1. [1] Lent, C.S., et al., Quantum cellular automata. Nanotechnology, 1993. 4(1): p. 49. [
DOI:10.1088/0957-4484/4/1/004]
2. [2] Seminario, J.M., et al., A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Transactions on Nanotechnology, 2004. 3(1): p. 215-218. [
DOI:10.1109/TNANO.2004.824012]
3. [3] DeHon, A. and M.J. Wilson. Nanowire-based sublithographic programmable logic arrays. in Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays. 2004. [
DOI:10.1145/968280.968299]
4. [4] Timler, J. and C.S. Lent, Power gain and dissipation in quantum-dot cellular automata. journal of applied physics, 2002. 91(2): p. 823-831. [
DOI:10.1063/1.1421217]
5. [5] Peng, J.-T., C. Chien, and T. Tseng, Rough set theory for data mining for fault diagnosis on distribution feeder. IEE Proceedings-Generation, Transmission and Distribution, 2004. 151(6): p. 689-697. [
DOI:10.1049/ip-gtd:20040917]
6. [6] Chien, C.-F., S.-L. Chen, and Y.-S. Lin, Using Bayesian network for fault location on distribution feeder. IEEE Transactions on Power Delivery, 2002. 17(3): p. 785-793. [
DOI:10.1109/TPWRD.2002.1022804]
7. [7] Teng, J.-H., W.-H. Huang, and S.-W. Luan, Automatic and fast faulted line-section location method for distribution systems based on fault indicators. IEEE Transactions on Power systems, 2014. 29(4): p. 1653-1662. [
DOI:10.1109/TPWRS.2013.2294338]
8. [8] Sridharan, K. and N.N. Schulz, Outage management through AMR systems using an intelligent data filter. IEEE Transactions on Power Delivery, 2001. 16(4): p. 669-675. [
DOI:10.1109/61.956755]
9. [9] Sasamal, T.N., A.K. Singh, and U. Ghanekar, Efficient design of coplanar ripple carry adder in QCA. IET Circuits, Devices & Systems, 2018. 12(5): p. 594-605. [
DOI:10.1049/iet-cds.2018.0020]
10. [10] Mohammadi, H., K. Navi, and M. Hosseinzadeh, An efficient quantum-dot cellular automata full adder based on a new convertible 7-input majority-not gate. IETE Journal of Research, 2020: p. 1-9. [
DOI:10.1080/03772063.2020.1838338]
11. [11] Raj M, Gopalakrishnan L, Ko SB. Design and analysis of novel QCA full adder-subtractor. International Journal of Electronics Letters. 2021 Jul 3;9(3):287-300. [
DOI:10.1080/21681724.2020.1726479]
12. [12] Barughi, Y.Z., and Heikalabad, S.R.: A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata, Int J Theor Phys, 56 (2017) 2848-2858. [
DOI:10.1007/s10773-017-3453-0]
13. [13] Erniyazov S, Jeon JC. Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectronic Engineering. 2019 Apr 15;211:37-43. [
DOI:10.1016/j.mee.2019.03.015]
14. [14] Bravo-Montes JA, Martín-Toledano A, Sánchez-Macián A, Ruano O, Garcia-Herrero F. Design and implementation of efficient QCA full-adders using fault-tolerant majority gates. The Journal of Supercomputing. 2022 Apr;78(6):8056-80. [
DOI:10.1007/s11227-021-04247-9]
15. [15] Walus, K., et al., QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE transactions on nanotechnology, 2004. 3(1): p. 26-31. [
DOI:10.1109/TNANO.2003.820815]
16. [16] Snider, G.L., et al. Quantum-dot cellular automata: Introduction and experimental overview. in Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No. 01EX516). 2001. IEEE.
17. [17] Xiao, L.-r., X.-x. Chen, and S.-y. Ying, Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. Journal of Zhejiang University SCIENCE C, 2012. 13(5): p. 385-392. [
DOI:10.1631/jzus.C1100287]
18. [18] Jafarali Jassbi, S., et al., A Defect Tolerant Design for 5-Input Majority Gate in Quantum-dot Cellular Automata. Journal of Iranian Association of Electrical and Electronics Engineers, 2022. 19(2): p. 39-45. [
DOI:10.52547/jiaeee.19.2.39]
19. [19] Binaei, R. and M. Gholami, Introducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits. Journal of Iranian Association of Electrical and Electronics Engineers, 2021. 18(1): p. 71-80.
20. [20] Tougaw, P.D. and C.S. Lent, Logical devices implemented using quantum cellular automata. Journal of Applied physics, 1994. 75(3): p. 1818-1825. [
DOI:10.1063/1.356375]
21. [21] Gin, A., P.D. Tougaw, and S. Williams, An alternative geometry for quantum-dot cellular automata. Journal of Applied Physics, 1999. 85(12): p. 8281-8286. [
DOI:10.1063/1.370670]
22. [22] Gholamnia Roshan, M. and M. Gholami, Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. International Journal of Theoretical Physics, 2018. 57(10): p. 3223-3241. [
DOI:10.1007/s10773-018-3840-1]
23. [23] Gholami M, Amirzadeh Z. Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study. Frontiers of Information Technology & Electronic Engineering. 2023 Mar;24(3):457-69. [
DOI:10.1631/FITEE.2200361]
24. [24] Sasamal, T., A. Singh, and U. Ghanekar, Design of non‐restoring binary array divider in majority logic‐based QCA. Electronics Letters, 2016. 52(24): p. 2001-2003. [
DOI:10.1049/el.2016.3188]
25. [25] Srivastava, S., et al. QCAPro-an error-power estimation tool for QCA circuit design. in 2011 IEEE international symposium of circuits and systems (ISCAS). 2011. IEEE. [
DOI:10.1109/ISCAS.2011.5938081]