1. [1] U. Rudez, and R. Mihalic, 2011. A novel approach to underfrequency load shedding. Electric Power Systems Research, 81(2), pp.636-643. [
DOI:10.1016/j.epsr.2010.10.020]
2. [2] J.A. Laghari, H. Mokhlis, A.H.A. Bakar, and H. Mohamad, 2013. Application of computational intelligence techniques for load shedding in power systems: a review. energy conversion and management, 75, pp.130-140. [
DOI:10.1016/j.enconman.2013.06.010]
3. [3] D. Sodin, R. Ilievska, A. Čampa, M. Smolnikar, & U. Rudez, (2020). Proving a concept of flexible under-frequency load shedding with hardware-in-the-loop testing. Energies, 13(14), 3607. [
DOI:10.3390/en13143607]
4. [4] U. Rudez, & R. Mihalic, (2019, June). RoCoF-based improvement of conventional under-frequency load Shedding. In 2019 IEEE Milan PowerTech (pp. 1-5). IEEE. [
DOI:10.1109/PTC.2019.8810438]
5. [5] T. Madiba, R. C. Bansal, N. T. Mbungu, M. Bettayeb, R. M. Naidoo, & M. W. Siti, (2022). Under-frequency load shedding of microgrid systems: a review. International Journal of Modelling and Simulation, 42(4), 653-679. [
DOI:10.1080/02286203.2021.1964061]
6. [6] E. Grebe, J. Kabouris, S. Lopez Barba, W. Sattinger, and W. Winter, "Low frequency oscillations in the interconnected system of Continental Europe", in 2010 IEEE Power and Energy Society General Meeting, 2010, pp. 1-7. [
DOI:10.1109/PES.2010.5589932]
7. [7] T. Skrjanc, R. Mihalic, & U. Rudez, (2023). A systematic literature review on under-frequency load shedding protection using clustering methods. Renewable and Sustainable Energy Reviews, 180, 113294. [
DOI:10.1016/j.rser.2023.113294]
8. [8] B. Potel, V. Debusschere, F. Cadoux, & U. Rudez, (2019). A real-time adjustment of conventional under-frequency load shedding thresholds. IEEE Transactions on Power Delivery, 34(6), 2272-2274. [
DOI:10.1109/TPWRD.2019.2900594]
9. [9] T. krjanc, R. Mihalic, & U. Rudez, (2020). Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm. Energies, 13(22), 5896. [
DOI:10.3390/en13225896]
10. [10] M. Sun, G. Liu, M. Popov, V. Terzija, & S. Azizi, (2021). Underfrequency load shedding using locally estimated RoCoF of the center of inertia. IEEE Transactions on Power Systems, 36(5), 4212. [
DOI:10.1109/TPWRS.2021.3061914]
11. [11] J. Grozdanovski, R. Mihalic, & U. Rudez, (2021). WAMS-Supported Power Mismatch Optimization for Secure Intentional Islanding. Energies, 14(10), 2790. [
DOI:10.3390/en14102790]
12. [12] M. Sun, G. Liu, M. Popov, V. Terzija, & S. Azizi, (2021). Underfrequency load shedding using locally estimated RoCoF of the center of inertia. IEEE Transactions on Power Systems, 36(5), 4212-4222. [
DOI:10.1109/TPWRS.2021.3061914]
13. [13] H. Awad, & A. Hafez, (2022). Optimal operation of under-frequency load shedding relays by hybrid optimization of particle swarm and bacterial foraging algorithms. Alexandria Engineering Journal, 61(1), 763-774. [
DOI:10.1016/j.aej.2021.06.034]
14. [14] H. Lokay, and V. Burtnyk, "Application of underfrequency relays for automatic load shedding", IEEE Transactions on Power Apparatus and Systems, no. 3, pp. 776-783, 1968. [
DOI:10.1109/TPAS.1968.292193]
15. [15] Azimi S M, Rahimi H, Mirzabeigi A. Stabilization and control of power systems using under frequency load shedding due to spinning reverse. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :163-172
https://doi.org/10.61186/jiaeee.20.4.163 [
DOI:10.61186/jiaeee.20.4.2624]
16. [16] T. Senjyu, T. Nakaji, Uezato, K. and Funabashi, T., 2005. A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on energy conversion, 20(2), pp.406-414. [
DOI:10.1109/TEC.2004.837275]
17. [17] A. Ketabi, and M.H. Fini, 2014. An underfrequency load shedding scheme for islanded microgrids. International Journal of Electrical Power & Energy Systems, 62, pp.599-607. [
DOI:10.1016/j.ijepes.2014.05.018]
18. [18] L. Sigrist, I. Egido, and L. Rouco, 2010, November. Frequency stability boundary of small isolated power systems. In Electrical and Electronics Engineers in Israel (IEEEI), 2010 IEEE 26th Convention of (pp. 000229-000233). IEEE. [
DOI:10.1109/EEEI.2010.5661965]
19. [19] S.Y. Obara, 2007. Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International journal of Hydrogen energy, 32(3), pp.323-336. [
DOI:10.1016/j.ijhydene.2006.07.032]
20. [20] V.V. Terzija, 2006. Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation. IEEE Transactions on Power Systems, 21(3), pp.1260-1266. [
DOI:10.1109/TPWRS.2006.879315]
21. [21] U. Rudez and R. Mihalic, "Analysis of underfrequency load shedding using a frequency gradient", IEEE transactions on power delivery, vol. 26, no. 2, pp. 565-575, 2009. [
DOI:10.1109/TPWRD.2009.2036356]
22. [22] U. Rudez, and R. Mihalic, 2011. Monitoring the first frequency derivative to improve adaptive underfrequency load-shedding schemes. IEEE Transactions on Power Systems, 26(2), pp.839-846. [
DOI:10.1109/TPWRS.2010.2059715]
23. [23] S. M. S. Kalajahi, H. Seyedi, & K. Zare, (2021). Under-frequency load shedding in isolated multi-microgrids. Sustainable Energy, Grids and Networks, 27, 100494. [
DOI:10.1016/j.segan.2021.100494]
24. [24] A. Darbandsari, & T. Amraee, (2022). Under frequency load shedding for low inertia grids utilizing smart loads. International Journal of Electrical Power & Energy Systems, 135, 107506. [
DOI:10.1016/j.ijepes.2021.107506]
25. [25] A. A. Zadeh, A. Sheikhi, & W. Sun, (2021). A Novel Probabilistic Method for Under Frequency Load Shedding Setting Considering Wind Turbine Response. IEEE Transactions on Power Delivery, 37(4), 2640-2649. [
DOI:10.1109/TPWRD.2021.3113284]