XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moloudi M, Tarimoradi H. Optimum control of voltage and frequency fluctuations of the connected microgrid in the conditions of severe disturbances using the combined PSO-ANN algorithm. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :146-155
URL: http://jiaeee.com/article-1-1717-en.html
Faculty of engineering, University of Kurdistan, Sanandaj
Abstract:   (1557 Views)
In recent times, the use of renewable resources has expanded. However, due to their inherent nature, these resources are unstable (transient), leading to a decrease in power quality. Additionally, the unpredictability of renewable sources poses severe and unknown challenges. Energy storage systems play a fundamental role in the structure of microgrids. To address the mentioned problems, optimal utilization and expansion of energy storage systems can be a suitable option. In this article, a novel control strategy for battery energy storage systems is proposed. The goal of this control system is to recover voltage and frequency in the microgrid, thereby enhancing its power quality, especially in the presence of a wide spectrum of disturbances. To optimize the control system, the Particle Swarm Optimization (PSO) algorithm and an Artificial Neural Network (ANN) are employed. The controller coefficients are tuned using ANN training with a set of input-output data during the optimization process. Under various disturbances, the PSO algorithm dynamically adjusts the controller parameters online.
 
Full-Text [PDF 2232 kb]   (136 Downloads)    
Type of Article: Research | Subject: Power
Received: 2024/05/2 | Accepted: 2024/08/29 | Published: 2025/12/12

References
1. [1] A. Keyhani, "Design of Smart Power Grid Renewable Energy Systems", Smart Grid, WILEY, Chapter 2 (2011), pp. 93-170.
2. [2] Z. Esmaeili, M. R. Namavar Zeini Vandi, E. Anani, and M. Ehsan, "A Review on Energy Storage Systems Planning in Active Distribution Networks and its Applications", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 19, pp. 255-275, 2022. [DOI:10.52547/jiaeee.19.4.255]
3. [3] C.W. Gellings, "The smart grid: enabling energy efficiency and demand response", routledge CRC Press 1 (2009), pp.120-180. [DOI:10.1201/9781003151524-1]
4. [4] R. Etz, T. Patarau, S. Daraban, D. Petreus, "Microgrid model for fast development of energy management algorithms, International Spring Seminar on Electronics Technology", International Spring Seminar on Electronics Technology, (2012), pp. 297-302. [DOI:10.1109/ISSE.2012.6273090]
5. [5] F. Nejabatkhah, Y.W. Li, H. Tian, "Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview", IEEE Access, 7 (2019), pp. 52295-52318. [DOI:10.1109/ACCESS.2019.2912376]
6. [6] E. Sadeghi, M. Gholami, "Optimal Scheduling of Battery Energy Storage Systems for Simultaneous Participation in the Energy and Automatic Frequency Restoration Reserve Markets.", Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (2) :43-52, URL: http://jiaeee.com/article-1-1456-fa.html [DOI:10.52547/jiaeee.20.2.43]
7. [7] A. Alkahtani, et al. (2020). "Power Quality in Microgrids Including Supraharmonics: Issues, Standards, and Mitigations", IEEE Access 8: 127104-127122 [DOI:10.1109/ACCESS.2020.3008042]
8. [8] N. Hatziargyriou, "Microgrids Architectures and Control", Smart Grid -WILEY, Chapter 2&3 (2014), pp. 22-80.
9. [9] X. Feng, A. Shekhar, F. Yang, R. E. Hebner, P. Bauer, "Comparison of Hierarchical Control and Distributed Control for Microgrid", Electric Power Components and Systems, 45 (2017), pp.1043-1056. [DOI:10.1080/15325008.2017.1318982]
10. [10] W. Al-Saedi, S.W. Lachowicz, D. Habibi, O. Bass, "Voltage and frequency regulation-based DG unit in an autonomous microgrid operation using Particle Swarm Optimization", Electrical Power & Energy Systems, 53 (2013), pp.742-751. [DOI:10.1016/j.ijepes.2013.06.002]
11. [11] H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent "Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning Approach", IEEE Transactions on Smart Grid, 3 (2012), pp. 1935-1944. [DOI:10.1109/TSG.2012.2196806]
12. [12] T. Wu, X. Shi, L. Liao, C. Zhou, H. Zhou, Y. Su, "A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization", Energies, 12(4) (2019), p.642. [DOI:10.3390/en12040642]
13. [13] C. Mu, Y. Tang and H. He, "Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy", in IEEE Transactions on Industrial Electronics, vol. 64(2017), no. 8, pp. 6742-6751. [DOI:10.1109/TIE.2017.2694396]
14. [14] Wu. Tiezhou, Ye. Fanchao, Su. Yuehong, Wang. Yubo, Riffat. Saffa, "Coordinated control strategy of DC microgrid with hybrid energy storage system to smooth power output fluctuation", International Journal of Low-Carbon Technologies, Vol 15, (2020), pp. 46-54. [DOI:10.1093/ijlct/ctz056]
15. [15] W. Ma, W. Wang, X. Wu, R. Hu, F. Tang, W. Zhang, "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment", Sustainability (2019),11(5), p.1324. [DOI:10.3390/su11051324]
16. [16] N.R. Tummuru, U. Manandhar, A. Ukil, H.B. Gooi, Sathish K. Kollimalla, S. Naidu, "Control strategy for AC-DC microgrid with hybrid energy storage under different operating modes", International Journal of Electrical Power & Energy Systems, 104 (2019), pp.807-816. [DOI:10.1016/j.ijepes.2018.07.063]
17. [17] B. Anindya, P.K. Ray, B. Subudhi, A. Ghosh, "Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review", Energies, 15(19) (2022), pp.7176. [DOI:10.3390/en15197176]
18. [18] Yu. Jie, Liao. Siyang, Xu. Jian, "Frequency control strategy for coordinated energy storage system and flexible load in isolated power system", Energy Reports, 8(5) (2022), pp. 966-979. [DOI:10.1016/j.egyr.2022.02.133]
19. [19] M. Maaruf, K. Khan, M. Khalid, "Robust Control for Optimized Islanded and Grid-Connected Operation of Solar/Wind/Battery Hybrid Energy", Sustainability, 14(9) (2022), pp.5673. [DOI:10.3390/su14095673]
20. [20] A.E.-S. Salem, O.M. Salim, S.I. Arafa, "New triple-action controller for inverter power quality improvement", Computers & Electrical Engineering, 81 (2020), p. 106543. [DOI:10.1016/j.compeleceng.2019.106543]
21. [21] M. E. Akdogan, S. Ahmed, "Improving Power Quality and Power Sharing in Unbalanced Multi-Microgrids Using Energy Storage System", 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, (2021), pp. 2733-2739. [DOI:10.1109/APEC42165.2021.9487284]
22. [22] M. Kermani, "Transient voltage and frequency stability of an isolated microgrid based on energy storage systems", in Proc. 16th Int. Conf. Environ. Electr. Eng. (EEEIC), Florence, Italy, Jun. 2016, pp. 1-5 [DOI:10.1109/EEEIC.2016.7555871]
23. [23] Kaushal, Jitender; Basak, Prasenjit, "Power quality control through automated demand side management in microgrid equipped with battery energy storage for protection", IET Generation, Transmission &, Distribution, 2020, 14, (12), p. 2389-2398. [DOI:10.1049/iet-gtd.2019.1042]
24. [24] M. Dashtdar, A. Flah, C.Z. El-Bayeh, M. Tostado-Véliz, A. Al Durra, S.H.E. Abdel Aleem, Z.M. Ali, "Frequency control of the islanded microgrid based on optimised model predictive control by PSO", IET Renew. Power Gener. 16 (2022), pp.2088-2100. [DOI:10.1049/rpg2.12492]
25. [25] L. M. Kandasamy, J. Kanakaraj and S. J, "Artificial Neural Network Based Intelligent Controller Design for Grid-Tied Inverters of Microgrid under Load Variation and Disturbance", 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, (2021), pp.148-153. [DOI:10.1109/RDCAPE52977.2021.9633395]
26. [26] H. Li, X. Wang, and J. Xiao, "Differential evolution-based load frequency robust control for micro-grids with energy storage systems", Energies, vol. 11, no. 7, p. 1686, Jun. 2018. [DOI:10.3390/en11071686]
27. [27] J. ALSHEHRI, M. KHALID, "Power Quality Improvement in Microgrids Under Critical Disturbances Using an Intelligent Decoupled Control Strategy Based on Battery Energy Storage System", IEEE Access, 7 (2019), pp. 147314-147326. [DOI:10.1109/ACCESS.2019.2946265]
28. [28] Ma. Tao, Yang. Hongxing, Lu. Lin, "Solar photovoltaic system modeling and performance prediction", Renewable and Sustainable Energy Reviews, 36 (2014), pp. 304-315. [DOI:10.1016/j.rser.2014.04.057]
29. [29] M. Rouholamini and M. Rashidinejad, "Simultaneous Scheduling of Energy and Primary Reserve Considering Congestion Constraints in Transmission Lines", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 9, pp. 1-10, 2012.
30. [30] R. Venkateswari, S. Sreejith, "Factors influencing the efficiency of photovoltaic system", Renewable and Sustainable Energy Reviews, 101 (2019), pp. 376-394. [DOI:10.1016/j.rser.2018.11.012]
31. [31] M.A. Hannan, S.B. Wali, P.J. Ker, M.S. Abd Rahman, M. Mansor, V.K. Ramachandaramurthy, K.M. Muttaqi, T.M.I. Mahlia, Z.Y. Dong "Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues", Journal of Energy Storage, 42 (2021), pp.103023. [DOI:10.1016/j.est.2021.103023]
32. [32] L. Maharjan, S. Inoue, H. Akagi and J. Asakura, "State-of-Charge (SOC)-Balancing Control of a Battery Energy Storage System Based on a Cascade PWM Converter", in IEEE Transactions on Power Electronics, 24(2009), pp. 1628-1636. [DOI:10.1109/TPEL.2009.2014868]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)