Volume 22, Issue 3 (JIAEEE Vol.22 No.3 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(3): 72-81 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Radmanesh H. Design and Analysis of a Novel High Step-Up DC-DC Converter for Aircraft Power Systems. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :72-81
URL: http://jiaeee.com/article-1-1623-en.html
Shahid Sattari Aeronautical University of Science and Technology
Abstract:   (1486 Views)
Abstract: This paper presents a new topology for a high step-up DC-DC converter utilizing a combination of voltage multiplier and coupled inductor. This topology is well suited for use in the aviation industry for more electric aircrafts. With the proposed topology, high voltage gain can be achieved with low duty cycle, resulting in low voltage stress among the active components. This reduces conduction loss and increases the converter's efficiency. Additionally, the proposed topology features an active switch, enabling simple control operation, and allows for continuous input current. Experimental test results on a 200W DC-DC prototype are used to confirm the steady-state performance and theoretical achievements of the proposed topology.
 
Full-Text [PDF 1109 kb]   (144 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/08/12 | Accepted: 2024/10/13 | Published: 2025/12/12

References
1. [1] J. S. N. T. Magambo et al., "Planar Magnetic Components in More Electric Aircraft: Review of Technology and Key Parameters for DC-DC Power Electronic Converter", IEEE Trans. Transp. Electrif., vol. 3, no. 4, pp. 831-842, 2017. [DOI:10.1109/TTE.2017.2686327]
2. [2] A. Nawawi et al., "Design and Demonstration of High Power Density Inverter for Aircraft Applications", IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1168-1176, 2017. [DOI:10.1109/TIA.2016.2623282]
3. [3] A. Y. Arabul et al., "Perspectives and Development of Electrical Systems in More Electric Aircraft", Int. J. Aerosp. Eng., vol. 2021. [DOI:10.1155/2021/5519842]
4. [4] K. Ni et al., "Electrical and Electronic Technologies in More-Electric Aircraft: A Review", IEEE Access, vol. 7, pp. 76145-76166, 2019. [DOI:10.1109/ACCESS.2019.2921622]
5. [5] N. Swaminathan and Y. Cao, "An Overview of High-Conversion High-Voltage DC-DC Converters for Electrified Aviation Power Distribution System", IEEE Trans. Transp. Electrif., vol. 6, no. 4, pp. 1740-1754, 2020. [DOI:10.1109/TTE.2020.3009152]
6. [6] G. Buticchi, S. Bozhko, M. Liserre, P. Wheeler, and K. Al-Haddad, "On-board microgrids for the more electric aircraft - Technology review", IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5588-5599, 2019. [DOI:10.1109/TIE.2018.2881951]
7. [7] P. Sarvghadi, A. Yazdian Varjani, and M. Shahparasti, "A High Step-Up Transformerless DC-DC Converter With New Voltage Multiplier Cell Topology and Coupled Inductor", IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 10162-10171, Oct. 2022. [DOI:10.1109/TIE.2021.3135625]
8. [8] F. Evran and M. T. Aydemir, "Isolated High Step-Up DC-DC Converter With Low Voltage Stress", IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3591-3603, Jul. 2014. [DOI:10.1109/TPEL.2013.2282813]
9. [9] Lung-Sheng Yang, Tsorng-Juu Liang, and Jiann-Fuh Chen, "Transformerless DC-DC Converters With High Step-Up Voltage Gain", IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009. [DOI:10.1109/TIE.2009.2022512]
10. [10] Bahman Taheri, Mahsa Sedaghat-A new general controller for DC-DC converters based on SMC methods-2018 6th international Istanbul smart grids and cities congress and fair (ICSG)-IEEE. [DOI:10.1109/SGCF.2018.8408940]
11. [11] Mirzaei A, Rezvanyvardom M, Heydari S. Analysis, Design and Implementation of a Non-Isolated Soft Switched Quasi Z-Source DC-DC Converter with High Voltage Gain. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :13-24
12. [12] J. Ai, M. Lin, and M. Yin, "A Family of High Step-Up Cascade DC-DC Converters with Clamped Circuits", IEEE Trans. Power. Electron., vol. 35, no. 5, pp. 4819-4834, 2020. [DOI:10.1109/TPEL.2019.2943502]
13. [13] B. Wu, S. Li, K. Ma Smedley, and S. Singer, "A Family of Two-Switch Boosting Switched-Capacitor Converters", IEEE Trans. Power. Electron., vol. 30, no. 10, pp. 5413-5424, Oct. 2015. [DOI:10.1109/TPEL.2014.2375311]
14. [14] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC-DC Converters", IEEE Tran. Power Electron., vol. 23, no. 2, pp. 841-851, Mar. 2008. [DOI:10.1109/TPEL.2007.915182]
15. [15] F. M. Shahir, S. Member, E. Babaei, and S. Member, "Voltage-Lift Technique Based Non-Isolated Boost DC-DC Converter : Analysis and Design", IEEE Trans. Power Electron., vol. 8993, no. c, 2017.
16. [16] ESLAMI M, SIADATAN A, JAVANI G R. Design and Simulation of a DC-DC Converter Interleaved By Using Soft Switching Techniques as an Interface Circuit in Renewable Energy Sources. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (2) :149-158 [DOI:10.52547/jiaeee.19.2.149]
17. [17] S. W. Lee and H. L. Do, "Quadratic Boost DC-DC Converter with High Voltage Gain and Reduced Voltage Stresses", IEEE Trans. Power. Electron., vol. 34, no. 3, pp. 2397-2404, 2019. [DOI:10.1109/TPEL.2018.2842051]
18. [18] S. Hasanpour, S. Member, and A. Baghramian, "A MODIFIED SEPIC - Based High Step - Up DC - DC Converter with Quasi - Resonant Operation for Renewable Energy Applications", IEEE Trans. Ind. Electron., vol. PP, no. c, p. 1, 2018. [DOI:10.1109/TIE.2018.2851952]
19. [19] P. Sarvghadi and A. Y. Varjani, "A New Topology of High Step-Up Non-Isolated DC-DC Converter with Modifying in VMC Network", in 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-5, Feb. 2021. [DOI:10.1109/PEDSTC52094.2021.9405913]
20. [20] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017. [DOI:10.1109/TPEL.2017.2652318]
21. [21] E. H. Ismail et al., "A Family of Single-Switch PWM Converters With High Step-Up Conversion Ratio", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 4, pp. 1159-1171, May 2008. [DOI:10.1109/TCSI.2008.916427]
22. [22] C. W. Mclyman, Transformer and Inductor Design Handbook. Boca Raton, FL, USA: CRC Press, 2011.
23. [23] W. G. Hurley and W.H. Wölfle, Transformers and Inductors for Power Electronics: Theory, Design and Applications. John Wiley & Sons, Apr 29, 2013. [DOI:10.1002/9781118544648]
24. [24] D. Graovac, M. Pürschel and A. Kiep "Mosfet Power Losses Calculation U sing the Data-Sheet Parameters", Infineon, App. Note, 2006.
25. [25] M. K. Nguyen, Y. C. Lim, and S. J. Park, "Improved trans-Z-source inverter with continuous input current and boost inversion capability", IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4500-4510, 2013. [DOI:10.1109/TPEL.2012.2233758]
26. [26] Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, "A Single Switch Quadratic Boost High Step Up DC-DC Converter", IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4387-4397, 2019. [DOI:10.1109/TIE.2018.2860550]
27. [27] J. Li, J. Liu, and S. Member, "A Negative-Output High Quadratic Conversion Ratio DC-DC Converter with Dual Working Modes", IEEE Trans. Ind. Electron., vol. PP, no. c, p. 1, 2018. [DOI:10.1109/TPEL.2018.2870421]
28. [28] S. A. Modaberi, B. Allahverdinejad, and M. R. Banaei, "A Quadratic High Step-up DC-DC Boost Converter Based on Coupled inductor with Single Switch and Continuous Input Current", in 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-6, Feb. 2021. [DOI:10.1109/PEDSTC52094.2021.9405958]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)