1. [1] Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y., High-entropy alloy: challenges and prospects. Materials Today, Vol. 19, No. 6, pp. 349-362, 2016. [
DOI:10.1016/j.mattod.2015.11.026]
2. [2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377, pp. 213-218, 2004. [
DOI:10.1016/j.msea.2003.10.257]
3. [3] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh., Machine learning for molecular and materials science, Nature, Vol. 559, pp. 547-555, 2018. [
DOI:10.1038/s41586-018-0337-2] [
PMID]
4. [4] Ahajjam, S., El Haddad, M., & Badir, H., A new scalable leader-community detection approach for community detection in social networks, Social Networks, Vol. 54, pp. 41-49, 2018. [
DOI:10.1016/j.socnet.2017.11.004]
5. [5] Ozaki, N., Tezuka, H., & Inaba, M., A simple acceleration method for the Louvain algorithm. International Journal of Computer and Electrical Engineering, Vol. 8, No. 3, pp. 207, 2016. [
DOI:10.17706/IJCEE.2016.8.3.207-218]
6. [6] طباطبایی، یزدیان دهکردی، جهانگرد رفسنجانی، "بهکارگیری رویکردهای یادگیری ماشین جهت پیشبینی انحراف ابعاد کاشیهای سرامیکی"، نشریه مهندسی برق و الکترونیک ایران، جلد ۱۹، شماره ۲، صفحات ۱۹۹-۲۰۶، ۱۴۰۱.
7. [7] علیزاده، حسینزاده، ناظمی، "تشخیص اجتماعات ترکیبی در شبکههای اجتماعی"، مجله مهندسی برق و الکترونیک ایران، جلد ۱۱، شماره ۲، صفحات ۴۹-۶۰، انتشارات مهندسی برق و الکترونیک ایران، ۱۳۹۳.
8. [8] شاهرخزاده، رفیعی، "بهبود کارایی سیستمهای توصیهگر در مواجه با مساله شروع سرد با استفاده از تحلیل رفتار کاربران در شبکههای اجتماعی"، نشریه مهندسی برق و الکترونیک ایران، جلد ۲۰، شماره ۱، ۱۴۰۱.
9. [9] Safdari, H., Contisciani, M., & De Bacco, C., Reciprocity, community detection, and link prediction in dynamic networks, Journal of Physics: Complexity, Vol. 3, No. 1, pp. 015010, 2022. [
DOI:10.1088/2632-072X/ac52e6]
10. [10] Li, C., Chen, H., Li, T., & Yang, X., A stable community detection approach for complex network based on density peak clustering and label propagation, Applied Intelligence, Vol. 52, No. 2, pp. 1188-1208, 2022. [
DOI:10.1007/s10489-021-02287-5]
11. [11] یوسفی، میرحسینی، شعبانی، "تشخیص اجتماعات در شبکههای اجتماعی با استفاده از الگوریتم پنگوئن امپراطور"، پنجمین همایش ملی فناوریهای نوین در مهندسی برق، کامپیوتر و مکانیک ایران، ۱۴۰۱.
12. [12] Guo, Y. Esfahani, F., Shao, X., Srinivasan, V., Thomo, A., Xing, L., & Zhang, X., Integrative COVID-19 biological network inference with probabilistic core decomposition, Briefings in bioinformatics, Vol. 23, No. 1, pp. bbab455, 2022. [
DOI:10.1093/bib/bbab455] [
PMID] [
]
13. [13] He, Q., & Yang, Y., On lattice distortion in high entropy alloys, Frontiers in Materials, Vol. 5, No. 42, 2018. [
DOI:10.3389/fmats.2018.00042]
14. [14] Dai, D., Xu, T., Wei, X., Ding, G., Xu, Y., Zhang, J., & Zhang, H., Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Computational Materials Science, Vol. 175, 2020. [
DOI:10.1016/j.commatsci.2020.109618]
15. [15] Kaufmann, K., & Vecchio, K. S., Searching for high entropy alloys: A machine learning approach. Acta Materialia, Vol. 198, pp. 178-222, 2020. [
DOI:10.1016/j.actamat.2020.07.065]
16. [16] Zhang, Y., Wen, C., Wang, C., Antonov, S., Xue, D., Bai, Y., & Su, Y., Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Materialia, Vol. 185, pp. 528-539, 2020. [
DOI:10.1016/j.actamat.2019.11.067]
17. [17] Risal, S., Zhu, W., Guillen, P., & Sun, L., Improving phase prediction accuracy for high entropy alloys with machine learning, Computational Materials Science, Vol. 192, pp. 110389, 2021. [
DOI:10.1016/j.commatsci.2021.110389]
18. [18] Qi, J., Hoyos, D. I., & Poon, S. J., Machine Learning-Based Classification, Interpretation, and Prediction of High-Entropy-Alloy Intermetallic Phases, arXiv preprint arXiv:2208.02141, 2022. [
DOI:10.1007/s44210-023-00017-9]
19. [19] Chang, H., Tao, Y., Liaw, P. K., & Ren, J., Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning, Journal of Alloys and Compounds, Vol. 921, pp. 166149, 2022. [
DOI:10.1016/j.jallcom.2022.166149]
20. [20] Qu, N., Liu, Y., Zhang, Y., Yang, D., Han, T., Liao, M., ... & Zhang, L., Machine learning guided phase formation prediction of high entropy alloys, Materials Today Communications, Vol. 32, pp. 104146, 2022. [
DOI:10.1016/j.mtcomm.2022.104146]
21. [21] Ghouchan Nezhad Noor Nia, R., Jalali, M., Mail, M., Ivanisenko, Y., & Kübel, C., Machine Learning Approach to Community Detection in a High-Entropy Alloy Interaction Network, ACS omega, Vol. 7, No. 15, pp. 12978-12992, 2022. [
DOI:10.1021/acsomega.2c00317] [
PMID] [
]
22. [22] Ghouchan Nezhad Noor Nia, R., Jalali, M., & Houshmand, M., A Graph-Based k-Nearest Neighbor (KNN) Approach for Predicting Phases in High-Entropy Alloys, Applied Sciences, Vol. 12, No. 16, pp. 8021, 2022. [
DOI:10.3390/app12168021]
23. [23] Han, J., Kamber, M., & Pei, J., Getting to Know Your Data, Data Mining, pp. 39-82, 2012. [
DOI:10.1016/B978-0-12-381479-1.00002-2]
24. [24] Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S., Using of Jaccard coefficient for keywords similarity, In Proceedings of the international multiconference of engineers and computer scientists, Vol. 1, No. 6, pp. 380-384, 2013.
25. [25] Newman, M. E. (2004). Fast algorithm for detecting community structure in networks, Physical review E, Vol. 69, No. 6, 2004. [
DOI:10.1103/PhysRevE.69.066133] [
PMID]
26. [26] Girvan, M., & Newman, M. E., Community structure in social and biological networks. Proceedings of the national academy of sciences, Vol. 99, No. 12, pp. 7821-7826, 2002. [
DOI:10.1073/pnas.122653799] [
PMID] [
]
27. [27] Newman, M. E., Modularity and community structure in networks, Proceedings of the national academy of sciences, Vol. 103, No. 23, pp.8577-8582, 2006. [
DOI:10.1073/pnas.0601602103] [
PMID] [
]
28. [28] Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E., Fast unfolding of communities in large networks, Journal of statistical mechanics: theory and experiment, Vol. 2008, No. 10, pp. 10008, 2008. [
DOI:10.1088/1742-5468/2008/10/P10008]
29. [29] Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K., Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials, Vol. 10, No. 6, pp. 534-538, 2008. [
DOI:10.1002/adem.200700240]