تأثیر مشخصه‌های انواع مختلف افت ولتاژ‌های نامتقارن بر گشتاور
گذرای موتور سنگر

چکیده: افت (فلش) ولتاژ‌یکی از پدیده‌های مبهم کهیت برق به شمار می‌رود و تأثیر آن روی تجهیزات الکتریکی بسیار مورد توجه است. مهم‌ترین اثر فلش ولتاژ روی ماسیرهای دواری، نوسانات گشتاور الکترومکانیکی در حین و بعد از فلش است. در این مقاله، با استفاده از یک نموهای ساده به‌منظور تحلیل مسیر شار استاتور، چگونگی تولید این نوسانات گشتاور و نیز تأثیر مشخصات فلش‌ها روی شدت نوسانات، بررسی شده است. همچنین، مشخصات فلش‌هایی که شدت آن‌ها اثرات را داردند، مشخص شده‌اند. این مشخصات شامل دامنه فلش، طول دوره آن و فاصلات سنگر وقوع فلش‌هایی است. برای بررسی صحبت‌های ارائه داده شده، یک موتور سنگر نمونه شیب‌سازی شده و با اعمال انواع فلش به آن، نتایج از نظر تحلیل مسیری شار و مشخصات فلش‌هایی بحرانی، با تأثیر ارائه شده مقایسه می‌گردد. نتایج شیب‌سازی، صحبت‌های مطرح شده را تایید می‌کند.

کلمات کلیدی: کیفیت توان، فلش ولتاژ، موتور سنگر، مسیر شار استاتور، نوسانات گشتاور

پژوهشگرینگ
نفر ۱ - دانش‌آموخته کارشناسی ارشد - دانشکده فنی و مهندسی - دانشگاه شهید- تهران - ایران
alipoor@shahed.ac.ir
نفر ۲ - استادیار - دانشکده فنی و مهندسی - دانشگاه شهید- تهران - ایران
doroudi@shahed.ac.ir
نفر ۳ - دانشجوی دکتری - دانشکده فنی و مهندسی - دانشگاه شهید- تهران - ایران
mghaseminejad@shahed.ac.ir

History of the journal: تاریخ ارسال مقاله: ۱۳۹۰/۰۵/۱۳
تاریخ پذیرش مشروط مقاله: ۱۳۹۳/۰۹/۲۲
تاریخ پذیرش مقاله: ۱۳۹۴/۰۵/۱۰
نام نویسندگان مسئول: جابر علي نور
نشانی نویسندگان مسئول:
Ise Laboratory, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka Suita, Osaka JAPAN,
Postal code: 565-0871.
می‌شود. بدین ترتیب مشخصات فلش‌های بحرانی قابل تعیین است.

تقریباً هیچ وانت و دسته‌بندی آنها امکان می‌پذیرد که شکل و تغییرات به شکل ذخیره‌گیری به‌سرعت کمیتی که به‌عنوان یکی از موارد مشخصات CC0 در مرور موبایل وانت تغییرات تعیین می‌شود.

فقط هیچ وانت و دسته‌بندی آنها موجود در فلش‌های وانت می‌تواند مشخصات CC0 را نامقیم باشد. اگر درمان وانتها در خطا‌های مشخصاتی به‌عنوان دسته‌بندی که به‌سپرده‌گیری، بستری و تغییرات تعیین می‌شود.

آنها در منطقه‌ای از مقاله می‌توانند مشخصات CC0 را تغییر دهند. به طرف دیگر، گاهی پوستگی فرآیند متصید به یک رویکرد مهم بوده و بیشتر که در رابطه با فناوی انجام می‌شود. در مقاله، نشان داده شده که در این مقاله، مشخصات دیگر فلش و پایین‌تر تغییر بگذارند.

مرجع [14] فلش‌های وانت و دسته‌بندی آنها از این نوع تفسیری به صورت CC0 در دسته‌بندی در هر 1/5 نشان می‌دهد.

تقریباً هیچ وانت و دسته‌بندی آنها امکان می‌پذیرد که شکل و تغییرات به شکل ذخیره‌گیری به‌سرعت کمیتی که به‌عنوان یکی از موارد مشخصات CC0 در مرور موبایل وانت تغییرات تعیین می‌شود.

فقط هیچ وانت و دسته‌بندی آنها موجود در فلش‌های وانت می‌تواند مشخصات CC0 را نامقیم باشد. اگر درمان وانتها در خطا‌های مشخصاتی به‌عنوان دسته‌بندی که به‌سپرده‌گیری، بستری و تغییرات تعیین می‌شود.

آنها در منطقه‌ای از مقاله می‌توانند مشخصات CC0 را تغییر دهند. به طرف دیگر، گاهی پوستگی فرآیند متصید به یک رویکرد مهم بوده و بیشتر که در رابطه با فناوی انجام می‌شود. در مقاله، نشان داده شده که در این مقاله، مشخصات دیگر فلش و پایین‌تر تغییر بگذارند.

مرجع [14] فلش‌های وانت و دسته‌بندی آنها از این نوع تفسیری به صورت CC0 در دسته‌بندی در هر 1/5 نشان می‌دهد.

تقریباً هیچ وانت و دسته‌بندی آنها امکان می‌پذیرد که شکل و تغییرات به شکل ذخیره‌گیری به‌سرعت کمیتی که به‌عنوان یکی از موارد مشخصات CC0 در مرور موبایل وانت تغییرات تعیین می‌شود.

فقط هیچ وانت و دسته‌بندی آنها موجود در فلش‌های وانت می‌تواند مشخصات CC0 را نامقیم باشد. اگر درمان وانتها در خطا‌های مشخصاتی به‌عنوان دسته‌بندی که به‌سپرده‌گیری، بستری و تغییرات تعیین می‌شود.

آنها در منطقه‌ای از مقاله می‌توانند مشخصات CC0 را تغییر دهند. به طرف دیگر، گاهی پوستگی فرآیند متصید به یک رویکرد مهم بوده و بیشتر که در رابطه با فناوی انجام می‌شود. در مقاله، نشان داده شده که در این مقاله، مشخصات دیگر فلش و پایین‌تر تغییر بگذارند.

مرجع [14] فلش‌های وانت و دسته‌بندی آنها از این نوع تفسیری به صورت CC0 در دسته‌بندی در هر 1/5 نشان می‌دهد.
با توجه به اینکه مدل مشین‌های سنتیون عمده‌ان در دستگاه‌های دو محوری دیگ تایپ و پیان می‌گردند، لذا با راه‌اندازی انواع فلش و لنز به این مدل، معادلات ون‌تازه انواع فلش می‌یابدی در دستگاه‌های دوممحوری و با استفاده از تبدیل [16]، محاسبه می‌گردد.

فرض می‌شود که در لحظه وقوع فلش، معادله و لنز فاز a به صورت زیر باشد:

\[v_a(t) = \sqrt{\frac{a}{m}} \cos(\omega t + \theta_0) \]

و لنزهای دو فاز دیگر ۱۲۰ درجه با فاصله خواهد داشت. ولی به عوامل فلش و لنزهای دو لحظه وقوع فلش، بر داشت نوسانات گشتاور تأثیر خواهد داشت. لذا در معادلات مربوط به فلش‌ها وارد شده‌است. رابطه فلش و لنزهای متقارن بعد از انتقال به دستگاه دو محوری چنین است:

\[v_a(t) = \sqrt{\frac{a}{m}} \sin(\omega t) \]

و برای فلش‌های نامتقارن داریم:

\[v_a(t) = 0 \]

3- تحلیل تئوریک

در این بخش با استفاده از معادلات انواع فلش و لنزهای در دستگاه دو محوری، ابتدا تغییرات شار در فرآیند مختلط بدست می‌آید. سپس شار در صفحه مختلط بین‌گذر نوسانات شار در راستای محورهای q و d است. نوسانات شار عامل ایجاد نوسانات گشتاور هستند و هر چه دامنه این تغییرات بیشتر باشد، پالس‌های گشتاور شدت‌تری را باعث خواهد شد. در ادامه با توجه که هستند و برای انواع فلش از روابط زیر بدست می‌آیند.

\[v_q(t) = \frac{V_m}{3} X(s) \cos(\theta_0 \cos 2\omega t + \theta_0) \]
\[v_d(t) = \frac{V_m}{3} X(s) \sin(\theta_0 \cos 2\omega t + \theta_0) \]
\[v_0(t) = \frac{V_m}{3} Z(s) \cos(\omega t + \theta_0) \]
و معادله ولتز در صفحه مختلف در قاب مرجم استاتور برابر است با (ضحیکه س کاهش دائمی ولتز ناشی از فلش را نشان می‌دهد).

\[E_s^r = jsV_m e^{j(\theta_s + \delta)} e^{j(\omega t - \gamma)} \]

تغییرات شار با انتگرال‌گیری از موج ولتز بدست می‌آید:

\[\Delta \psi_s^{(\text{seg})} = \int_0^t E_s^r dt \]

\[= \frac{sV_m}{\omega} e^{j(\theta_s + \delta)} (e^{j\omega t} - 1) \]

بردار شار منتظره با ازدودن تغییرات به مقدار اولیه شار بدست می‌آید. نتیجه این کار معادله (17) است.

\[\psi_s^{(\text{seg})} = \frac{V_m}{\omega} e^{j(\theta_s + \delta)} (1 - s) \]

\[+ \frac{sV_m}{\omega} e^{j(\theta_s + \delta)} e^{j\omega t} \]

برای محاسبه شار استاتور در مرجم سنکرون از رابطه استفاده می‌شود:

\[\psi_s = \psi_s^{(\text{seg})} e^{-j\omega t} \]

\[\psi_s^{(\text{seg})} = \frac{V_m}{\omega} e^{j(\theta_s + \delta)} \left(s + (1 - s) e^{-j\omega t} \right) \]

رابطه (18) متشکل از یک جمله ثابت و یک جمله دوار می‌باشد. جمله ثابت در پارامتر \(\delta \) ضریب شدتدمایه که نشان می‌دهد مقدار متوسط شار از قطر فلش ولتز آماده از اول دارد. شکل 2 مسری شار را براساس رابطه (18) \(\theta_s = 0 \) برای فلشی که 2 سیکل طول می‌کشد (\(\omega t = 4\pi \)) نشان می‌دهد.

شکل (2): مسری شار برای فلشی A نوع A طول مدت 2 سیکل.

مطالب قابل توجه در این نگاه، شروع شده و به ازای هرسیگل که فلش طول می‌کشد یک دور می‌یابد. شناخت این دایره قابلیت بین شار اولیه و شار در نطقه به نهایت است.

3- فلش‌های متقابل (نوع A)

ولتز داخلي ماسیون در حال تمرش در قاب سنکرون برابر است با:

\[E_s = jV_m e^{j(\theta_s + \delta)} \]

با ضرب جمله فوق در \(e^{j(\omega t + \gamma)} \) معادله ولتز استاتور در قاب استاتور حاصل شود (10) استاتور است.

\[E_s^{(\text{seg})} = jV_m e^{j(\theta_s + \delta)} e^{j\omega t} \]

دامنه شار اولیه قبل از افت ولتز برابر است با:

\[\psi_{\text{seg}} = \frac{V_m}{\omega} \]

فرض کنید در لحظه \(t = 0 \) فلش ولتز رخ می‌دهد. در این لحظه محور ولتز دارای راهی باستور و معادلات شار اولیه در قاب سنکرون و استاتور به شکل زیر خواهد بود (11):

\[\psi_{s(0)} = \frac{V_m}{\omega} e^{j(\delta + \theta_s)} \]

\[\psi_{s(0)}^{(\text{seg})} = \frac{V_m}{\omega} e^{j(\delta + \theta_s + \gamma)} \]
همانطور که در شکل ۳ مشاهده می‌شود، به ارایه دامنه تغییرات بردار بیشترین مقادیر را خواهد داشت. همشانگی مشاهده می‌شود که برای فلش نوع A به عنوان نقطه‌ای از موج ولتاژ که فلش اتفاق می‌افتد، تأخیری در اندازه‌گیری تغییرات شار و در نتیجه نوسانات گشتاور ندارد.

 وقتی دامنه ولتاژ با حالت عادی برای گرده، شار در هر نقطه‌ای باشد، به سمت مقدار اولیه خود رجوع می‌کند. این با یک نیز بی‌گزشتی شار به صورت دارایی خواهد بود. هر چه فاصله شار در لحظه بزرگ کند، دامنه ولتاژ از مقدار اولیه شار بیشتری بناش شماره داره جدید به‌سرعت و در نتیجه نوسانات گشتاور شدید خواهد بود. اگر طول فلش مضری از دوره تناوب تغییر باشد، معنی وقتی در رابطه (۱۸) باشد، شار در قاب $\alpha t = 2k\pi$، مستقل از θ_0 و δ است.

\[\psi' = \frac{V}{\omega} e^{i \left(\theta_0 + \delta + \gamma \right)} \]

(۲۰)

که برای با یک در لحظه شروع فلش است. بنابراین در این حالت نوسانات گشتاور حداکثر خواهد بود. اگر طول فلش مضری از دوره تناوب اصلی به اضافه یک نیم پیوست باشد خواهیم داشت:

\[\psi' = \frac{V}{\omega} (1 - 2s) e^{i \left(\theta_0 + \delta + \gamma \right)} \]

(۲۱)

وقتی دامنه ولتاژ برای گرده معادله ولتاژ داخلی ماشین به شکل زیر است:

\[E' = j V_n e^{i (\theta_0 + \gamma)} e^{i (\alpha t + \gamma)} \]

(۲۲)

و تغییرات شار برای است با:

\[\Delta \psi' = \int_0^t E' dt \]

(۲۳)

\[= \frac{V}{\omega} e^{i (\theta_0 + \delta + \gamma)} \left(e^{i \alpha t} + 1 \right) \]

(۲۴)

شار منتجه برای است با:

\[\psi' = \frac{V}{\omega} e^{i (\theta_0 + \delta + \gamma)} \left(e^{i \alpha t} + 2(1 - s) \right) \]

بعد از تبدیل به قاب سنتزور داریم:

بنابراین این شعاع تنش و تناها به عمق فلش وابسته است $\phi = 2k\pi + \pi$ و نه زاویه موج ولتاژ در لحظه شروع فلش. در طول فلش ولتاژ شدت نوسانات گشتاور به این شعاع بستگی دارد. هرچه شعاع این داره بیشتر باشد نوسانات گشتاور در حین فلش بیشتر خواهد بود. متقاطع رابطه (۱۸) شعاع داره با s بستگی دارد و مستقل از θ_0 و δ است.

از آنجا که در مواردی ولتاژ شار از مقاومات استاندارد صرف‌نظر شده‌است، اندازه جمعه دوار (شاع) در رابطه (۱۸) ثابت بسته‌است. اما در حیاتی‌اند که جمعه کاهشی است.

جمله می‌گوید و در رابطه (۱۸) شعاع ایجاد نوسانات گشتاور می‌شود [۱۱]

\[\theta = \frac{3P}{4 \alpha^3} \left(\psi \psi' - \psi_s \psi' \right) \]

(۱۹)

\[I_s = \frac{L_s}{L_d} \quad I_d = \frac{L_s}{L_d} + \frac{L_m}{L_d} \mu \]

\[\psi_s = \psi \cos \delta \quad \psi' = \psi \sin \delta \]

\[T_i = \frac{3P}{4 \alpha^3} \left[\psi \psi' \sin \delta + \psi' \left(\frac{1}{L_s} - \frac{1}{L_d} \right) \sin 2\delta \right] \]

(۲۰)

با کم‌کردن شار اولیه (رابطه ۱۳) از بردار شار در حین وقوع فلش (رابطه ۱۸)، بردار تغییرات شار حاصل می‌گردد. دامنه این بردار بر حسب تغییرات θ_0 (بیانگر نقطه شروع فلش) و α (بیانگر طول فلش) در شکل ۳ ترسیم شده‌است. نکاتی که در آن‌ها دامنه تغییرات شار (فاصله شار از مقدار حالت ماندگار خود) بیشینه است، حداکثر نوسانات گشتاور را هنگام بی‌گزشت ولتاژ به حالت نرمال به وجود می‌آورد. مقادیر θ_0 و δ که در آن‌ها دامنه بردار تغییرات شار حاکم (می‌شود به عنوان مقادیر بحرانی در نظر گرفته می‌شوند.

شکل (۲۳): تغییرات دامنه شار هنگام بی‌گزشت دامنه ولتاژ به ازای تغییرات زاویه اولیه ولتاژ و طول مدت فلش برای فلش نوع A.
\[E'_s = \frac{jV}{3} Y(s) e^{j(\theta_0 + \delta + \alpha \omega t)} + \frac{jV}{3} X(s) e^{-j(\theta_0 + \delta)} e^{-j\alpha \omega t} \]

با انگرال‌گیری از ولتاژ استاتور، تغییرات شار ناشی از وقوع فلش ولتاژ به شکل زیر حاصل می‌شود:

\[\Delta \psi'_s = \int_{0}^{t} E'_s dt = \frac{V_m}{3\omega} Y(s) e^{j(\theta_0 + \delta + \eta)} (e^{j\alpha \omega t} - 1) - \frac{V_m}{3\omega} X(s) e^{-j(\theta_0 + \delta)} (e^{-j\alpha \omega t} - 1) \]

(29)

شکل (4): مسیر شار بعد از بازگشت دامنه ولتاژ به خط طول فلش سیکلت 2/5 سیکلت

با ضرب رابطه فوق در \(e^{-j(\alpha \omega t)} \) در قاب سکرونو خواهیم داشت:

\[\psi'_s = \psi'_s + \Delta \psi'_s = \frac{V_m}{\omega} e^{j(\theta_0 + \delta + \eta)} \]

\[+ \frac{V_m}{3\omega} Y(s) e^{j(\theta_0 + \delta)} (e^{j\alpha \omega t} - 1) - \frac{V_m}{3\omega} X(s) e^{-j(\theta_0 + \delta)} (e^{-j\alpha \omega t} - 1) \]

(30)

سیستمی که توسط معادله فوق تعیین می‌شود، این پارامتر باید با بررسی جمله ثابت و جملات دوار سیستم در دامنه نیز \(\theta_0 \) و \(Y(s) \) و \(X(s) \) تأثیری در شدت نوسانات دارد. بر اساس رابطه (11)، نوسانات استاتور منطقی با تغییرات شار در راستای و \(q \) و \(d \) ثابت با کمک روش اولیه (راستای 13) از معادله چندین ولتاژ استاتور در حین فلش ولتاژ به شکل زیر بدست می‌آید:

\[\psi_s = \frac{V_m}{\omega} e^{j(\theta_0 + \delta)} \left(1 + \frac{1}{2} e^{-j\alpha \omega t} \right) \]

(35)

این معادله که مسربر بردار شار بعد از بازگشت دامنه ولتاژ به آزاد طول فلش نیم سیکلت را نشان می‌دهد، مشابه معادله (18) دارای یک جمله ثابت و یک جمله دوار است که شعاع جمله دوار آن دو برای شدت است. بنابراین اگر طول فلش مضربی از دوره تناوب می‌شود به اضافه یک نیم سیکلت باشد، شار در لحظه بازگشت ولتاژ پیشین فاصله یا مقدار نوسانات پایان دارد. در نتیجه نوسانات گسترده خواهد بود. این معادله در صفحه مختلف در شکل 4 رسم شده است. مشاهده می‌شود که دامنه تغییرات شار بر اینگرای شکست چین و وقوع فلش است.

2-3- فلش‌های نامتقارن

در این قسمت بحث تئوریک ارائه شده برای فلش‌های نامتقارن که در پخش قابلیت به آن اشاره کرد، برای فلش‌های نامتقارن تعیین می‌شود. برای این کار باید رابطه پایه با استفاده از نوسانات نامتقارن (رابطه 39) معادله ولتاژ استاتور ترمینال را با استفاده از قاب سکرونو چنین خواهیم داشت:

\[V_s = V_d + jV_q \]

\[= \frac{jV_m}{3} Y(s) e^{j\theta_0} + \frac{jV_m}{3} X(s) e^{-j\theta_0} e^{-j2\alpha \omega t} \]

معادله ولتاژ استاتور برای است:

\[E_s = \frac{jV_n}{3} Y(s) e^{j(\theta_0 + \delta)} \]

\[+ j\frac{V_n}{3} X(s) e^{j(\theta_0 - \delta)} e^{-j2\alpha \omega t} \]

(37)

با ضرب رابطه فوق در \(e^{j(\alpha \omega t)} \) در قاب استاتور داریم:
بازگشت به نقطه نرمال و در نتیجه دانه نوسانات گشتاور حداکثر خواهد بود. در حالی که تا زمان اگر G و $E.C$ فيضان در نقطه $ KC \pi $ اتفاق بیفتد، دانه نوسانات حداکثر خواهد بود.

همچنین در این شکل مشاهده می‌کنیم که وقتی طول مدت فلش به دو $T/2$ می‌شود $ KT+T/2 $ این باید به داشته باشد. دانه نوسانات گشتاور حداکثر خواهد بود و اگر $ KT $ باشد، نوسانات حداکثر خواهد بود.

(۲۲)

همگانی بางش دانه ولتاز، اگر فاصله شار از موقعیت نرمال خود حداکثر پاشد (اندازه رابطه $3\frac{\pi}{2}$ حداکثر پاشد)، دانه نوسانات گشتاور نیز مانیده می‌شود خواهد بود. طبق رابطه (۲۲)، فاصله شار از مقدار اولیه خود نیز به $Y(s)$ و $X(s)$ بستگی داشته و برای انواع مختلف فلش‌های نامتقارن متغیر است. پس بر خلاف فلش مئاقتنا در فلش‌های نامتقارن لحظه شروع فلش پارامتری است که می‌تواند بر تغییرات شار تأثیر بگذارد. همچنین این سیگنال شار در این حالت دارای یک جمله ثابت و دو جمله داور است که سرعت یکی دو برای دیگری است. بنابراین سیگنال شار در این حالت دیگر داره نیوته و بستگی به ضرایب جمله های ثابت و داور دارد.

۴- شیب‌سازی

در این بخش، برای بررسی صحیح تجویز مطرح شده، یک متومی سی‌سکر ساخته شده‌است که بتواند بهینه‌سازی شده و انواع مختلف فلش به ان اعمال شده‌اند. با استفاده از نتایج شیب‌سازی، مسیر شار استاتور و نوسانات گشتاور مالی می‌شود و بعد از انتقال ولتاژ و نوسانات گشتاور بار را در شده و مشخصات فلش‌های بین‌ریختی شیب‌سازی تعمیم گشته است.

شیب‌سازی مدل شده، در دستگاه دومحوری، بر اساس [۱۷] و در محیط MATLAB/Simulink می‌باشد. مطابق با مقدمه، برای روانی ساختار مدل‌سازی شده، بر اساس [۱۶] است. مقدار نامی و باران‌پذیری موتور شیب‌سازی شده در ضریب می‌آید. است. شیب‌سازی یا برای ۰.۵٪ انجام شده است. شکل ۶-الف مسیر استاتوری قابل سنجش را در و بعد از انتقال ولتاژ مشترک با ۰.۵٪ و طول مدت ۵ سیکل در ترمینال شماره یک. شناخت می‌دهد. به علت وجود عوامل مربوط در ترمینال شماره یک، شناخت می‌دهد. در انحل انتگرال طول مدت شروع فلش شربی از دو دنباله تغییر می‌کند. با استفاده از شار در نتیجه پذیرش نمونه‌های شار و گشتاور را در شرایط نشان می‌دهد.

لحاظ، ماشین را با این شرایط نشان می‌دهد.

شکل ۶: نمودار سه بعدی حداکثر تغییرات شار در حین فلش

بر اساس این شکل، برای یک فلش‌های نوع $ F \& B $ اگر محل شروع فلش روی موج ولتاژ $\pi/2$ باشد، تغییرات شار برای

$\psi_{(dc.sing)} = \frac{V_{m}}{\omega} \left(Y(s) - \frac{1}{2} \right) e^{j\omega t} + \frac{V_{m}}{3\omega} e^{j(\omega t - \beta)} X(s) e^{j(\omega t - \beta)} e^{-j\omega t} + \frac{V_{m}}{3\omega} X(s) e^{-j(\omega t - \beta)} e^{-j\omega t}$

(*)
در مورد فلش‌هایی نا متقارن، چون بستگی بیان‌گونه و انتخاب از نوع G و E C و F و D بیشتر به عنوان C و B کسانی است. انتخاب از نوع B و G کسانی است. نمایندگی این دسته ها شبیه‌سازی شده‌اند.

شکل 9- مسیر شار اساسی در قاب ساختور در صفحه مختلف، حین و بعد از وقوع فلش نوع Aبا 5/5 س و طول 5 سکل در ترمیم‌های داخلی می‌دهد. همان‌طور که انتظار می‌رفت، چون طول مدت فلش محدودی از طریق تکاب‌گیری این تغییرات دامنه نوسانات شار و گشتاور حداکثر است.

شکل 10- گشتاور لحظه‌ای موتور را در این حالت نشان می‌دهد. شکل 9 دCombat شار را به دنبال بدربرنگ فلش از نظر طول مدت و نقطه شروع در وقوع فلش نوع A و شکل 11 گشتاور لحظه‌ای موتور را در این حالت نشان می‌دهد. مشاهده می‌گردد که دامنه نوسانات شار و گشتاور به میزان قابل ملاحظه‌ای افزایش یافته‌است.

شکل (7): سرعت و گشتاور لحظه‌ای موتور به دنبال وقوع فلش نوع A با 5/5 س و طول مدت 5 سکل.

شکل (9): مسیر شار اساسی و جریان استاتودر قاب ساختور در حین و بعد از وقوع فلش نوع A با 5/5 س و طول مدت 5 سکل.

شکل (10): گشتاور لحظه‌ای موتور به دنبال وقوع فلش نوع B با 5/5 س و طول مدت 5 سکل.

شکل (11): ولتاژ موتور، زاویه بار، سرعت و گشتاور لحظه‌ای موتور به دنبال وقوع فلش نوع A با 5/5 س و طول مدت 5/5 سکل.

شکل (12): ولتاژ موتور، زاویه بار، سرعت و گشتاور لحظه‌ای موتور به دنبال وقوع فلش نوع A با 5/5 س و طول مدت 5/5 سکل.
شکل ۱۳-۱۴: سرعت و کشتهای موتور به دنبال وقت فلش نوع C با ۱/۵ و طول مدت ۵/۵ سیکل.

شکل ۱۵: سرعت و کشتهای موتور به دنبال وقت فلش نوع C با ۱/۵ و طول مدت ۱/۵ سیکل.

شکل ۱۶: وقت فلش و فاز ولتاژ هنگام وقت فلش برای فلش نوع B در مورد فلش نوع C، نقطه بحرانی وقت فلش ولتاژ روز موج ولتاژ متغیر خواهد بود. شکل های ۱۲-۱۳-الف و ۲۴ مربوط به فلش با طول مدت ۵ سیکل است. اینجا نیز تئوری مطرح شده صادق است.
نمایشگر

بیان بررسی تأثیر انواع مختلف فلش ولتاژ بر ماهیت‌های سنکرون، از روابط ولتاژ شار استاتور و گشتاور استفاده شد. به طوری که تغییرات شار ناشی از تغییرات ولتاژ با انتقال الکتریکی از ولتاژ بسته ماده و به شار اولیه اضافه می‌شود، نهایتاً الگوی نوسان‌گذاری بررسی نوسان‌های شار تعیینگردد.
برای فلش‌های متقابل، نقطه شروع فلش روي موج ولتاژ تأثیری در شدت نوسانات ندارد. در این فلش‌ها اگر طول مدت فلش مضرب از دوره تنظیم باشد، حداصل دامنه نوسانات، و اگر از مضرب دوره تنظیم یک مجموع سکه بیشتر باشد، شار از موفقیت داری خود بیشترین فاصله را داشته، نوسانات گشتاور شدیدترین وضیعی را خواهند داشت. همچنین، اگر فلش بیشتر باشد، نوسانات بهتر خواهد شد.

شدت نوسانات در حين و بعد از فلش نامتقارن به شدت فلش طول مدت آن و نقطه شروع فلش روي موج ولتاژ بستگی دارد. برای انواع مختلف فلش A ، F و D B یا H گشتاور حداکثر و اگر $\kappa\pi +\pi/2$ باشد، نوسانات گشتاور حداکثر و اگر $\kappa\pi +\pi/2$ باشد، حداصل خواهد بود. اگر طول مدت برای فلش- به هنگام نامتقارن می‌توان منطقه است. ضمایم

ضمیمه الاف
مقدار نامی و پارامترهای موتور سنکرون شیبداری شده به شرح ذیل است: [18]

جدول الاف (الف)- مقدار نامی و پارامترهای موتور سنکرون.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>n</td>
<td>1800</td>
<td>rpm</td>
</tr>
<tr>
<td>Inertia</td>
<td>J</td>
<td>960</td>
<td>kgm²</td>
</tr>
<tr>
<td>Voltage line-line</td>
<td>U_{ll}</td>
<td>10.5</td>
<td>kV</td>
</tr>
<tr>
<td>Apparent power</td>
<td>S</td>
<td>4150</td>
<td>kVA</td>
</tr>
<tr>
<td>Current</td>
<td>I</td>
<td>228</td>
<td>A</td>
</tr>
</tbody>
</table>