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Abstract :

Recommender systems are one of the most important topics in academia and industry. With the increase in the volume
of information and data, it has become confusing and sometimes impossible for users to access the required services
without using recommender systems. So far, various techniques have been proposed for this purpose such as
collaborative filtering, matrix factorization, logistic regression, neural networks, etc. However, most of these methods
suffer from two limitations: (1) considering the recommendation as a static procedure and ignoring the dynamic
interactive nature between users and the recommender systems; (2) focusing on the immediate feedback of
recommended items and neglecting the long-term rewards. In this research, the modeling of interactions between users
and items is done using an improved deep reinforcement learning method which can consider both the dynamic
adaptation and long term rewards. The results of the experiments show that the proposed algorithm performs better than
other methods.
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1. Motivation of the work

With the rise of online services like shopping, news, and
social networks, it has become very convenient to buy
goods, books, videos, and news through the Internet or
mobile devices. Despite this convenience, the large
number of items available also presents a considerable
challenge for users in finding items that interest them.
Recommendation is a commonly utilized remedy and
different sets of methods have been suggested in this
area, including content-based collaborative filtering [1],
matrix factorization based methods [2] and deep learning
models [3]. The studies mentioned have two significant
limitations in common [4]. Firstly, the recommendation
procedure is generally seen as a static process, meaning
they assume that the user's underlying preference remains
unchanged. Secondly, the studies mentioned earlier are
trained by maximizing the instant rewards of suggestions,
focusing solely on whether the suggested items are
clicked or used, and ignoring the long-term impact the
items can have. This leads to a considerable decrease in
the performance of recommender systems. The
motivation behind the current work was to find a solution
to the problem mentioned earlier by presenting an
improved deep reinforcement learning method.

2. Contributions

The paper's key contributions can be outlined as follows:
We present a recommendation framework based on deep
reinforcement learning. The proposed framework differs
from traditional approaches by utilizing an Actor-Critic
architecture and viewing recommendation as a sequential
decision-making process that considers both immediate
and long-term rewards. Also, the interactions between
users and items can be explicitly modeled. One of the
most important advantages of the proposed system is its
more effective network updating. In fact, the proposed
system includes a public network and several separate
actor and critic networks, each of which is executed in
different threads and obtains its experience from the
interaction between the user and the item, and after
improvement, copies its weight to the public network. In
this step, a set of transfer steps are extracted from the
buffer so that the algorithm's update mechanism starts
and finally desired items to the wuser can be
recommended.

3. rocedures

The current study's procedure consists of the following
steps: 1) Data preparation, 2) Generating a model for
user-item interactions, 3) Generating a model for
predicting the user's score to the item, 4) Designing actor
network, 5) Designing critic network, 6) Designing state
representation module, 7) Designing experience replay
module. Fig. 1 illustrates the structure of the proposed
recommendation system.
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Fig. 1 Flowchart of the proposed recommendation system.

4. Findings

The experiments were conducted using the following
real-world publicly available datasets: MovieLens
(100k), MovieLens (I1M) and Jester. Precision@k and
NDCG@k were utilized as metrics to evaluate the
performance of our proposed approach. We compared the
proposed recommendation system against four of the
most widely used methods, namely Popularity, PMF,
SVD++ and DRR [5]. The results of experiments
demonstrate that the proposed recommendation system
outperforms the competitors in terms of the quality of the
solutions obtained. This confirms that our approach is
very effective and can replace previously used strategies.

5. Conclusion

In this paper, a recommendation framework based on
deep reinforcement learning has been proposed. So far,
several recommender systems have been developed each
of which uses a different strategy. In contrast to the
previously introduced recommender systems, our
proposed method views recommendations as a series of
decisions and utilizes an Actor-Critic learning approach
that considers both short-term and long-term rewards. A
state representation module is also included in the
proposed method, along with instantiation structures that
can explicitly capture the interactions between users and
items. The proposed method has been shown to
outperform  four  well-known and  widely-used
competitors in extensive experiments conducted on three
real-world datasets that acknowledges its effectiveness
and usefulness.
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Algorithm 2: Update steps for the proposed algorithm

Input: batch of N transitions in Buffer, Discount factory,
global learning rate Ir.

1 Next_actionsgop, «— global_actor(states; o)
2 Qualue < critic_network(states,Next_actionsggpa;)

3 GQyq1ye < global critic_network(states,Next_actionsggpa)

4 MQva]ue A min(Qvalue'GQvahle)

5 TD
« calculate_temporal_difference(rewards,MQ,,,0,dons,y)
Update critic_network by TD.

6
7 Gradient « sample_policy_gradient(actios,states)
8 Update actor_network « (states,gradient)

9

Update global_network weights by actor,critic and Ir,.

10 Return global actor-critic network
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Algorithm 1: Training algorithm

Input: Actor learning rate Ir,, Critic learning rate Ir,
Discount factor y, batch size N, state window n.

1 Initialize the global actor
— critic network with random weights 0 and w.

2 Initialize replay buffer B.
3 foreach worker in workers do:
4 Randomaly initialize the actor mg and the critic Q,, with
paramiters 0 and w.
9 for session = 1, N do
6 Observe current state s, = f(H,) where H,
= {iy..oin}-
7 Find action a, = mg(s,) according to the

current policy with € greedy exploration.
Recommend item i, according to action a,.

Calculate reward r;
= R(s,a,) based on the feedback of the user.

10 Observe new state s.,; = f(H,,) where H,,
= {i,,..,ip,i} if 1y is positive else Hy,, = H,

11 Store transition (sy,a;,';,Sesq) in B.

12 Sample a minibatch of N transitions in B.

13 Sety; = rj + YQu (Si+1, Mo (1))

14 Update the critic network by minimizing the loss.

15 Update the actor network using the sampled policy
gradient.

16 Update the global actor — critic network.

17 End for

18 End foreach
19  Return global actor-critic network
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Algorithm 3: Evaluation algorithm

Input: state window size n.

1 foreach userin users do:
2 Observe current state s, = f(H,) where H; = {i; ... i, }.
3 Execute action a,
= m0(s,) according to the current policy.
4 Recommend item i, according to action a,.
) Calculate reward r,
= R(s,a,) based on the feedback of the user.
6 Calculate precision and NDCG according to recommended

items and rewards.
7  End foreach
8  Return precision and NDCG
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