Volume 21, Issue 1 (JIAEEE Vol.21 No.1 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(1): 17-25 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

HeidarZadeh M, Daghighi A, Sepehri Z. An Analytical Computation of Threshold Voltage for Ultra-Thin Double Insulating Silicon-on-Diamond MOSFET. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :17-25
URL: http://jiaeee.com/article-1-1433-en.html
Faculty of Engineering, Shahrekord University
Abstract:   (1369 Views)
In this paper, for the first time, the distributed potentials in the front and back gate of Ultra-Thin-Body (UTB) Double-Insulating (DI) Silicon-on-Diamond (SOD) MOSFET are computed. The back gate and front gate threshold voltages of the device are computed. Using parabolic potential distribution in the body of the device, the poison’s equation is solved. Promising results are obtained for front and back gate threshold voltages comparing with the 22nm UTB DI SOD and the device simulation results. The gate insulator thickness, the silicon film thickness, the insulator 1 and 2 thicknesses are varied and the front and back gate threshold voltages are computed while comparing the device simulation results. Lower than 20 mV estimation of the threshold voltages using the analytical computations, dictates promising results incorporating the device capacitive model. The Analytical findings are encouraging for threshold voltage estimation of UTB DI SOD MOSFETs.  
Full-Text [PDF 1014 kb]   (643 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2022/01/25 | Accepted: 2023/04/24 | Published: 2023/09/9

References
1. [1] Nayak, P. A Study of Technology Roadmap for Application-Specific Integrated Circuit, Rice University, 2021.
2. [2] Ratnesh, R., et al. "Advancement and challenges in MOSFET scaling" Materials Science in Semiconductor Processing, vol. 134, 106002, 2021. [DOI:10.1016/j.mssp.2021.106002]
3. [3] Sviličić, B., et al. "Analysis of subthreshold conduction in short-channel recessed source/drain UTB SOI MOSFETs." Solid-State Electronics 54(5): 545-551, 2010. [DOI:10.1016/j.sse.2010.01.009]
4. [4] Monfray, S. and T. Skotnicki, "UTBB FDSOI: Evolution and opportunities." Solid-State Electronics 125: 63-72, 2016. [DOI:10.1016/j.sse.2016.07.003]
5. [5] Jean-Pierre Colinge, Silicon-on-Insulator: Materials to VLSI, Springer, Boston, MA, 3rd Edition, 2004. [DOI:10.1007/978-1-4419-9106-5]
6. [6] Kansal, H. and A. S. Medury, "Short-Channel Effects and Sub-Surface Behavior in Bulk MOSFETs and Nanoscale DG-SOI-MOSFETs: A TCAD Investigation," Proceedings of 2019 Silicon Nano-electronics Workshop (SNW), 2019. [DOI:10.23919/SNW.2019.8782964]
7. [7] Ahn, C-G., et al., "30-nm recessed S/D SOI MOSFET with an ultrathin body and a low SDE resistance, "IEEE electron device letters, vol. 26, no. 7, pp. 486-488, 2005. [DOI:10.1109/LED.2005.851183]
8. [8] Su, E. M.-h., et al., "Effects of BOX thickness, silicon thickness, and back gate bias on SCE of ET-SOI MOSFETs" Microelectronic Engineering, vol. 238, 111506, 2021. [DOI:10.1016/j.mee.2021.111506]
9. [9] Daghighi, A., "Output-Conductance Transition-Free Method for Improving the Radio-Frequency Linearity of Silicon-on-Insulator MOSFET Circuits." IEEE Transactions on electron devices, vol. 61, no. 7, pp: 2257-2263, 2014. [DOI:10.1109/TED.2014.2321419]
10. [10] Daghighi, A., "A novel structure to improve DIBL in fully-depleted silicon-on-diamond substrate." Diamond and related materials, vol. 40, pp: 51-55, 2013. [DOI:10.1016/j.diamond.2013.10.010]
11. [11] Raleva, K., et al., "Is SOD technology the solution to heating problems in SOI devices?" IEEE Electron Device Letters, vol. 29, no. 6, pp: 621-624, 2013. [DOI:10.1109/LED.2008.920756]
12. [12] Di Santa Maria, F. S. et al. "Low temperature behavior of FD-SOI MOSFETs from micro- to nano-meter channel lengths". 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE), IEEE. [DOI:10.1109/WOLTE49037.2021.9555451]
13. [13] Daghighi, A. and S. Zamani, "Investigation of Temperature Effects in 45nm Silicon-on-Diamond MOSFET Transistor." Majlesi Journal of Electrical Engineering, vol. 3, no. 4, pp: 60-65, 2009.
14. [14] Daghighi, A., Double insulating silicon on diamond device, USPTO Patent, US9077588B2, 2015.
15. [15] Liu, X., et al. "Electrical performance of 130 nm PD-SOI MOSFET with diamond layout." Microelectronics Journal, vol. 99, 104428, 2021. [DOI:10.1016/j.mejo.2018.10.004]
16. ]16[ دقیقی آرش، حسینی زهرا، بررسی و شبیه‌سازی تأثیر میزان غلظت ناخالصی زیرلایه بر زمان تأخیر کلیدزنی در ترانزیستورهای اثر میدان UTBB 22 nm سیلیکون روی عایق دولایه، نشریه مهندسی برق و الکترونیک ایران. ۱۸ (1)، ۴۳-۳۷، 1400.
17. [17] Sviličić, B., et al., "Analytical models of front-and back-gate potential distribution and threshold voltage for recessed source/drain UTB SOI MOSFETs." Solid-State Electronics, vol. 53, no. 5, pp: 540-547, 2009. [DOI:10.1016/j.sse.2009.03.002]
18. [18] سپهری زهرا و دقیقی آرش ، بدست آوردن رابطه‌ی ولتاژ آستانه در ماسفت‌های سیلیکون روی الماس با طول کانال 22 نانومتر و یک لایه عایق اضافی، نشریه مهندسی برق و الکترونیک ایران، 16، (2)، 57-64، 1398.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb