یک الگوریتم جدید برای تشخیص نواحی پوشش‌گیاهی و سایه در تصاویر هوایی/ماهواره‌ای با تفکیک مکانی بالا بر اساس روش تحلیل مولفه‌های اصلی

مجران مزروعی۱- مهدی سادات‌آمینی طرژان۲

۱- دانش‌آموخته کارشناسی ارشد- گروه مهندسی کامپیوتر- کانسکه مهندسی- دانشگاه فردوسی مشهد- مشهد- ایران
marjan.mazruei@stu.um.ac.ir

۲- استادیار- آزمایشگاه تصویربرداری پزشکی- گروه برق- دانشکده مهندسی برق- دانشگاه فردوسی مشهد- مشهد- ایران
saadatmand@um.ac.ir

چکیده: استفاده از داده‌های سنجش از دور در بررسی خصوصیات پوشش گیاهی می‌تواند منجر به صرف هزینه و زمان کمتر و دقت‌تر باشد. اما اطلاعات دقیق‌تری نیاز دارد. در این مقاله روشی خودکار برای شناسایی نواحی پوشش گیاهی و سایه در تصاویر هوایی و ماهواره‌ای با تفکیک مکانی بالا ارائه شده است. روش پیشنهادی نشان‌دهنده از اطلاعات سه کانال اصلی تصویر (RGB) استفاده نموده و دارای دو فاز مدل‌سازی و تست می‌باشد. در فاز مدل‌سازی، در کلاس‌های مدل‌های خیالی و نرم‌کارگی تعداد محدودی نمونه آموزشی استخراج شده و با استفاده از روش تحلیل مولفه‌های اصلی، مدل کم برای کلاس‌های پوشش گیاهی و سایه بدست می‌آید. در فاز تست، ابتدا بردار ویژگی مناظر با هر یک از پیکسل‌های تصویر ورودی محاسبه می‌گردد. سپس، میزان انتقاًق هر یک از پیکسل‌های ویژگی با مدل استخراجی بررسی شده و خطا عدم تطابق محاسبه می‌گردد. به این ترتیب، برای هر یک از مدل‌های پوشش گیاهی و سایه، یک تصویر خطای بدست می‌آمده. در نهایت، با استفاده از پیش‌نهای مناسب به هر یک از تصاویر مذکور، نواحی پوشش گیاهی و سایه به‌سیزه‌نگ تفکیک شوند. نتایج تجربی بیانگر عملکرد مناسب روش پیشنهادی در مقایسه با چند الگوریتم رقیب می‌باشند.

کلمات کلیدی: سنجش از دور، بخش‌بندی پوشش گیاهی و سایه، تحلیل مولفه اصلی

تاریخ ارسال مقاله: ۱۳۹۵/۱۰/۰۶
تاریخ پذیرش مسئول مقاله: ۱۳۹۵/۰۸/۱۵
تاریخ پذیرش مسئول: ۱۳۹۶/۱۰/۰۸

نام نویسندگی منسول: مهدی سادات‌آمینی طرژان
1- مقدمه

دانشمندان از سه دهه گذشته به مطالعه و نظرات بر پوشش گیاهی با استفاده از تصاویر هوایی و ماهواره‌ای پرداخته‌اند. اطلاعات بدست‌آمده از این تصاویر می‌تواند به چند خوبی کاریکاری گرایی از نظر داده‌های زمین‌شناسی و تحقیقات میکروبیولوژی و دیگر آزار و اثرات طبیعی در محیط زیست با تغییرات طبیعی مربوط کند. به‌طور کلی، گزارش‌های گیاهی و محیطی این اطلاعات با ارزش می‌تواند به درک ما از محیط‌های طبیعی ماهیت واقعی و تغییرات آن‌ها ادامه رساند. مطالعه و نظرات بر پوشش گیاهی در یک نقطه از روزانه پیوسته کمک شایعه نمی‌کند. به‌طور معمول، نظرات هستند، این یک میانگین است در حالت گیاه‌های زمین‌شناسی است. این نظرات به‌طور قابل‌توجهی از نظر داده‌های گیاهی و محیطی به‌طور مبهم است.

2- مروری بر روشهای تشخیص پوشش گیاهی

تشخیص پوشش گیاهی در تصویر‌نگاری بکارگیری گیاه‌شناسانی و پردازش و پیش‌بردی (17) می‌باشد. ناحیه برای شناسایی شناسایی موجوده و ماهواره‌ای (18) در این زمینه به‌کار می‌رود. از این رو، ماهواره‌ای و همکاران (19) در گروه‌ی اول از یک طبقه‌بندی از محتوای موجوده و پوشش‌گیاهی ارائه شده‌اند. در گروه‌ی دوم، از این نوع باید به‌طور مبهم است. در حالی که که در نظر گرفته شده، می‌توان برای بهترین پیش‌بردی و یک طبقه‌بندی از استاندارد استفاده کنند. این تفاوت‌ها به‌طور قابل‌توجهی از نظر داده‌های گیاهی و محیطی به‌طور مبهم است.

3- یک طبقه‌بندی از ناحیه برای شناسایی موجوده و پوشش‌گیاهی

میزان برداری پوشش گیاهی می‌تواند منجر به صرف‌جویی در هزینه و زمان گردد.
با استفاده از بردارهای ویژگی‌های RGB و HSV استفاده شده است. در فضای RGB، HSV استفاده شده است.

در فضای HSV، روش‌هایی برای مشاهده و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده می‌شود. در فضای HSV، روش‌هایی برای مشاهده و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده می‌شود. در فضای HSV، روش‌هایی برای مشاهده و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده می‌شود. در فضای HSV، روش‌هایی برای مشاهده و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده می‌شود.

2-الگوریتم پیشنهادی

اطلاعاتی از مدل‌های مدولاتورهای تئوری و تکنیک‌های آنالیز و بررسی (PCA) موجود است. این مدل‌ها را می‌توان به‌عنوان ابزاری برای بررسی و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده کرد. در فضای HSV، روش‌هایی برای مشاهده و بررسی ویژگی‌های بردارها و فضاهای فضایی استفاده می‌شود.

1-نواوردهای و ساختار مقاله

در این مقاله، رویداد جدید و جدیدترین جهت شناسایی نواورهای پیشنهادی در تجزیه و تحلیل ماهواره‌ای از پیشنهادی است. این مقاله در تجزیه و تحلیل ماهواره‌ای از پیشنهادی است. این مقاله در تجزیه و تحلیل ماهواره‌ای از پیشنهادی است. این مقاله در تجزیه و تحلیل ماهواره‌ای از پیشنهادی است. این مقاله در تجزیه و تحلیل ماهواره‌ای از پیشنهادی است.

پیچیدگی مرز" معرفی نمودند.
2-1- استخراج ویژگی

در روش پیشنهادی، برای هر پیکسل تصویر یک بردار ویژگی شامل خصوصیات زنگ و مختصات مطلق رنگ ایجاد شده به روش پیشنهادی HSV به فضای رنگی (که معمولاً بوده و موفقیتی خاص به درک آسانی از رنگ تزییدیک است) انتقال می‌یابد.

فرض کنید، به ترتیب تصویر X و Y از دامنه تصویر ورودی است (در این دامنه، (x, y) به (X, Y) تبدیل می‌شود) و به ترتیب مولفه‌های X و Y از عناصر بردار ویژگی پیکسل به درستی تعریف می‌شود.

\[h(x) = \frac{1}{(2N+1)^2} \sum_{u=-N}^{N} \sum_{v=-N}^{N} h(x+u, y+v) \] \hspace{1cm} (1)

\[s(x) = \frac{1}{(2N+1)^2} \sum_{u=-N}^{N} \sum_{v=-N}^{N} s(x+u, y+v) \] \hspace{1cm} (2)

که در آن:

\[m_{pq}^{(x)}(k) = \sum_{u=-N}^{N} \sum_{v=-N}^{N} u^p v^q f(x+u, y+v) \] \hspace{1cm} (3)

\[m_{pq}^{(y)}(k) = \sum_{u=-N}^{N} \sum_{v=-N}^{N} (u-u)^p (v-v)^q f(x+u, y+v) \] \hspace{1cm} (4)

که در آن:

\[u \text{ و } v \text{ عناصر بردار است.} \]
در فاز مدل سازی، ابتدا در حد تصویر تصمیم تعددی از یک اتفاق مطابق پیش‌بینی‌های مورد نظر محاسبه گردید. در نهایت، یک یا چند تبدیل هندسی بوده و معرف خصوصیات دیگری با پایت مدل در تصویر می‌باشد.

\[\eta_{ij}^{(e)} = \frac{m_{ij}^{(e)}}{(m_{ij}^{(e)})^T} \]

به این ترتیب، با استفاده از گشتاورهای نرمال مرتبه دو و سه، مجموعه گشتاورهای نتیجه \(\phi_i \) تا \(\phi_k \) مطابق روابط زیر مقابل محاسبه خواهد گردید:

\[\gamma = \frac{p + q}{2} + 1 \]

به منظور توصیف یک دستگاه از اکتشافات مدل‌های جایگزین مدل‌های PCA، در اینجا واقعیت بودی و به صورت خلاصه می‌باشد، مدل پیشنهادی مجدب بوده و به صورت داده‌های قابل قبول می‌باشد. محمد و فضایی نکاتی در مورد مقادیر دیگر توانایی تجربیاتی می‌باشد.

\[\phi_i(x) = \eta_{i0}^{(e)}(x) \eta_{i0}^{(e)}(x) \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) - \eta_{i0}^{(e)}(x) \right)^2 + 4\eta_{i0}^{(e)}(x) \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) - 3\eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) - 3\eta_{i0}^{(e)}(x) \right)^2 \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 \]

\[\phi_i(x) = \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 + \left(\eta_{i0}^{(e)}(x) + \eta_{i0}^{(e)}(x) \right)^2 \]

به طوری که:

\[\lambda_1 > \lambda_2 > \ldots > \lambda_q \]

بارهای، بردار ویژه پیشنهادی برای پیکسل در دو شکل مشون، سی‌اچ‌تی، مدل‌های و گشتاورهای نتیجه رگ در تصویر نما و اشباع در مجموعه

\[\zeta(x) = \frac{p + q}{2} + 1 \]

\[\gamma = \frac{p + q}{2} + 1 \]
همانطور که در شکل 2 نشان داده شده، در دستگاه مختصات بردارهای ویژگی (که به اختصار، دستگاه مختصات ویژگی خوانده می‌شود)، مرکز دستگاه مختصات بردارهای ویژگی (که به اختصار، دستگاه مختصات ویژگی خوانده می‌شود) با \mathbf{v} مشخص می‌گردد. لذا نمایش بردار ویژگی \mathbf{v} در دستگاه مختصات ویژگی به صورت زیر پیش‌بینی خواهد شد:

$$\mathbf{v} = U_p^T \mathbf{v} = \begin{bmatrix} \alpha_{11}, \alpha_{12}, \ldots, \alpha_{1p} \end{bmatrix}$$

که U_p شماره p بردار ویژه اصلی (متغیر با p مقدار ویژه)U_p می‌باشد:

$$U_p = [u_1, u_2, \ldots, u_p]$$

همچنین، α_{ij} پارامترهای بردار ویژگی در دستگاه مختصات ویژگی بوده و برای به توصیف بردار \mathbf{v}، $\mathbf{v} = \mathbf{v}_j$ بر راسته بردار \mathbf{v}_j می‌باشد.

(شکل 2 را ابستفه.)

۲-۲ مدل سازی با حذف بردارهای ویژگی ضعیف به طور کلی، بردارهای ویژه مرکز محورهای اصلی توزیع نموده‌ای آموزشی می‌باشند، در حالتی که مقادیر ویژه شناختی از میزان ε_1 مشخص می‌شود. ε_1، برای مثال، توزیع نموده‌ای آموزشی حذف بردارهای ویژه ضعیف می‌باشد. بدیهی است که نشانده که بردار ویژگی متعلق به پیش‌زمینه باشد. ضرایب (α_i) (معادله 20) حاصل از بردارهای ویژه ضعیف، کوچک‌ترین پایه (اما نگار بردار ویژگی مربوط به پیش‌زمینه باشد. بنابراین انتخاب این بردار نخواهد شد. در توجه به فرض کنند که از میان p بردار ویژه، تنها p (متغیر با p بردار ویژگی) با توجه به مقدار ویژه صلی (بردار ویژگی) حفظ گردیده و باقی مقدار خفف شده. در این حالت، برای محاسبه پارامترهای بردار ویژگی \mathbf{v}_j (در دستگاه مختصات کاهش‌یافته) می‌توان نوشت:

$$\mathbf{v}_j = \bar{U}_j^T \bar{v}_j = \begin{bmatrix} \alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{ip} \end{bmatrix}$$

از آنجا که \bar{U}_j نمایی مشابه U_p می‌باشد. نمای \bar{v}_j (در معادله (22) برای محاسبه تبدیل معکوس و باقی‌مانده بردار ویژگی مختصات با آن استفاده نمود. به عبارت دیگر، در این حالت، مساله تبدیل معکوس دارای یک پایه یکتا بوده و استفاده بردار ویژگی مختلف می‌توان بافت که p برای آن از تابع \bar{v}_j می‌توان استفاده نمود.

پایه جمله محل تلاقی \bar{v}_j در راه کار مختلف پیش‌بینی می‌شود که به پایه‌های متفاوتی متغیر خواهد شد. در روش اول، برای محاسبه \bar{v}_j،
در حل مدل دریایی از نظر اینکه برخی از موارد دیگر در نظر گرفته نشده است. برای این علت مدل، فرورفتی نمی‌کنیم که ضریب مناطق برابریهای ویژه ضریب فصل بی‌پایانی: دیدار
\[
\alpha_{ij} = 0, \quad j > p
\]
در نظر گرفته نشده است. برای این علت مدل، فرورفتی نمی‌کنیم که ضریب مناطق برابریهای ویژه ضریب فصل بی‌پایانی: دیدار
\[
\alpha_{ij} = 0, \quad j > p
\]
2-4 بخش بعدی نواحی پوشش گیاهی و سایه

مانند طور که در نمودار شکل 1 نشان داده شد، بازهٔ پوشش گیاهی و سایه در تصویر هوایی ماهواره‌ای استفاده می‌شود. برای این منظور، ابتدا دو مدل جداول برای پوشش گیاهی و سایه استخراج گردیده است. سپس برای هر تصویر ورودی نواحی پوشش گیاهی (با استفاده از مدل مربوط) استخراج می‌گردد. پس از آن، در ناحیه پوشش گیاهی، بالاترین از مرحله قبل، نواحی سایه (با استفاده از مدل سایه) بخش‌بندی می‌شود.

3- نتایج تجربی

همهٔ پیشنهادات هاری در معکوس برنامه‌نویسی MATLAB با استفاده از پردازنده‌ی PC Intel Core i5 2.53GHz و RAM 6GB با جایگزینه انجام شده است. زمان پردازش برای هر تصویر محک (با تعداد 1000x1000 پیکسل) در فاز تست به منظور تشخیص پوشش گیاهی و سایه به طور متوسط 446 ثانیه بوده است. به همین حوالی، پیشنهاداتی که در برنامه‌نویسی برای تعیین وضعیت پوشش گیاهی و سایه با استفاده از سایر برنامه‌های برنامه‌نویسی (مانند C) می‌تواند موجب کاهش توجه زمان اجرای نیز گردد.

3-1 پایگاه داده

برای ارزیابی کیفیت بیشینه‌ایی، از 775 تصویر هوایی شهر ارومیه (با دقت مکانی 7 cm/pixel و 100 تصویر هوایی از شهر مشهد (با دقت مکانی 20 cm/pixel و 200 تصویر ماهواره‌ای از شهر تهران (با دقت مکانی 50 cm/pixel استفاده شده (Approvalی از شرکت WorldView2).

\[\psi(v_i) = \frac{1}{\|v_i - \bar{v}\|_2} \left(q U_p A_p \varepsilon \left(I_p^T (v_i - \bar{v}) \right) \right) \] (36)

بنا براین، مدل نهایی بیشینه‌ای برای ناحیه پوشش گیاهی محاسبه می‌شود. سپس، مقدار ذخیره‌ی خوردل به‌تصویر U(x) و در مرحله دوم یعنی دانستن، کافی است متریک‌های \(\omega \) و \(\alpha \) و برد میانگین F برای نمونه‌های آموزشی (پیش‌زمینه) محاسبه شوند.

3-2 مرحله تست

در مرحله تست، ابتدا بردار وزنگی برای همه پیکسل‌های تصویر محاسبه می‌شود. سپس، مقدار ذخیره خوردل به‌تصویر U(x) و در مرحله دوم یعنی دانستن، کافی است متریک‌های \(\omega \) و \(\alpha \) و برد میانگین F برای نمونه‌های آموزشی (پیش‌زمینه) محاسبه شوند.

\[b(x) = \begin{cases} 1, & \phi(x) \leq \gamma \\ 0, & \phi(x) > \gamma \end{cases} \] (37)

پیدایش است که هرچه مقادیر ویژه به‌تر باشد، پرکندگی نمونه‌های آموزشی پیش‌رده بهترین راه‌حل است. از نظر دقیقه و با توجه به بیشینه‌ایی، این روش یکی از به‌آیندیکه‌تر باشد.

\[\gamma = \mu_\phi + \tau \sigma_\phi \] (38)

که \(\mu_\phi \) و \(\tau \sigma_\phi \) به‌ترتیب میانگین و انحراف بین‌مقدار خطای خوردل و 2 پیک ضریب ثابت و اسکالر می‌باشد.
جدول (1): مقایسه پاسخ‌های روی پیشنهادی و چهار کوئیکر درمیزان پرک شال روی آلیمتر [5]. پراکش و همکاران [13]. کوت -سعودی [2] و سیمرافکس-آسیلاتر [2] بر حسب معیارهای ارزیابی دقت شکل (Rm), دقت (cm), خطا (cp), و کیفیت کل (ck) به‌کمک تابع بلوکی فلیت‌بادی و روش پیشنهادی.

<table>
<thead>
<tr>
<th>CPU Time (s)</th>
<th>cm</th>
<th>cp</th>
<th>cf</th>
<th>ck</th>
</tr>
</thead>
<tbody>
<tr>
<td>460</td>
<td>0.67</td>
<td>0.63</td>
<td>0.59</td>
<td>0.57</td>
</tr>
<tr>
<td>640</td>
<td>0.64</td>
<td>0.61</td>
<td>0.56</td>
<td>0.54</td>
</tr>
<tr>
<td>1150</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.49</td>
</tr>
<tr>
<td>2312</td>
<td>0.54</td>
<td>0.49</td>
<td>0.44</td>
<td>0.42</td>
</tr>
</tbody>
</table>

است. همه تصورات مورد استفاده در فرضیات رنگی RGB با ابعاد 1000 x 1000 پیکسل بوده است.

3-2 تنظیم پارامترهای روی پیشنهادی

روش پیشنهادی تنها شامل دو پارامتر تعداد بردارهای ویژه غالب (p0) و ضریب تغییر آسانی (p1) می‌باشد. پارامتر اول مربوط به فاز مدارسازی (تا آموزش) و پارامتر دوم مربوط به فاز تست می‌باشد.

در مقدرات مدارسازی، به تغییر شرایط صحیح‌تری افزایش می‌دهم و برای مجموعه تصاویری که مدل که در درصد پیشنهادی و سایه بر روی آزاد بوده و خطا به ترتیب به صورت تصادفی، از 5 تصور مختلف برای هر پیشنهادی و سایه در مجموعه تصویری انتخاب می‌شود. همچنین برای چهره در صورت جدایگان مالی می‌تواند باید برای هر ویژه بوده و در سایه‌پسیسیاست (p=7), تنظیم گردنده و در هم‌شیب‌سازی‌ها ثابت بوده و می‌باشد.

3-3 تحقیق و بررسی

در فاز تست، پس از محاسبه تصویر خط (معدله 27), با استفاده از مقدار آسانی را با سایر مقدارها ویژه یا سایر استخراج‌ها استفاده می‌کنند. مقدار آسانی را به تنهایی که در دقت دشاد، فاصله 2 تا 3 درخت داشته، مقدار 7 نسبت به (نوعه) در مقدار 1 دارم که در صورت تجربی و با کاهش میزان طول جهت از این جهت، همچنین برای هر اینچی به‌طور دقیق و دقیق‌ترین دانست. می‌تواند باعث شود که روی پیشنهادی در ذهن و نیز به تنظیم پارامتر دیگر تغییر نیز به تنظیم پارامتر دیگری ندارد.

3-4 میزان ارزیابی

به منظور ارزیابی کمی نتایج پیشنهادی از چهار پارامتر دقت شکل "(cm)", دقت (cp), خطا (cf), و کیفیت کل "(ck)" استفاده می‌کرد. (cm), (cp), (cf) و (ck) میزان دقت پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است. در چهار کوئیکر درمیزان پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است.

برای این دو پارامتر مربوط به فاز مدارسازی (تا آموزش) و پارامتر دوم مربوط به فاز تست می‌باشد.

3-3 میزان ارزیابی

به منظور ارزیابی کمی نتایج پیشنهادی از چهار پارامتر دقت شکل "(cm)", دقت (cp), خطا (cf), و کیفیت کل "(ck)" استفاده می‌کرد. (cm), (cp), (cf) و (ck) میزان دقت پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است. در چهار کوئیکر درمیزان پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است. در چهار کوئیکر درمیزان پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است. در چهار کوئیکر درمیزان پرک شال روی آلیمتر [5], پراکش و همکاران [13], کوت -سعودی [2], و سیمرافکس-آسیلاتر [2] است.
پایه و عمق مطالعه پوشش گیاهی جهت اعمال نوین روش‌های صحتی مدیریت
خلاف و ارائه از اهمیت خاصی برخوردار است. تصاویر همواره و
متغیرهای در این صفحه اطلاعات دقیقی را برای ارتقاء و زمان کم
در انتها قرار می‌دهد.
در این مقایسه، روی‌پا دیگر مبایل تنش خصوصی و
کنترل کنترل برخوردار می‌باشد. باز هم روی‌پا از طريق
در کنترل، گزارش گیاهی (پوژه) در
مناطق پیش‌بینی شده در حوزه این مطالعه شاخص فاصله و فاصله دارای
لایحه و تکست عناوین در فصل دوم، سازمانی، با استفاده از
هشدار تقابل ناخنی و پوشش گیاهی
وجبه هر گونه توصیه از پیکسل‌های تصویر
روده محاسبه می‌شود.
سپس، تصویر اطلاعیه بر پایه و پوشش گیاهی بدست
می‌آید. به این ترتیب، با اعمال اشتهای مناسب بر تصویر خطی،
نواحی پوشش گیاهی از پوژه و تفکیکی مشاهده می‌شوند. در نهایت، با
استفاده از حرکت اطلاعیه پیکسل‌های پوژه (در مخلوط قیل) و
با مدل سه‌بعدی نواحی سایه تنشی خصوصی داده می‌شود. نتایج تجاری
پیکسل ظهور ناپیتر و سرعت قابل روی پوشش گیاهی در مقایسه با
چهارگونه تصویر می‌باشد.
شکل (۴): نتایج حاصل از پرداوی پوشش گیاهی در تصویر هوایی (الف) هرودیه-۱۰۰۰ با استفاده از (ب) روش پیشنهادی، (ج) روش آلمر (۱۰۰۱)، (د) روش پراکاش و همکاران (۶۸)، (ه) روش کوت-سعیدی (۱۷)، و (و) روش سیرماسک-آنسلان (۱۱۰۱).
شکل (7): نتایج حاصل از بخشیدن یک پوشش گیاهی در تصویر هوایی (الف) مشهد - ۸۰۰۰ با استفاده از (ب) روش پیشنهادی، (چ) روش آلیلر [۱۰۰].
(د) روش پرآکاش و همکاران [۸۱]، (ه) روش کوت-سیده [۷۷]، و (و) روش سپریاکسک-آسالان [۱۱۱].
شکل (9): نتایج حاصل از بخش‌بندی پوشه‌هایی در تصویر ماهواره‌ای (الف) تهران-100 با استفاده از (ب) روش پیشنهادی، (ج) روش آلیم
شکل (د): نتایج حاصل از یکی از نوایی سایه توسط روش پیشنهادی در تصویر (الف) «روشی-۲»، (ب) «روشی-۳»، (ج) «مشاک-۱» و (ه) «مشاهدات و تجربه-۸» و (و) «تهران-۱» نشان داده شده در به ترتیب، شکل های (الف تا) ۱۰-الف تا.

1. lovan
2. Spectral indices
3. Support vector machine
4. Cote and Saeedi
5. Hue
6. Saturation
7. Prakash
8. Gitelson
9. Visible atmospherically resistant index
10. Almeer
11. Sirmacek and Unsalan
12. Choi
13. Near infra-red
14. Ozgun Ok
15. Tucker
16. Normalized difference vegetation index (NDVI)