Volume 21, Issue 1 (JIAEEE Vol.21 No.1 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(1): 47-53 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari M, Habibzadeh-Sharif A, Mohammadi B. Analysis of the effect of size, material, position and period of metal nanowires on the performance of thin film solar cells. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :47-53
URL: http://jiaeee.com/article-1-1481-en.html
Sahand University of Technology
Abstract:   (1460 Views)
In this paper, the effects of size, material, position and period of metal nanowires on the performance of thin film solar cells have been analyzed. For this purpose, full-wave simulations of the solar cells with gold, silver and nickel nanowires with different radii, periods, and positions have been used. The simulation results show that the best performance of the thin film solar cell has been realized when the gold nanowires with a radius of 70 nm and the period of 425 nm have been positioned on the top surface of the active layer. The optimum values of the efficiency and short circuit current density have been calculated as 22.22% and 22 (mA/cm2), respectively.
Full-Text [PDF 1261 kb]   (563 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2022/06/17 | Accepted: 2023/02/17 | Published: 2023/09/9

References
1. [1] عباسیان سبحان و صباغی ندوشن رضا، "طراحی سلول خورشیدی دوپیوندی InGaP/GaAs بدون لایه ARC با بازده بالا،" مجله انجمن مهندسین برق و الکترونیک ایران، دوره 16، شماره 2، صفحات 87-92، تابستان 1398.
2. [2] درخشان‌نیا شیرین، شکیبا محسن و شکیبا مریم، "مدل‌سازی و تجزیه و تحلیل ساختار سلول خورشیدی دوپیوندی با شکاف انرژی مستقیم مبتنی بر الگوریتم مونت‌کارلو گروهی،" مجله انجمن مهندسین برق و الکترونیک ایران، دوره 19، شماره 2، صفحات 139-148، تابستان 1401.
3. [3] Nayak, P. K., Mahesh, S., Snaith, H. J., & Cahen, D., "Photovoltaic solar cell technologies: analyzing the state of the art", Nature Reviews Materials, Vol. 4, pp. 269-285, 2019. [DOI:10.1038/s41578-019-0097-0]
4. [4] Lee, T. D., & Ebong, A. U., "A review of thin film solar cell technologies and challenges", Renewable and Sustainable Energy Reviews, Vol. 70, 1286-1297, 2017. [DOI:10.1016/j.rser.2016.12.028]
5. [5] Hussin, M. Z., Shaari, S., Omar, A. M., & Zain, Z. M., "Amorphous silicon thin-film: behaviour of light-induced degradation", Renewable and Sustainable Energy Reviews, Vol. 43, pp. 388-402, 2015. [DOI:10.1016/j.rser.2014.10.093]
6. [6] Lee, T. D., & Ebong, A. U., "A review of thin film solar cell technologies and challenges", Renewable and Sustainable Energy Reviews, Vol. 70, pp. 1286-1297, 2017. [DOI:10.1016/j.rser.2016.12.028]
7. [7] Dharmadasa, I. M., Advances in thin-film solar cells. Jenny Stanford Publishing, 2018. [DOI:10.1201/9780429020841] []
8. [8] Meillaud, F., Boccard, M., Bugnon, G., Despeisse, M., Hänni, S., Haug, F. J., Ballif, C., "Recent advances and remaining challenges in thin-film silicon photovoltaic technology", Materials today, Vol. 18, pp. 378-384, 2015. [DOI:10.1016/j.mattod.2015.03.002]
9. [9] Iqbal, T., Ijaz, M., Javaid, M., Rafique, M., Riaz, K. N., Tahir, M. B., Afsheen, S., "An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell", Plasmonics, Vol. 14, pp.147-154, 2019. [DOI:10.1007/s11468-018-0787-2]
10. [10] Zhang, Y., & Liu, H., "Nanowires for high-efficiency, low-cost solar photovoltaics", Crystals, Vol. 9, P. 87, 2019. [DOI:10.3390/cryst9020087]
11. [11] Erwin, W. R., Zarick, H. F., Talbert, E. M., & Bardhan, R., "Light trapping in mesoporous solar cells with plasmonic nanostructures", Energy & Environmental Science, Vol. 9, pp. 1577-1601, 2016. [DOI:10.1039/C5EE03847B]
12. [12] Zhang, Z., Fang, Y., Wang, W., Chen, L., & Sun, M., "Propagating surface plasmon polaritons: towards applications for remote‐excitation surface catalytic reactions", Advanced Science, Vol. 3, p. 1500215, 2016. [DOI:10.1002/advs.201500215] [PMID] []
13. [13] Weick, G., & Mariani, E.,"Tunable plasmon polaritons in arrays of interacting metallic nanoparticles", The European Physical Journal B, Vol. 88, pp. 1-8, 2015. [DOI:10.1140/epjb/e2014-50658-2]
14. [14] Zhang, C., Luo, Q., Shi, J., Yue, L., Wang, Z., Chen, X., & Huang, S. "Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide", Nanoscale, Vol. 9, 2852-2864, 2017. [DOI:10.1039/C6NR09972F] [PMID]
15. [15] Luo, Q., Zhang, C., Deng, X., Zhu, H., Li, Z., Wang, Z., ... & Huang, S., "Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells", ACS applied materials & interfaces, Vol. 9, pp. 34821-34832, 2016. [DOI:10.1021/acsami.7b08489] [PMID]
16. [16] Garg, V., Sengar, B. S., Awasthi, V., Sharma, P., Mukherjee, C., Kumar, S., Mukherjee, S., "Localized surface plasmon resonance on Au nanoparticles: tuning and exploitation for performance enhancement in ultrathin photovoltaics", RSC advances, Vol. 6, pp. 26216-26226, 2016. [DOI:10.1039/C5RA25575A]
17. [17] Rahimi, H., Karimi, M. J., & Ghajarpour-Nobandegani, S., "Chromium nanostructures for enhancing light trapping in a thin-film solar cell", Optical Materials, Vol. 121, pp. 111548, 2021. [DOI:10.1016/j.optmat.2021.111548]
18. [18] Mandal, P., "Application of Plasmonics in solar cell efficiency improvement: a brief review on recent progress", Plasmonics, pp. 1-21, 2022. [DOI:10.1007/s11468-022-01616-9]
19. [19] Li, P., Jiang, X., Huang, S., Liu, Y., & Fu, N., "Plasmonic perovskite solar cells: An overview from metal particle structure to device design", Surfaces and Interfaces, Vol. 25, pp. 101287, 2021. [DOI:10.1016/j.surfin.2021.101287]
20. [20] Juan, F., Wu, Y., Shi, B., Wang, M., Wang, M., Xu, F., Cao, N.,"Plasmonic Au Nano octahedrons enhance light harvesting and photocarrier extraction in perovskite solar cell", ACS Applied Energy Materials, Vol. 4, pp. 3201-3209, 2021. [DOI:10.1021/acsaem.0c02973]
21. [21] Heidarzadeh, H., "Effect of parasitic absorption of the plasmonic cubic nanoparticles on the performance of a plasmonic assisted halide thin-film perovskite solar cell", Solar Energy, Vol. 223, pp. 293-301, 2021. [DOI:10.1016/j.solener.2021.05.081]
22. [22] Hamed, M. S., Ike, J. N., Mola, G. T., "Plasmonic nano-particles mediated energy harvesting in thin-film organic solar cells", Journal of Physics D: Applied Physics, Vol. 55, pp. 15102, 2021. [DOI:10.1088/1361-6463/ac24c8]
23. [23] Ren, R., & Zhong, Z., "Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector", Optics Communications, Vol. 417, pp. 110-114, 2018. [DOI:10.1016/j.optcom.2018.02.051]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb