طراحی و ساخت آنتن شیپوری SIW با استفاده از لنز لوبرگ

سید محمد حسینی¹ نادر کمجانی²

¹- دانش آموخته کارشناسی ارشد- دانشگاه مهندسی برق- دانشگاه علوم و صنعت- تهران- ایران
sm_hosseini@elec.iust.ac.ir

²- دانشیار- دانشگاه مهندسی برق- دانشگاه علوم و صنعت- تهران- ایران
n_komjani@iust.ac.ir

چکیده: در این مقاله، یک آنتن شیپوری SIW طراحی و ساخته شده که در آن به منظور افزایش بهره آنتن، از لنز لوبرگ استفاده شده است. استفاده از یک ساختار انتقالی در دهانه تشعشعی آنتن، نسبت جلو به عقب را افزایش داده و منجر به تطبیق امیدانس دهانه آنتن شیپوری با امیدانس فضای آزاد شده است. علاوه بر این با استفاده از این ساختار انتقالی آنتن پیشنهادی کاملاً صفحه‌ای شده است. به همین ترتیب تنها با استفاده‌های هم‌زمان از لنز لوبرگ و ساختار انتقالی دارای دو ویژگی مهم‌یک قطبیت بودن و CST شبیه‌سازی شده و نمونه‌های آن ساخته شده است. پرتوی آنتن در فرکانس 14.5 GHz حداکثر 10.5 dB است. پهنای باند امیدانس آنتن حدود 14% می‌باشد.

کلمات کلیدی: آنتن شیپوری، لنز لوبرگ، سطح پیشرفته الکترومغناطیسی، آنتن جهتی، آنتن صفحه ای، موج سطحی

تاریخ ارسال مقاله: ۱۳۹۴/۱/۲۴
تاریخ پذیرش مسئول: ۱۳۹۵/۱۰/۱۹
تاریخ پذیرش مقاله: ۱۳۹۵/۴/۱۶
نام نویسندگان مسئول: دکتر نادر کمجانی
نشانی نویسندگان مسئول: ایران- تهران- نارمک- خیابان جی‌درخانی- دانشگاه علوم و صنعت ایران- دانشکده برق
سنجش الکتریکی با توجه به نتایج تحقیق مذکوره‌ای، سطح نداشته‌ای که بسته امکان‌ها می‌تواند در بخش سوم بی‌نشانکی آن‌ها تجدید اختصاصی‌سازی شود. نیروی واقعی در این صورت باعث استفاده از طبقی‌سازی‌هایی که از خاک شرق آسیا و اردبیل اخذ شده‌اند، به‌عنوان مرکز شیب نیروی واقعی در منطقه‌های مختلف است. این دستگاه می‌تواند در آزمایش‌های مختلف استفاده شود.

2- تحقیق لنز لوئرگ

برای «تحقیق لنز» با طور قدرت ایجاد یک بیان نتایج مشخص در بین ساختار روش‌های گوناگونی جهت مرکب از مهم‌ترین این روش‌ها می‌توان به روش تک ستونی تابعی و روش حلقه‌ای می‌باشد. در این بخش، از شکل‌های مختلف تکستیلا روش تک ستونی تابعی استفاده کرده‌ایم. در شکل 3، می‌توان به اینکه در جریان نرم‌افزار تکستیلا استفاده صورت گرفته که می‌توان یک شرکت در این مثال را در نظر رسانندا به واقعیت این مسئله استفاده نمود.

شکل 1: نشان داده شده روش در دو صفحه

موزاییک تغییر ابعاد این صفحه آماده و جزئی از این صفحه استفاده نمود.

1- مقدمه

ارزشی سطح پیشرفته‌نگرالکترودومن‌برنامه بر روی روزگار این سطح پیشرفته نیست. این نتایج از این دستورالعمل با روش‌های مختلفی انجام گردید. گزارش‌های فارسی مشخص برای بی‌نشانکی و یا عدم غیر‌قابل‌توجه در ساختمان‌ها و ابتکاری با توجه به سایر محاسبات و پیشنهاد‌های جمعیت می‌باشد. مبنای ساختمانی دستگاه‌های این صفحه استفاده نمود.

1- مقدمه

این نتایج از این دستورالعمل با روش‌های مختلفی انجام گردید. گزارش‌های فارسی مشخص برای بی‌نشانکی و یا عدم غیر‌قابل‌توجه در ساختمان‌ها و ابتکاری با توجه به سایر محاسبات و پیشنهاد‌های جمعیت می‌باشد. مبنای ساختمانی دستگاه‌های این صفحه استفاده نمود.

1- مقدمه

این نتایج از این دستورالعمل با روش‌های مختلفی انجام گردید. گزارش‌های فارسی مشخص برای بی‌نشانکی و یا عدم غیر‌قابل‌توجه در ساختمان‌ها و ابتکاری با توجه به سایر محاسبات و پیشنهاد‌های جمعیت می‌باشد. مبنای ساختمانی دستگاه‌های این صفحه استفاده نمود.
ک در آن ان، ثابت فاز می‌باشد. \(\beta_{\text{eff}} \) نیز ثابت فاز موتوری است که با جریان گذشته در فیلتر می‌شود.

\[
Y_{in} = -jY_{01} \cot(\beta_{TM} h)
\]

\[
Y_{01}^{TM} = \eta_0^{-1} \frac{\beta_{TM}}{\beta_{1}} = \eta_0^{-1} \frac{\beta_{0}}{\beta_{1}} \varepsilon_{r1}
\]

\[
Y_{02}^{TM} = \eta_0^{-1} \frac{\beta_{TM}}{\beta_{2}} = \eta_0^{-1} \frac{\beta_{0}}{\beta_{2}} \varepsilon_{r2}
\]

\[
\beta_1 = \sqrt{\beta_0^2 - \beta_r^2} = \beta d \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2}
\]

\[
\beta_2 = \sqrt{\beta_0^2 - \beta_r^2} = \beta d \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2}
\]

با توجه به روابط (2) و (3) می‌توان نوشت:

\[
\frac{1}{\eta_0} \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2} = \frac{1}{\sqrt{\varepsilon_{r1}}} \tan(\beta_0 \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2} h)
\]

\[
+ \frac{1}{\eta_0} \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2} = \frac{1}{\sqrt{\varepsilon_{r2}}} \tan(\beta_0 \sqrt{1 - \left(\frac{\beta}{\beta_0}\right)^2} d)
\]

\[
Y_{\text{sheet}}(\beta_r) = 0
\]

رابطه (6) ممکن است در این رابطه مشخص است که به این هدفمندی مشخصی از ساختار در یک فراکس مشخص، می‌توان ثبت فاز در راستای مناسب با ثابتی از امکانات بی‌پایان بی‌پایان با انتخاب \(Y_{\text{sheet}} \) مناسب، به ثابت فاز مناسب دست یافته، یک به یک می‌سازد که \(\beta_r \) نام یک علائم دیگر است. ثابتی از رابطه (6) Y_{\text{sheet}}(\beta_r) باشد.

یک این اشاره کرد این است که فراکس‌های با اندازه بیشتری می‌شود.

\[
\beta_r = \beta_{\text{eff}} \sqrt{2 - \left(\frac{\beta}{R}\right)^2}
\]

شکل (2): مدل خص خاصیت ساختار لنز از مقطع عرضی یک سولو

یک این برای به دست آوردن ثابت فاز مناسب لنز لنز حرکت در هر نقطه می‌توان از این رابطه بی‌پایان استفاده کرد.

\[
\beta_r = \beta_{\text{eff}} \sqrt{2 - \left(\frac{\beta}{R}\right)^2}
\]
شکل (۶): تماشای میدان‌های الکتریکی مربوط به مد اول انتشاری در ساختار شکل (۳) در صفحه wi. میدان‌های الکتریکی در هر دولایه همخوانی هستند و بتن‌های نسبت‌الگوهی مناسب برای تحرکه ان می‌تواند از نوع کابل هیپوره و یا خط رزین‌وار باشد.

ما برای تغییر و آن‌ها از خط رز نور استفاده کردم که هم‌اکنون، انتخاب این نوع تغییر در این می‌باشد. شکل (۷) ابعاد تغییر و همچنین ساختار SIW را نشان می‌دهد. ساختار بالا ۰.۶ mm via و فاصلهٔ هزینک تا مرکز آن ها ۲.۴ mm است. شماتیک بالا و روی یک مسیر نمایش داده‌ای از SIW و تغییر طریقی در برای انتقال انتقال باید از یک ساختار انتقالی برا

شکل (۷): تغییر تغییرات آنتن با استفاده از خط رزینوار و همچنین محل قرارگیری SIW؛ استفاده از این نوع تغییر موجب به تحرکه مجدی انتشاری می‌شود.

شکل (۸): نمودار الکتریکی هال کشیده و فرکانس پاسیون نسبت جلو به عقب برسبی طول بلوک‌های شکل ساختار انتقالی؛ ابعاد و میزان ساختار: $c_{eff} = 4.23, s = 0.2mm, h = 2.16mm$.

شکل (۴): نمودارها ی پاژوهشگر برای مد اول انتشاری در ساختار شکل (۳) با از ابعاد مختلف پای و رابطه با استفاده از روش تغییر طرف و قطع و روش تامون مه‌های هم‌اکنون مناسب برای طراحی لینه‌های کونبر. به استفاده از نمودارها ی پاژوهشگر شکل (۳). مراری از رابطهٔ پای (۷) و رابطهٔ پای (۸) است. لینه‌های کونبر نشان داده شده در شکل (۵) طراحی شده است.

شکل (۵): لینه‌های طراحی شده شما با استفاده از نمودارها ی شکل (۴) و رابطهٔ پای (۷) ساختار لینه‌های نیز از الکتریکی کلاسی شده است. در شکل بالا، نشانه‌های ی زیرaby على و نشان روی آن نشان داده شده است.

کتیپ رهشی

شکل (۶): ساختار کلی آنتن

در این بخش، برای ساختار کلی آنتن می‌پردازم. آنتن طراحی شده، یک آنتن شیوه‌هایی در صفحه H است که به منظور جلوگیری از نشت موج از اطراف آنتن و افزایش گل‌برد های فری فی قدرتی آنتن که موجی زیرآیی می‌باشد. این آنتن که می‌باشد. میدان‌های الکتریکی مربوط به سه اول انتشاری در این ساختار در شکل (۷) نشان داده است. همانطور که در این شکل مشخص است میدان‌های الکتریکی در هر دولایه هیپوره و با نسبت نسبت‌الگوهی مناسب برای تحرکه این مد می‌تواند از نوع کابل هیپوره و یا خط رزین‌وار باشد.

شکل (۸): نمودار فرکانس‌های کشیده و فرکانس پاسیون نسبت جلو به عقب برسبی طول بلوک‌های شکل ساختار انتقالی؛ ابعاد و میزان ساختار: $c_{eff} = 4.23, s = 0.2mm, h = 2.16mm$.

شکل (۷): ساختار کلی آنتن

در این بخش، برای ساختار کلی آنتن می‌پردازم. آنتن طراحی شده، یک آنتن شیوه‌هایی در صفحه H است که به منظور جلوگیری از نشت موج از اطراف آنتن و افزایش گل‌برد های فری فی قدرتی آنتن که موجی زیرآیی می‌باشد. این آنتن که می‌باشد. میدان‌های الکتریکی مربوط به سه اول انتشاری در این ساختار در شکل (۷) نشان داده است. همانطور که در این شکل مشخص است میدان‌های الکتریکی در هر دولایه هیپوره و با نسبت نسبت‌الگوهی مناسب برای تحرکه این مد می‌تواند از نوع کابل هیپوره و یا خط رزین‌وار باشد.
نمودار شکل(8) که با استفاده از روابط بین شده در [18] بدست آمده است، فرکانس تشدید سخت‌تر انتقالی را برای یک بلوک، \(F_{RL(N=2)} \) و \(F_{RL(N=3)} \) بهبودین سخت‌تر جلوه‌ی آنتن \(F_{FBR} \) را بر حسب طول سخت‌تر انتقالی نشان می‌دهد. بر اساس نمودار شکل(8)، برای ایکه سخت‌تر انتقالی در فرکانس 14.6 GHz تشدید کند طول بلوک‌های تشكلی دهم‌ها سخت‌تر انتقالی یا بیش از حدود 4.1 mm یابد. باید توجه شود که طول بدست‌آمده مقیاسی قبیلی بوده و در ادامه با بهبود سازی، طول بلوک نیاز به خواهد داشت.

تقرین آنتن در لبه تشکیل شده از اهمیت فراوانی برخوردار می‌باشد. به‌رغم شکل‌هایی تشکیل در بالا و پایین آنتن با دو الکترودی که مختلفی برکه‌اند و این با آن در میان‌های الکتریکی در این شکل‌ها می‌شود، در نتیجه انرژی تشکیل آنتن در جهت تعمیر خواهد بویهد. روز چگونه آنتن در برابر نمودار ایجاد شده با 25 mil ضخامت RO 4003 قرار گیرد. برای حل این مشکل از یک نمودار 4003 یا RO 3010 استفاده می‌کنیم. مطالعه که در [14] استفاده می‌کنیم. برای آنتن آنتنی برای چهار بار می‌پذیرد. شکل(1) نمودار نسبی جلوه‌ی بلوک‌های تشكلی دهم‌ها سخت‌تر انتقالی را متبلاً شکل در ترس می‌گیرد. این سخت‌تر انتقالی در شکل(9) نشان داده شده است. برای گرفتن طرح سخت‌تر انتقالی، با توجه به روش بیان شده در [16] این مختل سخت‌تر انتقالی را مورد مطالعه قرار می‌دهیم. شکل(1) نمودار ضریب یا میزان تجدید نشان داده شده. این یک سخت‌تر نشان می‌دهد. بررسی شده در این مطالعه بروی پارامتری در شکل(12) نشان داده شده بود.

شکل(9): نمایش سخت‌تر انتقالی آنتن با برای تبدیل بلوک‌های امیداین فضای آزاد با مانند آبیاتین در بیش از تشکیل آنتن. یک نمودار زیر می‌باشد. RO 4003 با ضخامت RO 3010 را یابد ایجاد همان یا RO 3010 استفاده شده است.
نتایج انداده‌گیری‌ها

نتایج مربوط به شیپه‌سازی و انداده‌گیری‌های آنتن پیشنهادی در ادامه اورده شده است. شکل (14) نمودار ν آنتن را نشان می‌دهد. همان طور که مشخص است، آنتن از فرکانس‌های حدود 13 GHz تا 15.1 GHz تطبیق شده است و پهنای باند امیدانی حدود 2 GHz است.

شکل (15) نمودار آنتن ساخته شده به همراه نتایج انداده‌گیری ضریب پاک‌کشی را نشان می‌دهد.

![image](image1)

جدول (1): ابعاد ساختار انتقالی و به‌منظور استفاده به مناسب‌ترین تطبیق امیدانی و نسبت جلو به عقب به‌طور همزمان، ابعاد ساختار انتقالی مطابق جدول (1) به‌دست‌آمده است.

<table>
<thead>
<tr>
<th>L (mm)</th>
<th>s_2 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.83</td>
<td>0.53</td>
</tr>
</tbody>
</table>

شکل (13) ساختار نهایی آنتن را نشان می‌دهد. نتایج شیپه‌سازی‌ها و انداده‌گیری در ادامه اورده شده است.

![image](image2)

شکل (14): نمودار ضریب پاک‌کشی آنتن: پهنای باند امیدانی آنتن حدود 2 GHz می‌باشد.

![image](image3)
الکترومغناطیسی عمل می‌کند و اساساً موج نمی‌تواند از روي لنز عبور.

\[z = 1.5 \text{ mm} \]

13.5 GHz
14 GHz
14.5 GHz
14.75 GHz
14.5 GHz
10.5 dB
15 GHz
15 GHz
15 GHz
14.5 GHz .

شکل (16) : توزیع میدان الکتریکی روی لنز در صفحه
در فرکانس‌های الف (GHz) ب، (GHz) ج، (GHz) د.

14.75 GHz

حداکثر خیمه‌ی میکه برازیده شده این آنتن با استفاده از شبیه‌سازی ساختار با استفاده از تحریک دهانه‌ی موجی به دست می‌آید. درواقع به جای این که قبل از شبیه‌سازی کردن موج استفاده کنیم از تحریک دهانه‌ی موجی که می‌تواند لز بایداقی می‌باشد استفاده می‌کنیم. لازم به ذکر است که استفاده از این نوع تحریکات، نه در شبیه سازی مکمک است و در عمل باید به طریق مختلفی از جمله استفاده از لنز جیهی همواره به موجبی در مزدوجی که می‌تواند باعث شده است به خروجی بیشتر کرده.

شکل (17) : نمودار مقایسه‌ی خیمه‌ی آنتن طراحی شده و حداکثر خیمه‌ی میکه برازیده شده در فرکانس‌های که لنز در آن طراحی شده است به حداکثر مقدار خوی می‌رسد.

شکل (18) : نمودار برهندی آنتن را در فرکانس‌های مختلف نشان می‌دهد. پهپادی آنتن در فرکانس‌های مختلف در صفحه
14.5 GHz حداکثر دهانه‌ی میکه برازیده شده است.

شکل (19) : نمودار برهندی تشخیصی آنتن در صفحه

14.5 GHz تشخیصی آنتن در فرکانس‌های مختلف در صفحه
90° در شکل (20) نشان داده شده است.

تشخیصی آنتن در فرکانس‌های مختلف در صفحه
90° در شکل (21) نشان داده شده است.
5- نتیجه‌گیری
در این مقاله بکی انتن شیپوری SIW با استفاده از لنز لونبرگ، در باند کانال 14.5 GHz طراحی و شیب‌سازی شده است.

bibliography:

1 substrate integrated waveguide
2 Luneburg Lens
3 Meta surface
4 Planar Antenna
5 Anisotropic
6 Front to back ratio
7 End Fire
8 Morote
9 Waveguide port