidan (i.e., t) is

converted to 2’s complement numbgFt"™*---t° using

the logic of Fig. 10.
PP 00
0 )

1 Ol Y B
0% 006

2
DOP 00
. 00® 00
DO 00
, 000 00

099 00
5 99900

Fig. 9. Digit slice of SD addition in positiori

Table. 2. The exceptions for easy extraction of trafsr and the corrections

xh |yn | Rangeof | - i Exceptions for Correction
' ' x;andy, i+1 : (xi, yi) pair tg Wi
0 0 [x>0,y>0] 1 |-2+p[(0,0),(0,1),and(1,0) O P
0 1 |x>0,y;<0| O P (0, —2+1) —1 | 2+p
1 0 | x<0,y>0[ O P (-2'+1, 0) -1 | 2+p
1 1 [x<0,yi<0| -1 ] Z+p, None None/ None

TONAR olinno 9 50l — pao o ot — piid Jhw— 3l 2l Serig iUl g (3 32 craminiidgo cyoznil alzme 11



http://jiaeee.com/article-1-209-en.html

[ Downloaded from jiaeee.com on 2025-07-15 ]

h
-I-|-r:11t|h+_11!“' 7ti];1<]T@C Xl_

(Tl

Fig. 10. Conversion of the transfer digit to an equalent
h+1-bit two’s complement number

The last part of Fig. 9 is an illustration of Stépof
Algorithm 1, which may be implemented usingtai-
bit two’'s complement adder. However, given that no
new carry would be generated in this step, Equlesr
the most significant bit of the result, wheddis the
carry into positiorh.

Sh :CIh D(vvlh D-I—Ih) D\lvlh D-I—Ih (4)

Fig. 11 depicts a digit slice of the overall SD add
based on Fig. 9, where the bold line is the cilititday
path. However, the two full adder chains may be
replaced by carry look-ahead (CLA) logic, as shamvn
Fig. 12, in order to reduce latency. The requir@dhC
to replace the lower full adder chain is a simptifione,
for the bits of one of the operands are all theeséira.,
T"=t"" =...=t" =t as shown in Fig. 10). This leads
to Eqn. 5, wherec" is the carry-into position 1 of the
i" digit. For largeh (e.g.,h = 4k, k > 2), a CLA tree
with simplified group-generate and group-propagate
signals may be used. Eqn. set 6 provides simplified
equations for sum bits of digit sligeof the SD adder

for h = 4, where a=x*, 0Y*, andb=x",0Y%. A
regular implementation of these equations is degict
by Fig. 13, where the lower half adder in positiamo
of Fig. 11 and the logic of Fig. 10 are fused fonttier

efficiency. However, in the actual synthesis, gatéh
higher fan-in may be used.

C.k:t.J W (t + ”WJ)C ©)

s =w'0(abb)

§ =w'0(a0w ObOw)
:vva(aD\A_/ﬁDWf’DbvaﬁDw"),

§ :MD(aDWEDWﬁDWf’DbDWZDMDWO),

§* =a 0w’ Ow? 0w Ow Ob Ow*Ow 0w Tw W . (6)

5. Synthesis and Simulation Results

SD adders operate in a digit-parallel manner.
Therefore, for comparison sake, synthesis and
simulation of one digit-slice of the SD adder leads
reasonable performance measures for the whole .adder
The SD adder of Fig. 11, as modified based on Eig.
has been checked for correctness by exhaustiveitest
VHDL code of one digit-slice. We consider, for the
sake of comparison, three previous relevant designs
reference, namely [10], [8], [13]. Besides the #gela
improvement discussed earlier, considerable
area/power improvement with respect to [10] and$8]
expected due to less active hardware redundancy.
Some moderate improvement is also expected with
reference to [13] due to less complexity of transfe
logic and simplified CLA logic.

To confirm the latter expectations, all the fousides
were synthesized by Synopsis Design Compiler based
on TSMC 0.13 um CMOS technology. In this]
endeavour, with the goal of maximum possible spegd,
we looked for the maximum time constraint that dou
not be met by any of the four synthesized desighs =
was found to be 0.4 ns. The results are compare in
Table 1ll, where the 34% less PDP (i.e., product cof
delay and power) of the proposed design with retsp%c
to the best previous one is quite noticeable.

Xh y\le

T.flr |h+111”' i i / /

ccccc
”

3

Flg. 11. Digit slice of SD adder based on Flg. 9

Journal of Iranian Association of Electrical aneédftonic: Engineers - Vol.7
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Table. 3. Simulation results for single digit MRSD dders with h = 4 based on 0.1am CMOS

. Power dissipation 2
Design reference | Delay (ns Dynamic (mW) | Static (pW) Area(um) | Delay x power
[10] 0.61 1.95 36.53 2255.7 1.19
[8] 0.57 2.19 40.64 2473.8 1.25
[13] 0.50 1.98 41.14 2480.5 0.99
New MRSD Adder 0.46 1.42 22.01 1707.9 0.65
O Delay B Power O Area OPDP
| 1 H ' | H
Y|h th ylh -1 xh 1 ylh 2 )gh—z yl_’l )ﬁl yio )QO Nl’zﬂl\;eRrSD 5
Comblntlonal ] 1 : : : : : : : :
Loglc Ref. [13] —| K
[ Standard CLA ——
e
W v\/“ ‘ Wll‘ WID‘ p T T 1 T T
[ Simplified CLA j::lo_l Ref. [3] ﬁ
I \ \ o —
s s s 0 10 20 30 40 50 &0 70 80 90 100

Fig. 12. The SD adder with CLA components

W

w' w

age

=
=

s s s s
Fig. 13. The simplified CLA logic forh = 4 replacing
the lower FA-chain of Fig. 11

6. Conclusions

We examined three previous efficient implementation
of maximally redundant signed digit adders. Thea, w
proposed a new MRSD addition scheme based on
carry-save two’s complement encoding of primary
sum-digits that are readily available by simplgaing

the equally weighted digits of the operands. Thst fi
step of conventional SD addition algorithm is thus
bypassed. The primary sum digits are partitioned to
transfer part and an interim sum. Whereas this lsimp
partitioning leads to invalid results in few exdeptl
cases of the operands, a flag is computed to iteliba
exceptions and to enforce corrections. Finally, ds
step of conventional SD addition (i.e., adding the
interim sum digits with the transfer coming frometh
next less significant digit position) is performbeg a
simplified carry look-ahead logic.

The new MRSD adder is checked for correctness via
exhaustive tests based on VHDL code describing the
adder. Synthesis and simulation of the propose@radd
shows better performance in terms of delay, power
dissipation and layout area in comparison with ghre
previous contributions. Fig. 14, based on the tssul
tabulated in Table Ill, depicts these advantages.
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Fig. 14. Performance comparison between the new MRS
adder and three previous ones.

Research is on going for further performance
improvement in SD adders, and use of them in more
sophisticated hardware units such as multiplication
division, and floating-point arithmetic circuits.h@&
through benefit of the proposed adder can be better
evaluated in realistic benchmark applications afhsu
complex hardware units.
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