Volume 21, Issue 1 (JIAEEE Vol.21 No.1 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(1): 63-75 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahanshahi A, Nabi bidhendi M. Design and Fabrication of Flexible Wearable Devices: a Review. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :63-75
URL: http://jiaeee.com/article-1-1208-en.html
Micro Bio Technology Laboratory (MBTechLab), Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
Abstract:   (1257 Views)
Flexible electronic devices, as an emerging field of research, has received extensive attention in recent literature. Given, the progress, developments and growing demands in this field of research, wide-range research has been carried out on flexible materials in academic as well as industry. Due to the replacement of the conventional rigid devices with their flexible and stretchable counterparts, widespread high-quality research is needed to make this transition feasible. In particular reliability is of paramount importance in real-world applications and is needed to be addressed in the relevant literature. In the literature, mostly materials and methods have been reported. 
In this manuscript, we have summarized recent progress in the field of stretchable and flexible electronics. Key characterization parameters including reliability, hysteresis and linearity have been discussed. Nonetheless, for being adapted successfully into real-world applications, mass production techniques in this field of research has been presented.
 
Full-Text [PDF 889 kb]   (802 Downloads)    
Type of Article: Review | Subject: Electronic
Received: 2020/10/21 | Accepted: 2022/12/18 | Published: 2023/12/19

References
1. [1] vahid salimian Rizi, "Ce Pte Us Pt," Mater. Res. Express, pp. 0-12, 2019.
2. [2] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "art%3A10.1186%2F1743-0003-9-21," J. Neuroengineering Rehabil., pp. 1-17, 2012, [Online]. Available: https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-21. [DOI:10.1186/1743-0003-9-21] [PMID] []
3. [3] D. H. Kim, N. Lu, R. Ghaffari, Y. S. Kim, S. P. Lee, L. Xu, J. Wu, R. H. Kim, J. Song, Z. Liu, J. Viventi, B. De Graff, B. Elolampi, M. Mansour, M. J. Slepian, S. Hwang, J. D. Moss, S. M. Won, Y. Huang, et al., "Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy," Nat. Mater., vol. 10, no. 4, pp. 316-323, 2011, doi: 10.1038/nmat2971. [DOI:10.1038/nmat2971] [PMID] []
4. [4] T. Sekitani and T. Someya, "Stretchable organic integrated circuits for large-area electronic skin surfaces," MRS Bull., vol. 37, no. 3, pp. 236-245, 2012, doi: 10.1557/mrs.2012.42. [DOI:10.1557/mrs.2012.42]
5. [5] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, "Tactile Sensing.Pdf," IEEE Trans. Robot., vol. 26, no. 1, pp. 1-20, 2010. [DOI:10.1109/TRO.2009.2033627]
6. [6] M. Bariya, Z. Shahpar, H. Park, J. Sun, Y. Jung, W. Gao, H. Y. Y. Nyein, T. S. Liaw, L. C. Tai, Q. P. Ngo, M. Chao, Y. Zhao, M. Hettick, G. Cho, and A. Javey, "Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices," ACS Nano, vol. 12, no. 7, pp. 6978-6987, 2018, doi: 10.1021/acsnano.8b02505. [DOI:10.1021/acsnano.8b02505] [PMID]
7. [7] H. Pourkheyrollah, P. F. Shahandashti, A. Meimandi, A. Jahanshahi, and H. Ghafoorifard, "On Economically Viable Stretchable Washable Electronics Technology: Proof of Concept," ICEE 2019 - 27th Iran. Conf. Electr. Eng., pp. 285-289, 2019, doi: 10.1109/IranianCEE.2019.8786767. [DOI:10.1109/IranianCEE.2019.8786767]
8. [8] S. C. Mukhopadhyay, "Wearable sensors for human activity monitoring: A review," IEEE Sens. J., vol. 15, no. 3, pp. 1321-1330, 2015, doi: 10.1109/JSEN.2014.2370945. [DOI:10.1109/JSEN.2014.2370945]
9. [9] S. Q. Wang, T. Chinnasamy, M. A. Lifson, F. Inci, and U. Demirci, "Flexible Substrate-Based Devices for Point-of-Care Diagnostics," Trends Biotechnol., vol. 34, no. 11, pp. 909-921, 2016, doi: 10.1016/j.tibtech.2016.05.009. [DOI:10.1016/j.tibtech.2016.05.009] [PMID] []
10. [10] H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A. A. Stokes, I. Park, M. Sitti, and M. Amjadi, "Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications," Adv. Intell. Syst., vol. 2, no. 8, p. 2000039, 2020, doi: 10.1002/aisy.202000039. [DOI:10.1002/aisy.202000039]
11. [11] X. Liu, C. Tang, X. Du, S. Xiong, S. Xi, Y. Liu, X. Shen, Q. Zheng, Z. Wang, Y. Wu, A. Horner, and J. K. Kim, "A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments," Mater. Horizons, vol. 4, no. 3, pp. 477-486, 2017, doi: 10.1039/c7mh00104e. [DOI:10.1039/C7MH00104E]
12. [12] J. H. Moon, D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim, and S. H. Lee, "Wearable polyimide-PDMS electrodes for intrabody communication," J. Micromechanics Microengineering, vol. 20, no. 2, 2010, doi: 10.1088/0960-1317/20/2/025032. [DOI:10.1088/0960-1317/20/2/025032]
13. [13] P. Fayyaz Shahandashti, H. Pourkheyrollah, A. Jahanshahi, and H. Ghafoorifard, "Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring," Sensors Actuators, A Phys., vol. 295, pp. 678-686, 2019, doi: 10.1016/j.sna.2019.06.041. [DOI:10.1016/j.sna.2019.06.041]
14. [14] E. F. Nuwaysir, E. F. Nuwaysir, W. Huang, W. Huang, T. J. Albert, T. J. Albert, J. Singh, J. Singh, K. Nuwaysir, K. Nuwaysir, A. Pitas, A. Pitas, T. Richmond, T. Richmond, T. Gorski, T. Gorski, J. P. Berg, J. P. Berg, J. Ballin, et al., "Gene Expression Analysis Using Oligonucleotide Arrays Produced by Maskless Photolithography," Genome Res., pp. 1749-1755, 2002, doi: 10.1101/gr.362402.ments. [DOI:10.1101/gr.362402] [PMID] []
15. [15] S. Huang, Y. Liu, Y. Zhao, Z. Ren, and C. F. Guo, "Flexible Electronics: Stretchable Electrodes and Their Future," Adv. Funct. Mater., vol. 29, no. 6, pp. 1-15, 2019, doi: 10.1002/adfm.201805924. [DOI:10.1002/adfm.201805924]
16. [16] Y. Yu, J. Zeng, C. Chen, Z. Xie, R. Guo, Z. Liu, X. Zhou, Y. Yang, and Z. Zheng, "Three-dimensional compressible and stretchable conductive composites," Adv. Mater., vol. 26, no. 5, pp. 810-815, 2014, doi: 10.1002/adma.201303662. [DOI:10.1002/adma.201303662] [PMID]
17. [17] A. Jahanshahi, M. Gonzalez, J. Van Den Brand, F. Bossuyt, T. Vervust, R. Verplancke, J. Vanfleteren, and J. De Beats, "Stretchable circuits with horseshoe shaped conductors embedded in elastic polymers," Jpn. J. Appl. Phys., vol. 52, no. 5 PART 2, pp. 1-7, 2013, doi: 10.7567/JJAP.52.05DA18. [DOI:10.7567/JJAP.52.05DA18]
18. [18] H. Zhao, K. O'Brien, S. Li, and R. F. Shepherd, "Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides," Sci. Robot., vol. 1, no. 1, pp. 1-10, 2016, doi: 10.1126/scirobotics.aai7529. [DOI:10.1126/scirobotics.aai7529] [PMID]
19. [19] Y. Liu, M. Pharr, and G. A. Salvatore, "Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring," ACS Nano, vol. 11, no. 10, pp. 9614-9635, 2017, doi: 10.1021/acsnano.7b04898. [DOI:10.1021/acsnano.7b04898] [PMID]
20. [20] P. F. Shahandashti, H. Pourkhevrollah, A. Jahanshahi, and H. Ghafoorifard, "Fabrication of Stretchable Interconnects Embedded in Biocompatible Elastomers," 26th Iran. Conf. Electr. Eng. ICEE 2018, pp. 140-143, 2018, doi: 10.1109/ICEE.2018.8472710. [DOI:10.1109/ICEE.2018.8472710]
21. [21] K. E. Pennywitt, Robotic Tactile Sensing., vol. 11, no. 1. 1986.
22. [22] C. Pylatiuk, A. Kargov, and S. Schulz, "Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands," J. Prosthetics Orthot., vol. 18, no. 2, pp. 57-61, 2006, doi: 10.1097/00008526-200604000-00007. [DOI:10.1097/00008526-200604000-00007]
23. [23] M. Y. Cheng, C. M. Tsao, and Y. J. Yang, "An anthropomorphic robotic skin using highly twistable tactile sensing array," Proc. 2010 5th IEEE Conf. Ind. Electron. Appl. ICIEA 2010, pp. 650-655, 2010, doi: 10.1109/ICIEA.2010.5517008. [DOI:10.1109/ICIEA.2010.5517008] [PMID]
24. [24] E. Bonderover and S. Wagner, "A woven inverter circuit for e-textile applications," IEEE Electron Device Lett., vol. 25, no. 5, pp. 295-297, 2004, doi: 10.1109/LED.2004.826537. [DOI:10.1109/LED.2004.826537]
25. [25] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent Progress in Electronic Skin," Adv. Sci., vol. 2, no. 10, pp. 1-21, 2015, doi: 10.1002/advs.201500169. [DOI:10.1002/advs.201500169] [PMID] []
26. [26] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D. H. Kim, "Stretchable silicon nanoribbon electronics for skin prosthesis," Nat. Commun., vol. 5, pp. 1-11, 2014, doi: 10.1038/ncomms6747. [DOI:10.1038/ncomms6747] [PMID]
27. [27] K. Takei, W. Honda, S. Harada, T. Arie, and S. Akita, "Toward flexible and wearable human-interactive health-monitoring devices," Adv. Healthc. Mater., 2015, doi: 10.1002/adhm.201400546. [DOI:10.1002/adhm.201400546] [PMID]
28. [28] D. A. Robinson, "The Electrical Properties of Metal Microelectrodes," Proc. IEEE, 1968, doi: 10.1109/PROC.1968.6458. [DOI:10.1109/PROC.1968.6458]
29. [29] N. Meziane, J. G. Webster, M. Attari, and A. J. Nimunkar, "Dry electrodes for electrocardiography," Physiol. Meas., vol. 34, no. 9, 2013, doi: 10.1088/0967-3334/34/9/R47. [DOI:10.1088/0967-3334/34/9/R47] [PMID]
30. [30] S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D. H. Kim, "Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials," Adv. Mater., vol. 28, no. 22, pp. 4203-4218, 2016, doi: 10.1002/adma.201504150. [DOI:10.1002/adma.201504150] [PMID]
31. [31] S. Luo and T. Liu, "SWCNT/graphite nanoplatelet hybrid thin films for self-temperature- compensated, highly sensitive, and extensible piezoresistive sensors," Adv. Mater., vol. 25, no. 39, pp. 5650-5657, 2013, doi: 10.1002/adma.201301796. [DOI:10.1002/adma.201301796] [PMID]
32. [32] A. Sadeqi, H. Rezaei Nejad, F. Alaimo, H. Yun, M. Punjiya, and S. R. Sonkusale, "Washable Smart Threads for Strain Sensing Fabrics," IEEE Sens. J., vol. 18, no. 22, pp. 9137-9144, 2018, doi: 10.1109/JSEN.2018.2870640. [DOI:10.1109/JSEN.2018.2870640]
33. [33] X. Tao, V. Koncar, T. H. Huang, C. L. Shen, Y. C. Ko, and G. T. Jou, "How to make reliable, washable, and wearable textronic devices," Sensors (Switzerland), vol. 17, no. 4, 2017, doi: 10.3390/s17040673. [DOI:10.3390/s17040673] [PMID] []
34. [34] N. Lu and D. H. Kim, "Flexible and Stretchable Electronics Paving the Way for Soft Robotics," Soft Robot., vol. 1, no. 1, pp. 53-62, 2014, doi: 10.1089/soro.2013.0005. [DOI:10.1089/soro.2013.0005]
35. [35] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress," Adv. Mater., vol. 25, no. 42, pp. 5997-6038, 2013, doi: 10.1002/adma.201302240. [DOI:10.1002/adma.201302240] [PMID]
36. [36] T. Vervust, Rekbare en wasbare elektronica voor textielintegratie Stretchable and Washable Electronics for Embedding in Textiles. 2013.
37. [37] R. B. R. Manero, A. Shafti, B. Michael, J. Grewal, J. L. R. Fernandez, K. Althoefer, and M. J. Howard, "Wearable embroidered muscle activity sensing device for the human upper leg," Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016-Octob, pp. 6062-6065, 2016, doi: 10.1109/EMBC.2016.7592111. [DOI:10.1109/EMBC.2016.7592111] [PMID]
38. [38] R. C. Webb, Y. Ma, S. Krishnan, Y. Li, S. Yoon, X. Guo, X. Feng, Y. Shi, M. Seidel, N. H. Cho, J. Kurniawan, J. Ahad, N. Sheth, J. Kim, J. G. TaylorVI, T. Darlington, K. Chang, W. Huang, J. Ayers, et al., "Materials Science/Clinical Medi Cine: Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow," Sci. Adv., vol. 1, no. 9, pp. 1-14, 2015, doi: 10.1126/sciadv.1500701. [DOI:10.1126/sciadv.1500701] [PMID] []
39. [39] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, "Nanomaterials: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli," Sci. Adv., vol. 1, no. 9, 2015, doi: 10.1126/sciadv.1500661. [DOI:10.1126/sciadv.1500661] [PMID] []
40. [40] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, "Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography," Adv. Mater., vol. 24, no. 20, pp. 2710-2714, 2012, doi: 10.1002/adma.201200584. [DOI:10.1002/adma.201200584] [PMID]
41. [41] W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, vol. 529, no. 7587, pp. 509-514, 2016, doi: 10.1038/nature16521. [DOI:10.1038/nature16521] [PMID] []
42. [42] Y. Sun, C. M. Lim, H. H. Tan, and H. Ren, "Soft oral interventional rehabilitation robot based on low-profile soft pneumatic actuator," Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-June, no. June, pp. 2907-2912, 2015, doi: 10.1109/ICRA.2015.7139596. [DOI:10.1109/ICRA.2015.7139596] [PMID]
43. [43] E. T. Roche, M. A. Horvath, I. Wamala, A. Alazmani, S. E. Song, W. Whyte, Z. Machaidze, C. J. Payne, J. C. Weaver, G. Fishbein, J. Kuebler, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh, "Soft robotic sleeve supports heart function," Sci. Transl. Med., vol. 9, no. 373, pp. 1-12, 2017, doi: 10.1126/scitranslmed.aaf3925. [DOI:10.1126/scitranslmed.aaf3925] [PMID]
44. [44] S. Konishi, T. Kobayashi, and Y. Muramatsu, "Integration of optical waveguide on pneumatic balloon actuator for flexible scanner in endoscopic imaging diagnosis applications," Adv. Robot., vol. 30, no. 15, pp. 1004-1013, 2016, doi: 10.1080/01691864.2016.1181007. [DOI:10.1080/01691864.2016.1181007]
45. [45] V. E. Abraira and D. D. Ginty, "The sensory neurons of touch," Neuron, vol. 79, no. 4, pp. 618-639, 2013, doi: 10.1016/j.neuron.2013.07.051. [DOI:10.1016/j.neuron.2013.07.051] [PMID] []
46. [46] J. Y. Oh, S. Rondeau-Gagné, Y. C. Chiu, A. Chortos, F. Lissel, G. J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. H. Tok, and Z. Bao, "Intrinsically stretchable and healable semiconducting polymer for organic transistors," Nature, vol. 539, no. 7629, pp. 411-415, 2016, doi: 10.1038/nature20102. [DOI:10.1038/nature20102] [PMID]
47. [47] J. Chen, Y. Zhu, and W. Jiang, "A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer," Compos. Sci. Technol., vol. 186, no. September 2019, p. 107938, 2020, doi: 10.1016/j.compscitech.2019.107938. [DOI:10.1016/j.compscitech.2019.107938]
48. [48] S. Kharroub, S. Laflamme, S. Madbouly, and F. Ubertini, "Bio-based soft elastomeric capacitor for structural health monitoring applications," Struct. Heal. Monit., vol. 14, no. 2, pp. 158-167, 2015, doi: 10.1177/1475921714560072. [DOI:10.1177/1475921714560072]
49. [49] H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He, K. Dai, C. Shan, J. Guo, C. Liu, C. Shen, X. Wang, N. Wang, Z. Wang, R. Wei, and Z. Guo, "Electrically conductive polymer composites for smart flexible strain sensors: a critical review," J. Mater. Chem. C, vol. 6, no. 45, pp. 12121-12141, 2018, doi: 10.1039/C8TC04079F. [DOI:10.1039/C8TC04079F]
50. [50] J. Zhou, H. Yu, X. Xu, F. Han, and G. Lubineau, "Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers," ACS Appl. Mater. Interfaces, vol. 9, no. 5, pp. 4835-4842, 2017, doi: 10.1021/acsami.6b15195. [DOI:10.1021/acsami.6b15195] [PMID]
51. [51] J. Ma, P. Wang, H. Chen, S. Bao, W. Chen, and H. Lu, "Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection," ACS Appl. Mater. Interfaces, vol. 11, no. 8, pp. 8527-8536, 2019, doi: 10.1021/acsami.8b20902. [DOI:10.1021/acsami.8b20902] [PMID]
52. [52] R. Nur, N. Matsuhisa, Z. Jiang, M. O. G. Nayeem, T. Yokota, and T. Someya, "A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films," Nano Lett., vol. 18, no. 9, pp. 5610-5617, 2018, doi: 10.1021/acs.nanolett.8b02088. [DOI:10.1021/acs.nanolett.8b02088] [PMID]
53. [53] L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang, H. Xue, and J. Gao, "Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite," Chem. Eng. J., vol. 362, no. October 2018, pp. 89-98, 2019, doi: 10.1016/j.cej.2019.01.014. [DOI:10.1016/j.cej.2019.01.014]
54. [54] M. Nankali, N. M. Nouri, M. Navidbakhsh, N. Geran Malek, M. A. Amindehghan, A. Montazeri Shahtoori, M. Karimi, and M. Amjadi, "Highly stretchable and sensitive strain sensors based on carbon nanotube-elastomer nanocomposites: The effect of environmental factors on strain sensing performance," J. Mater. Chem. C, vol. 8, no. 18, pp. 6185-6195, 2020, doi: 10.1039/d0tc00373e. [DOI:10.1039/D0TC00373E]
55. [55] S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, and J. M. Razal, "Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications," Materials Horizons. 2019, doi: 10.1039/c8mh01062e. [DOI:10.1039/C8MH01062E]
56. [56] S. Harada, W. Honda, T. Arie, S. Akita, and K. Takei, "Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors," ACS Nano, vol. 8, no. 4, pp. 3921-3927, 2014, doi: 10.1021/nn500845a. [DOI:10.1021/nn500845a] [PMID]
57. [57] P. Bagade, A. Banerjee, and S. K. S. Gupta, "Evidence-based development approach for safe, sustainable and secure mobile medical app," in Smart Sensors, Measurement and Instrumentation, 2015. [DOI:10.1007/978-3-319-18191-2_6]
58. [58] K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H. Y. Y. Nyein, K. Takei, and A. Javey, "Printed Carbon Nanotube Electronics and Sensor Systems," Adv. Mater., vol. 28, no. 22, pp. 4397-4414, 2016, doi: 10.1002/adma.201504958. [DOI:10.1002/adma.201504958] [PMID]
59. [59] J. Liu, M. Liu, Y. Bai, J. Zhang, H. Liu, and W. Zhu, "Recent progress in flexible wearable sensors for vital sign monitoring," Sensors (Switzerland), vol. 20, no. 14, pp. 1-26, 2020, doi: 10.3390/s20144009. [DOI:10.3390/s20144009] [PMID] []
60. [60] N. T. Tasneem, S. A. Pullano, C. D. Critello, A. S. Fiorillo, and I. Mahbub, "A Low-Power On-chip ECG Monitoring System Based on MWCNT/PDMS Dry Electrodes," IEEE Sens. J., vol. 1748, no. c, pp. 1-1, 2020, doi: 10.1109/jsen.2020.3001209. [DOI:10.1109/JSEN.2020.3001209]
61. [61] S. Nasiri and M. R. Khosravani, "Progress and challenges in fabrication of wearable sensors for health monitoring," Sensors Actuators, A Phys., vol. 312, p. 112105, 2020, doi: 10.1016/j.sna.2020.112105. [DOI:10.1016/j.sna.2020.112105]
62. [62] E. and others Cobarrubias, "Design and Test Strategies for Biopotential Sensors in Smart Garments," 2020, [Online]. Available: file:///C:/Users/youhe/Downloads/kdoc_o_00042_01.pdf.
63. [63] H. qi Xia, H. Tang, B. Zhou, Y. Li, X. Zhang, Z. Shi, L. Deng, R. Song, L. Li, Z. Zhang, and J. Zhou, "Mediator-free electron-transfer on patternable hierarchical meso/macro porous bienzyme interface for highly-sensitive sweat glucose and surface electromyography monitoring," Sensors Actuators, B Chem., vol. 312, no. January, 2020, doi: 10.1016/j.snb.2020.127962. [DOI:10.1016/j.snb.2020.127962]
64. [64] M. Colachis, K. Shqau, S. Colachis, N. Annetta, and A. M. Heintz, "Soft mixed ionic-electronic conductive electrodes for noninvasive stimulation," J. Appl. Polym. Sci., no. January, pp. 1-10, 2020, doi: 10.1002/app.48998. [DOI:10.1002/app.48998]
65. [65] G. Murastov, E. Bogatova, K. Brazovskiy, I. Amin, A. Lipovka, E. Dogadina, A. Cherepnyov, A. Ananyeva, E. Plotnikov, V. Ryabov, R. D. Rodriguez, and E. Sheremet, "Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics," Biosens. Bioelectron., vol. 166, p. 112426, 2020, doi: 10.1016/j.bios.2020.112426. [DOI:10.1016/j.bios.2020.112426] [PMID]
66. [66] M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan, S. Pan, K. He, A. Neo, and X. Chen, "Artificial Skin Perception," Adv. Mater., vol. 2003014, pp. 1-20, 2020, doi: 10.1002/adma.202003014. [DOI:10.1002/adma.202003014] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb