XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi H, Mirzabeigi A, Moradi M H. An Adaptive Under Frequency Load Shedding For Frequency Stabilization of Power Systems Considering Voltage and System Inertia Changes. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :130-142
URL: http://jiaeee.com/article-1-1732-en.html
Department of Electrical Engineering, Bu-Ali Sina University
Abstract:   (287 Views)
Abstract                                                                                
Maintaining the network frequency close to its nominal value is crucial for the stability of a power network. When frequency stability is compromised due to an imbalance between production and consumption, it can cause significant damage to network equipment, including turbines and motors. The under-frequency load-shedding plan is a critical protection strategy in power systems, designed to keep the frequency within acceptable limits during severe power shortages. Conventional load-shedding schemes often face challenges in accurately estimating the active power deficit because they typically overlook the voltage dependence of loads and the precise value of the inertia constant. This oversight introduces uncertainty in power deficit estimation, potentially leading to significant adverse effects and even system collapse. This article proposes a load-shedding plan that assumes all production resources and loads are concentrated in a single bus. It introduces a voltage-frequency index to accurately estimate the active power deficit and adjusts the inertia constant during the load-shedding stages to determine the appropriate amount of load to be shed. To demonstrate the effectiveness of the proposed plan, four scenarios were tested using the IEEE 39-bus system in DigSILENT software. The simulation results validate the effectiveness and stability of the proposed approach.


 
Full-Text [PDF 2627 kb]   (183 Downloads)    
Type of Article: Research | Subject: Power
Received: 2024/06/12 | Accepted: 2024/10/1 | Published: 2025/12/12

References
1. [1] U. Rudez, and R. Mihalic, 2011. A novel approach to underfrequency load shedding. Electric Power Systems Research, 81(2), pp.636-643. [DOI:10.1016/j.epsr.2010.10.020]
2. [2] J.A. Laghari, H. Mokhlis, A.H.A. Bakar, and H. Mohamad, 2013. Application of computational intelligence techniques for load shedding in power systems: a review. energy conversion and management, 75, pp.130-140. [DOI:10.1016/j.enconman.2013.06.010]
3. [3] D. Sodin, R. Ilievska, A. Čampa, M. Smolnikar, & U. Rudez, (2020). Proving a concept of flexible under-frequency load shedding with hardware-in-the-loop testing. Energies, 13(14), 3607. [DOI:10.3390/en13143607]
4. [4] U. Rudez, & R. Mihalic, (2019, June). RoCoF-based improvement of conventional under-frequency load Shedding. In 2019 IEEE Milan PowerTech (pp. 1-5). IEEE. [DOI:10.1109/PTC.2019.8810438]
5. [5] T. Madiba, R. C. Bansal, N. T. Mbungu, M. Bettayeb, R. M. Naidoo, & M. W. Siti, (2022). Under-frequency load shedding of microgrid systems: a review. International Journal of Modelling and Simulation, 42(4), 653-679. [DOI:10.1080/02286203.2021.1964061]
6. [6] E. Grebe, J. Kabouris, S. Lopez Barba, W. Sattinger, and W. Winter, "Low frequency oscillations in the interconnected system of Continental Europe", in 2010 IEEE Power and Energy Society General Meeting, 2010, pp. 1-7. [DOI:10.1109/PES.2010.5589932]
7. [7] T. Skrjanc, R. Mihalic, & U. Rudez, (2023). A systematic literature review on under-frequency load shedding protection using clustering methods. Renewable and Sustainable Energy Reviews, 180, 113294. [DOI:10.1016/j.rser.2023.113294]
8. [8] B. Potel, V. Debusschere, F. Cadoux, & U. Rudez, (2019). A real-time adjustment of conventional under-frequency load shedding thresholds. IEEE Transactions on Power Delivery, 34(6), 2272-2274. [DOI:10.1109/TPWRD.2019.2900594]
9. [9] T. krjanc, R. Mihalic, & U. Rudez, (2020). Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm. Energies, 13(22), 5896. [DOI:10.3390/en13225896]
10. [10] M. Sun, G. Liu, M. Popov, V. Terzija, & S. Azizi, (2021). Underfrequency load shedding using locally estimated RoCoF of the center of inertia. IEEE Transactions on Power Systems, 36(5), 4212. [DOI:10.1109/TPWRS.2021.3061914]
11. [11] J. Grozdanovski, R. Mihalic, & U. Rudez, (2021). WAMS-Supported Power Mismatch Optimization for Secure Intentional Islanding. Energies, 14(10), 2790. [DOI:10.3390/en14102790]
12. [12] M. Sun, G. Liu, M. Popov, V. Terzija, & S. Azizi, (2021). Underfrequency load shedding using locally estimated RoCoF of the center of inertia. IEEE Transactions on Power Systems, 36(5), 4212-4222. [DOI:10.1109/TPWRS.2021.3061914]
13. [13] H. Awad, & A. Hafez, (2022). Optimal operation of under-frequency load shedding relays by hybrid optimization of particle swarm and bacterial foraging algorithms. Alexandria Engineering Journal, 61(1), 763-774. [DOI:10.1016/j.aej.2021.06.034]
14. [14] H. Lokay, and V. Burtnyk, "Application of underfrequency relays for automatic load shedding", IEEE Transactions on Power Apparatus and Systems, no. 3, pp. 776-783, 1968. [DOI:10.1109/TPAS.1968.292193]
15. [15] Azimi S M, Rahimi H, Mirzabeigi A. Stabilization and control of power systems using under frequency load shedding due to spinning reverse. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :163-172 https://doi.org/10.61186/jiaeee.20.4.163 [DOI:10.61186/jiaeee.20.4.2624]
16. [16] T. Senjyu, T. Nakaji, Uezato, K. and Funabashi, T., 2005. A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on energy conversion, 20(2), pp.406-414. [DOI:10.1109/TEC.2004.837275]
17. [17] A. Ketabi, and M.H. Fini, 2014. An underfrequency load shedding scheme for islanded microgrids. International Journal of Electrical Power & Energy Systems, 62, pp.599-607. [DOI:10.1016/j.ijepes.2014.05.018]
18. [18] L. Sigrist, I. Egido, and L. Rouco, 2010, November. Frequency stability boundary of small isolated power systems. In Electrical and Electronics Engineers in Israel (IEEEI), 2010 IEEE 26th Convention of (pp. 000229-000233). IEEE. [DOI:10.1109/EEEI.2010.5661965]
19. [19] S.Y. Obara, 2007. Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International journal of Hydrogen energy, 32(3), pp.323-336. [DOI:10.1016/j.ijhydene.2006.07.032]
20. [20] V.V. Terzija, 2006. Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation. IEEE Transactions on Power Systems, 21(3), pp.1260-1266. [DOI:10.1109/TPWRS.2006.879315]
21. [21] U. Rudez and R. Mihalic, "Analysis of underfrequency load shedding using a frequency gradient", IEEE transactions on power delivery, vol. 26, no. 2, pp. 565-575, 2009. [DOI:10.1109/TPWRD.2009.2036356]
22. [22] U. Rudez, and R. Mihalic, 2011. Monitoring the first frequency derivative to improve adaptive underfrequency load-shedding schemes. IEEE Transactions on Power Systems, 26(2), pp.839-846. [DOI:10.1109/TPWRS.2010.2059715]
23. [23] S. M. S. Kalajahi, H. Seyedi, & K. Zare, (2021). Under-frequency load shedding in isolated multi-microgrids. Sustainable Energy, Grids and Networks, 27, 100494. [DOI:10.1016/j.segan.2021.100494]
24. [24] A. Darbandsari, & T. Amraee, (2022). Under frequency load shedding for low inertia grids utilizing smart loads. International Journal of Electrical Power & Energy Systems, 135, 107506. [DOI:10.1016/j.ijepes.2021.107506]
25. [25] A. A. Zadeh, A. Sheikhi, & W. Sun, (2021). A Novel Probabilistic Method for Under Frequency Load Shedding Setting Considering Wind Turbine Response. IEEE Transactions on Power Delivery, 37(4), 2640-2649.‌ [DOI:10.1109/TPWRD.2021.3113284]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)