XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghouchan Nezhad Noor Nia R, Jalali M, Houshmand M. A Community Detection-based Approach in Social Networks to Improve the Equation Analysis in the Material Science. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :135-147
URL: http://jiaeee.com/article-1-1522-en.html
Islamic Azad University
Abstract:   (1452 Views)
Nowadays, high-entropy alloys (HEAs) are a popular domain for researchers which is improved performance by using machine learning (ML). HEAs are formed at least five main elements with close or equal size which is depend on their size and type of elements to extend physical and mechanical features. The ML approach has many applications in various fields. Social network analysis (SNA) is one of the ML tools that is used graph theory. Each graph consists of a number of nodes and edges that each node has its own descriptors. The studies done so far has not used the high-entropy alloys network dataset based on the similarity of content and structural features of each compound. In this paper, a new method is proposed that generalized SNA tools to metallurgical and materials engineering. The proposed method is investigated the HEAs descriptors, in which HEAs descriptors similarity are calculated and the HEAs interaction network is created. The groups have been extracted by Louvain algorithm which each group called cluster. The clusters have alloys with similar properties. The experimental results shown high quality clusters that will be effective in predicting the compounds functionality and discovering new compounds and descriptors. The modularity criterion indicates the quality of the clusters, is about 0.713. 
Full-Text [PDF 1451 kb]   (378 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2022/11/9 | Accepted: 2023/01/21 | Published: 2023/09/9

References
1. [1] Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y., High-entropy alloy: challenges and prospects. Materials Today, Vol. 19, No. 6, pp. 349-362, 2016. [DOI:10.1016/j.mattod.2015.11.026]
2. [2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377, pp. 213-218, 2004. [DOI:10.1016/j.msea.2003.10.257]
3. [3] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh., Machine learning for molecular and materials science, Nature, Vol. 559, pp. 547-555, 2018. [DOI:10.1038/s41586-018-0337-2] [PMID]
4. [4] Ahajjam, S., El Haddad, M., & Badir, H., A new scalable leader-community detection approach for community detection in social networks, Social Networks, Vol. 54, pp. 41-49, 2018. [DOI:10.1016/j.socnet.2017.11.004]
5. [5] Ozaki, N., Tezuka, H., & Inaba, M., A simple acceleration method for the Louvain algorithm. International Journal of Computer and Electrical Engineering, Vol. 8, No. 3, pp. 207, 2016. [DOI:10.17706/IJCEE.2016.8.3.207-218]
6. [6] طباطبایی، یزدیان دهکردی، جهانگرد رفسنجانی، "به‌کارگیری رویکردهای یادگیری ماشین جهت پیش‌بینی انحراف ابعاد کاشی‌های سرامیکی"، نشریه مهندسی برق و الکترونیک ایران، جلد ۱۹، شماره ۲، صفحات ۱۹۹-۲۰۶، ۱۴۰۱.
7. [7] علیزاده، حسین‌زاده، ناظمی، "تشخیص اجتماعات ترکیبی در شبکه‌های اجتماعی"، مجله مهندسی برق و الکترونیک ایران، جلد ۱۱، شماره ۲، صفحات ۴۹-۶۰، انتشارات مهندسی برق و الکترونیک ایران، ۱۳۹۳.
8. [8] شاهرخ‌زاده، رفیعی، "بهبود کارایی سیستم‌های توصیه‌گر در مواجه با مساله شروع سرد با استفاده از تحلیل رفتار کاربران در شبکه‌های اجتماعی"، نشریه مهندسی برق و الکترونیک ایران، جلد ۲۰، شماره ۱، ۱۴۰۱.
9. [9] Safdari, H., Contisciani, M., & De Bacco, C., Reciprocity, community detection, and link prediction in dynamic networks, Journal of Physics: Complexity, Vol. 3, No. 1, pp. 015010, 2022. [DOI:10.1088/2632-072X/ac52e6]
10. [10] Li, C., Chen, H., Li, T., & Yang, X., A stable community detection approach for complex network based on density peak clustering and label propagation, Applied Intelligence, Vol. 52, No. 2, pp. 1188-1208, 2022. [DOI:10.1007/s10489-021-02287-5]
11. [11] یوسفی، میرحسینی، شعبانی، "تشخیص اجتماعات در شبکه‌های اجتماعی با استفاده از الگوریتم پنگوئن امپراطور"، پنجمین همایش ملی فناوری‌های نوین در مهندسی برق، کامپیوتر و مکانیک ایران، ۱۴۰۱.
12. [12] Guo, Y. Esfahani, F., Shao, X., Srinivasan, V., Thomo, A., Xing, L., & Zhang, X., Integrative COVID-19 biological network inference with probabilistic core decomposition, Briefings in bioinformatics, Vol. 23, No. 1, pp. bbab455, 2022. [DOI:10.1093/bib/bbab455] [PMID] []
13. [13] He, Q., & Yang, Y., On lattice distortion in high entropy alloys, Frontiers in Materials, Vol. 5, No. 42, 2018. [DOI:10.3389/fmats.2018.00042]
14. [14] Dai, D., Xu, T., Wei, X., Ding, G., Xu, Y., Zhang, J., & Zhang, H., Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Computational Materials Science, Vol. 175, 2020. [DOI:10.1016/j.commatsci.2020.109618]
15. [15] Kaufmann, K., & Vecchio, K. S., Searching for high entropy alloys: A machine learning approach. Acta Materialia, Vol. 198, pp. 178-222, 2020. [DOI:10.1016/j.actamat.2020.07.065]
16. [16] Zhang, Y., Wen, C., Wang, C., Antonov, S., Xue, D., Bai, Y., & Su, Y., Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Materialia, Vol. 185, pp. 528-539, 2020. [DOI:10.1016/j.actamat.2019.11.067]
17. [17] Risal, S., Zhu, W., Guillen, P., & Sun, L., Improving phase prediction accuracy for high entropy alloys with machine learning, Computational Materials Science, Vol. 192, pp. 110389, 2021. [DOI:10.1016/j.commatsci.2021.110389]
18. [18] Qi, J., Hoyos, D. I., & Poon, S. J., Machine Learning-Based Classification, Interpretation, and Prediction of High-Entropy-Alloy Intermetallic Phases, arXiv preprint arXiv:2208.02141, 2022. [DOI:10.1007/s44210-023-00017-9]
19. [19] Chang, H., Tao, Y., Liaw, P. K., & Ren, J., Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning, Journal of Alloys and Compounds, Vol. 921, pp. 166149, 2022. [DOI:10.1016/j.jallcom.2022.166149]
20. [20] Qu, N., Liu, Y., Zhang, Y., Yang, D., Han, T., Liao, M., ... & Zhang, L., Machine learning guided phase formation prediction of high entropy alloys, Materials Today Communications, Vol. 32, pp. 104146, 2022. [DOI:10.1016/j.mtcomm.2022.104146]
21. [21] Ghouchan Nezhad Noor Nia, R., Jalali, M., Mail, M., Ivanisenko, Y., & Kübel, C., Machine Learning Approach to Community Detection in a High-Entropy Alloy Interaction Network, ACS omega, Vol. 7, No. 15, pp. 12978-12992, 2022. [DOI:10.1021/acsomega.2c00317] [PMID] []
22. [22] Ghouchan Nezhad Noor Nia, R., Jalali, M., & Houshmand, M., A Graph-Based k-Nearest Neighbor (KNN) Approach for Predicting Phases in High-Entropy Alloys, Applied Sciences, Vol. 12, No. 16, pp. 8021, 2022. [DOI:10.3390/app12168021]
23. [23] Han, J., Kamber, M., & Pei, J., Getting to Know Your Data, Data Mining, pp. 39-82, 2012. [DOI:10.1016/B978-0-12-381479-1.00002-2]
24. [24] Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S., Using of Jaccard coefficient for keywords similarity, In Proceedings of the international multiconference of engineers and computer scientists, Vol. 1, No. 6, pp. 380-384, 2013.
25. [25] Newman, M. E. (2004). Fast algorithm for detecting community structure in networks, Physical review E, Vol. 69, No. 6, 2004. [DOI:10.1103/PhysRevE.69.066133] [PMID]
26. [26] Girvan, M., & Newman, M. E., Community structure in social and biological networks. Proceedings of the national academy of sciences, Vol. 99, No. 12, pp. 7821-7826, 2002. [DOI:10.1073/pnas.122653799] [PMID] []
27. [27] Newman, M. E., Modularity and community structure in networks, Proceedings of the national academy of sciences, Vol. 103, No. 23, pp.8577-8582, 2006. [DOI:10.1073/pnas.0601602103] [PMID] []
28. [28] Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E., Fast unfolding of communities in large networks, Journal of statistical mechanics: theory and experiment, Vol. 2008, No. 10, pp. 10008, 2008. [DOI:10.1088/1742-5468/2008/10/P10008]
29. [29] Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K., Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials, Vol. 10, No. 6, pp. 534-538, 2008. [DOI:10.1002/adem.200700240]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb