طرحی و ساخت میکروآیینه شکل پذیر پلیمری جهت استفاده در سیستم‌های اپتیک تطبيقی

چکیده: در این مقاله روشن کرده ساخت میکروآیینه انعطاف‌پذیر پلیمری مبتنی بر عملکرد الکتروشاتایی ارائه شده است. میکروآیینه‌های انعطاف‌پذیر معمولاً در سیستم‌های اپتیک تطبيقی جهت تصحیح اعوجاج‌های موجود در جریان موج بیانگی مورد استفاده می‌باشند. در این تحقیق، دیافراگم‌های انعطاف‌پذیری می‌باشند. از جنس پلیمر-8 SU-8 ساخته شده و بر روی آن‌ها می‌باشد. در این راه، می‌تواند در ابزارهای مختلف با ولتاژ کمتر از 10 ولتاژ کنترل می‌گردد به گونه‌ای که دیافراگم به شعاع 8/2 μm و ضخامت 10 μm را اعمال ولتاژ 12 ولت حذف کنند. علاوه بر این، استفاده از مواد پلیمری بجای سیلیکون در ساخت دیافراگم، سادگی و کم‌هزینه بودن فرآیند ساخت را نیز به همراه دارد. اما دیافراگم‌های پلیمری رایح، صافی سطح کمتری در مقایسه با سیلیکون دارند. در این مقاله برای غلیظ پیش‌گویی از اینکه جدیدترین راه ساخت میکروآیینه استفاده شده که علاوه بر تمام موافقت‌آمیزی پلیمری از نظر مناسبی سطح با نمونه‌های سیلیکونی برای انتخاب می‌کند. نتیجه‌گیری که ناهمواری سطح حدود واریاس ناهمواری سطح 20 نانومتر را نشان داد. همچنین، به منظور بهینه کردن طرح ساختاری از شبیه‌سازی الکتروشاتایی

کلمات کلیدی: اپتیک تطبيقی، پلیمر، SU-8، عملکرد الکتروشاتایی، میکروآیینه

تاريخ ارسال مقاله: 1393/07/15
تاريخ پذيرش مشروط مقاله: 1395/05/18
تاريخ پذيرش مقاله: 1395/07/10
نام نويسنده مسئول: مهربا اسکندریاری
نشاني نويسنده مسئول: مجتمع مهندسي برق روبوتیک، دانشگاه مالک اشرتی، ایران
مقدمه

در سیستم‌های ایتیکی، عواملی از جمله تغییر ضریب شکست‌ناپذیر تغییر می‌کنند. این تغییرات، در سیستم‌های ایتیکی، دچار امواج و نوسان‌های حداکثر می‌شوند. به همراه این نوسان‌ها، سیستم‌های ایتیکی نیز به سیستم‌های نوآوری می‌پردازند. این اکثر اثرات ایجادشده در سیستم‌های ایتیکی در سیستم‌های سوپر ادیشن و افزایش دقت سیستم‌های ایتیکی تعیین‌کننده سیستم‌های ایتیکی به‌شمار می‌رود.

در کیس سیستم‌های ایتیکی تعیین‌کننده سیستم‌های ایتیکی، دیافراگم آیپید به صورت در دانمارک یک دیافراگم دیافراگم آیپید به صورت در دانمارک یک دیافراگم چرخش دیافراگم آیپید به صورت در دانمارک یک دیافراگم چرخش دیافراگم آیپید به صورت در دانمارک یک دیافراگم چرخش
پایه ای از پایه‌های سایر مهم در طراحی عملکرد الکترونیکی با

ساخته‌های مجزا و مناسب‌نمایی، در سیستم‌های ورودی

بزرگ‌تری با سایر و جلوگیری از کاهش اندک مشترک اندکی ناگهانی به سمت

مراقبت ایجاد پانزده میشود. اگر با پاک نسبت به همه سمت به

دستانه‌ای باعث ایجاد اثرات حساسی مثلاً حرکت و اعمال کوتاه به

خلا و دستگاه‌ها را می‌تواند آزاد از این رو ممکن است محدوده موجود

در عملکرد الکترونیکی، محدوده مناسب جابجایی دیافراگم

متحرک است که تا دو برابر یک قلبه محدود می‌شود و پس

از آن بی‌پایه قطع، رخ می‌دهد.

روش‌های مختلف برای ایجاد انتقال قطع وجود دارد که یکی از

موثر‌ترین آن‌ها افزایش تابث قدرت است. با افزایش تابث قطع، محدوده

حرکت پایین‌تر الکترونیک متحرک افزایش می‌یابد [12].

در طرح ارائه شده در این مقاله با توجه به اینکه اطراف دیافراگم کاملاً

محصور شده است، تابث قدرت افزایش یافته و مناسب جابجایی پایدار

دیافراگم متحرک نیز بیشتر شده است. این پدیده در حین آنجام تست

عملی طاق شسته به نیز می‌گردد.

اما افزایش تابث قدرت باعث افزایش ولتاژ تحریک قطعه می‌شود که به

سبب ایجاد تریل، می‌توان یکی چک کرده و باعث دیافراگم می‌شود.

در طرح ارائه شده به جهت حفظ استحکام دیافراگم افزایش طول عمر قطعه اطراف دیافراگم را قبیل از

جنس سیلیکون محصول است. از این جهت جابجایی میکرواین مورد نظر

جهت پژوهشی در سیستم‌های اپتیکی تطبیقی ساخته‌شده است. لذا

می‌باشد که به وسیله طراحی شده که نتواند تغییر شکل مناسب را

dاشته باشد به تغییر، الکترونیک پایه به صورت آرایه‌ای ساخته

شدهاند.

فاصله بین دیافراگم و دیافراگم نیز بسیاری از جنس

امبی‌گرده است. می‌توان در دیافراگم‌هایی از جنس

نشان‌های از ضخامت‌های متنوع زیر ۵۵ نانومتر و چند میکرومتر است [11]

با استفاده از این مارچک می‌توان ضخامت دیافراگم و فاصله بین

تابث دیافراگم و الکترونیکی را با مقادیر دلخواه‌سازی نمود.

دبی‌اندازه و هماهنگی که در فاقدیت ایجاد شده خواهد هدایت، و

قسمت اکبریهصطه به پایداری قبیل می‌شود.

\[
\frac{\partial^2 w}{\partial x^2} + 2 \frac{\partial^2 w}{\partial x \partial y} + \frac{\partial^2 w}{\partial y^2} = \frac{\Delta W}{P} D
\]

(1)

۳- ساختار و ماشینی

همانگونه که اشاره شد، در این مقاله از عملکرد الکترونیکی به عنوان

محور مکانیکی استفاده شد. در یک عملکرد الکترونیکی با دو صفحه مجزا، در اثر اعمال ولتاژ بین دو الکترون، به دلیل تجمع

بارهای متفاوت در الکترون‌ها، تابث جابجایی بین آنها اجدا شده و

سپس جابجایی الکترون متحرک می‌شود. شکل (۱) مدل ساده‌ای از

خازن با دو صفحه مجزا را نشان می‌دهد. که با استفاده از آن می‌توان

به صورت تقریبی میزان جابجایی دیافراگم متحرک را در اثر اعمال

ولتاژ بی‌بود.

شکل (۱): مدلی از خازن دو صفحه مجزا

شکل (۱): ساختار کلی میکروآیون ساخته شده را نشان می‌دهد. با

توجه به اینکه از عملکرد الکترونیکی در ساخت این قطع استفاده

شد، الکترون‌ها از دو طرف می‌نرخ می‌شکل شده است. بخش اول

مجموعه‌ای از الکترودهای تابث بین می‌باشد که روی ازدحام

ایجاد شده است. سمت دوم الکترونیک است که صورت دیافراگم پیش‌رپید از جنس

SU-8 به ضخامت ۰:۱ میکرومتر می‌باشد که با پوشش نداشتن یافته آی از فاز بر روی سطح زیرین، این دیافراگم به

الکترون متحرک رسانا تبدیل می‌شود. در طرح ارائه شده به جهت

استحکام دیافراگم افزایش طول عمر قطعه اطراف دیافراگم را قبیل از

جنس سیلیکون محصول است. از این جهت جابجایی میکرواین مورد نظر

جهت پژوهشی در سیستم‌های اپتیکی تطبیقی ساخته‌شده است. لذا

می‌باشد که به وسیله طراحی شده که نتواند تغییر شکل مناسب را

dاشته باشد به تغییر، الکترونیک پایه به صورت آرایه‌ای ساخته

شدهاند.
در سیماسی سعی شده تاثیر پارامترهای مختلف بر روی ولتاژ تحریک و میزان جابجایی برقی شود.

با توجه به رابطه (1) و (2) که بات ترتیب مشخص کندنه ولتاژ تحریک و میزان جابجایی دیافرگم‌دارهای آمیزشی مشخص است که ولتاژ و جابجایی متغیر از دو میزان جابجایی است. یک بخش مربوط به مشخصات ساخته، مانند ابعاد و ضخامت دیافرگم‌دارهای است و دیگر بخش مربوط به مشخصات ماده انتخاب شده و شناسایی می‌باشد.

\[
V = \frac{16\pi r^4 E h^2}{32\pi r^4} = \frac{E h^2}{32\pi r^4} \times \frac{R_0}{r^2}
\]

\[
w(a) = 0, \quad w'(a) = 0, \quad w'(0) = 0
\]

\[
D = \frac{E h^2}{12(1-v^2)}
\]

\[
p = \frac{f_e}{a}
\]

\[
f_e = \frac{64D}{9u}
\]

\[
w(a) = 0, \quad w'(0) = 0
\]

\[
\text{شکل (3): ولتاژ تحریک نرم‌الیزه شده تعدادی از مواد نسبت به Si3N4}
\]

\[
\text{شکل (2): ولتاژ تحریک مواد مختلف تغییر طالا اولیمپیون. اکسید سیلیکون که نسبت و ولتاژ تحریک Si3N4 نرم‌الیزه شده است و با نشان می‌دهد. علی اینکه ولتاژ‌های قابل موارد نسبت به ماده Si3N4 را می‌توان مربوط به ساخت}
\]

\[
\text{شیب سازی}
\]

در این مقاله هدف از سیماسی بررسی جابجایی دیافرگم میکرواینده به ازای تغییرات در پارامترهای مختلف است. از اینکه پایین‌ترین ولتاژ تحریک در ساخت میکرواینده‌ها یک نکته اساسی است این رو
پیام دیگر که در اکثریت میکروآینده‌ها با دچاره به آن توجه کرد میزان جابجایی است که آن میزان سیلیکون 8 دارا دارد. هرچه میزان جابجایی باشد میزان سیلیکون 8 در افزایش می‌شود.

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].

سیال اکسید سیلیکون و 2 برابر کمتر از ولتاژ سیلیکون ناتورالیز می‌باشد [15 و 16].
شکل (8) نیز شماتیکی از میزان جایگاه دیافراگم 10 میکرومتر با فاصله صفحات 10 میکرومتر به ازای اصل ولتاژ 6 ولت را نشان می‌دهد.

5- روش ساخت

شکل 9 خلاصه‌ای از فرآیند ساخت این میکرواینده‌ها نشان می‌دهد. جهت ساخت دیافراگم، ابتدا 8 میکروینده SU-8 از سال 2010 به روش توجه بخشی از جداره چرخشی با سرعت 3000 دور بر دقیقه به ضخامت 10 میکرومتر روی یک بستر سیلیکون‌پوشش شده است. از سیلیکون به عنوان قاب تکه‌گردیده دیافراگم استفاده شده است. سپس ناحیه میکروینده سیلیکون را به شکل الگوی دایره‌ای شکل به طور کامل با روش ساخت سیمیاجی (SU-8) در 5 میکرومتر با کانال‌‌های زیادی شکل داده شده است. سپس فلز سیلیکون روی قاب به شکل دیافراگم با استفاده از یک فرآیند حرارتی پخت دیافراگم با لایه‌ای از فلز با ضخامت 150 نانومتر پوشش داده شده تا رستگی گیرد و به عنوان الکترود متمحک مورد استفاده قرار گیرد.

6- بحث و نتایج

همانگونه که در قسمت مقدمه اشاره شد، سه پارامتر اصلی مشخص کننده کیفیت میکرواینده عبارتند از: صفحه نمایش، میزان جایگاه و سرعت پاسخ‌دهی برای این میکروایند. این مورد در آینده ساخته شده، سپس از ساخت قطعات ناهماهنگی سطح هنگام با استفاده از میکروسکوپ اتمی "10" نشان داده شد. از طرفی، میزان عمدی این روش این است که برای ساخت سیلیکون نیاز به استفاده از دستگاه DIRE با سایر روش‌های پرتره‌مات و زمان‌بندی نیست.
میکروپتری طراحی و ساخته شده قطعه ساخته شده نسبت به نمونه های مشابه که معمولاً از جنس سیلیکون ساخته می شوند، طراحی جاجابایی پیشتر و ولتاژ کاری کمتری دارد. برای مقایسه در جدول 1 نتایج چند نمونه از ساخته شده مبنی بر سیلیکون و نمونه ساخته شده در این تحقیق ارائه شده است.

جدول (1): مقایسه آی این میکرو آپینه های مشابه و میکرو آپینه ساخته شده

جنس	ابعاد	ضخامت	شکل	حداکثر ولتاژ	حداکثر	نانومتر
جاجابایی	150 mm	1 μm	200	3 μm	120	2 μm
نانوپتر	100 mm	1 μm	120	3 μm	120	2 μm
پیلر	50 mm	10 μm	100	3 μm	100	2 μm

 ضمن اینکه روش مورد استفاده در این تحقیق برای موارد پلیری نسبت به روشهای دیگر پیش‌باز ساده‌تر و هزینه‌تر می‌باشد. لذا می‌توان این روش را منظور تولید اینو میکرو آپینه برای کاربردهای مندونی نظیر ایشک تطبیقی استفاده کرد.

مراجع

1 Adaptive optic system
2 incident wavefront
3 ophthalmology
4 Microelectromechanical
5 Fill factor
6 Parallel plate
7 Spin coating
8 DRIE
9 Bonding
10 Pull in
11 Kirchhoffs plate theory
12 flexural rigidity
13 silicon-on-insulator
14 Thermal evaporation deposition
15 Post Bake

16 Developer
17 Adhesion Bonding
18 AFM