1. [1] Nayak, P. A Study of Technology Roadmap for Application-Specific Integrated Circuit, Rice University, 2021.
2. [2] Ratnesh, R., et al. "Advancement and challenges in MOSFET scaling" Materials Science in Semiconductor Processing, vol. 134, 106002, 2021. [
DOI:10.1016/j.mssp.2021.106002]
3. [3] Sviličić, B., et al. "Analysis of subthreshold conduction in short-channel recessed source/drain UTB SOI MOSFETs." Solid-State Electronics 54(5): 545-551, 2010. [
DOI:10.1016/j.sse.2010.01.009]
4. [4] Monfray, S. and T. Skotnicki, "UTBB FDSOI: Evolution and opportunities." Solid-State Electronics 125: 63-72, 2016. [
DOI:10.1016/j.sse.2016.07.003]
5. [5] Jean-Pierre Colinge, Silicon-on-Insulator: Materials to VLSI, Springer, Boston, MA, 3rd Edition, 2004. [
DOI:10.1007/978-1-4419-9106-5]
6. [6] Kansal, H. and A. S. Medury, "Short-Channel Effects and Sub-Surface Behavior in Bulk MOSFETs and Nanoscale DG-SOI-MOSFETs: A TCAD Investigation," Proceedings of 2019 Silicon Nano-electronics Workshop (SNW), 2019. [
DOI:10.23919/SNW.2019.8782964]
7. [7] Ahn, C-G., et al., "30-nm recessed S/D SOI MOSFET with an ultrathin body and a low SDE resistance, "IEEE electron device letters, vol. 26, no. 7, pp. 486-488, 2005. [
DOI:10.1109/LED.2005.851183]
8. [8] Su, E. M.-h., et al., "Effects of BOX thickness, silicon thickness, and back gate bias on SCE of ET-SOI MOSFETs" Microelectronic Engineering, vol. 238, 111506, 2021. [
DOI:10.1016/j.mee.2021.111506]
9. [9] Daghighi, A., "Output-Conductance Transition-Free Method for Improving the Radio-Frequency Linearity of Silicon-on-Insulator MOSFET Circuits." IEEE Transactions on electron devices, vol. 61, no. 7, pp: 2257-2263, 2014. [
DOI:10.1109/TED.2014.2321419]
10. [10] Daghighi, A., "A novel structure to improve DIBL in fully-depleted silicon-on-diamond substrate." Diamond and related materials, vol. 40, pp: 51-55, 2013. [
DOI:10.1016/j.diamond.2013.10.010]
11. [11] Raleva, K., et al., "Is SOD technology the solution to heating problems in SOI devices?" IEEE Electron Device Letters, vol. 29, no. 6, pp: 621-624, 2013. [
DOI:10.1109/LED.2008.920756]
12. [12] Di Santa Maria, F. S. et al. "Low temperature behavior of FD-SOI MOSFETs from micro- to nano-meter channel lengths". 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE), IEEE. [
DOI:10.1109/WOLTE49037.2021.9555451]
13. [13] Daghighi, A. and S. Zamani, "Investigation of Temperature Effects in 45nm Silicon-on-Diamond MOSFET Transistor." Majlesi Journal of Electrical Engineering, vol. 3, no. 4, pp: 60-65, 2009.
14. [14] Daghighi, A., Double insulating silicon on diamond device, USPTO Patent, US9077588B2, 2015.
15. [15] Liu, X., et al. "Electrical performance of 130 nm PD-SOI MOSFET with diamond layout." Microelectronics Journal, vol. 99, 104428, 2021. [
DOI:10.1016/j.mejo.2018.10.004]
16. ]16[ دقیقی آرش، حسینی زهرا، بررسی و شبیهسازی تأثیر میزان غلظت ناخالصی زیرلایه بر زمان تأخیر کلیدزنی در ترانزیستورهای اثر میدان UTBB 22 nm سیلیکون روی عایق دولایه، نشریه مهندسی برق و الکترونیک ایران. ۱۸ (1)، ۴۳-۳۷، 1400.
17. [17] Sviličić, B., et al., "Analytical models of front-and back-gate potential distribution and threshold voltage for recessed source/drain UTB SOI MOSFETs." Solid-State Electronics, vol. 53, no. 5, pp: 540-547, 2009. [
DOI:10.1016/j.sse.2009.03.002]
18. [18] سپهری زهرا و دقیقی آرش ، بدست آوردن رابطهی ولتاژ آستانه در ماسفتهای سیلیکون روی الماس با طول کانال 22 نانومتر و یک لایه عایق اضافی، نشریه مهندسی برق و الکترونیک ایران، 16، (2)، 57-64، 1398.