یک الگوریتم جدید برای تشخیص نواحی پوشش گیاهی و سایه در تصاویر هوایی/ماهوارهای با تفکیک مکانی بالا بر اساس روش تحلیل مولفه‌های اصلی

مرجع مزروعی

1- دانش‌آموخته کارشناسی ارشد- گروه مهندسی کامپیوتر- دانشکده مهندسی- دانشگاه فردوسی مشهد- مشهد- ایران
marjan.mazruei@stu.um.ac.ir

2- استادیار- آزمایشگاه تصوربرداری برایگی- گروه برق- دانشکده مهندسی برق- دانشگاه فردوسی مشهد- مشهد- ایران
saadatmand@um.ac.ir

چکیده: استفاده از داده‌های سنگین از دور در بررسی خصوصیات پوشش گیاهی می‌تواند منجر به ضربه‌های زمانی و دستیابی به اطلاعات دقیق‌تر باشد. در این مقاله روشن کردن مدل باشندگی در ماهواره‌ای برای شناسایی نواحی پوشش گیاهی و سایه در تصاویر هوایی و ماهوارهای با تفکیک مکانی بالا ارائه شده است. روش پیشنهادی وابسته از اطلاعات سه کانال اصلی تصویر (RGB) استفاده نموده و با استفاده از روش تحلیل مولفه‌های اصلی، مدل کشی برای کلاس‌های پوشش گیاهی و سایه بسیار می‌آید. در فاز تست، این الگوریتم می‌تواند با هر یک از پیکسل‌های تصویر ورودی ممکنباشی می‌گردد. سپس، میزان انطباق هر یک از پیکسل‌های تصویر ورودی به کلاس پوشش گیاهی و سایه به‌صورت خطی بدست خواهد آمد. در نهایت، با استفاده از الگوریتم معرفی یک کیفیت پیشنهادی از پوشش گیاهی و سایه از پیکسل‌های مختلف می‌شود. نتایج تجربی بانگر عملکرد مناسب روش پیشنهادی در مقایسه با چند الگوریتم رقیب می‌باشد.

کلمات کلیدی: سنگین از دور، پوشش گیاهی، تحلیل مولفه‌ای اصلی

تاريخ ارسال مقاله: 1395/06/27
تاريخ پذيرش مسئول: مهدي ساماد تند طرزجان
نام نويسنده مسئول: ايران - مشهد - پلار و کیل آباد - خیابان بانور - دانشگاه فردوسی مشهد - دانشکده مهندسی، گروه برق
1- مقدمه

دانش‌نامه از سه‌دهه گذشته به مطالعه و نظارت بر پویش‌گیاهی با استفاده از تکنیques و ماهواره‌ای روندهای از این تکنیques و ماهواره‌ای روندهای جغرافیایی مورد بررسی قرار گرفته است. این امر به خاطر امری است که پویش‌گیاهی به‌طور گسترده‌ای در بسیاری از مناطق جغرافیایی جهان رخ می‌دهد و بر اقتصاد و محیط زیست این مناطق اثر می‌سازد. به علت این امر، پویش‌گیاهی به‌طور وسیعی در مطالعه و پژوهش‌های مختلف استخدام گردیده است. در این مقاله، به بررسی ارتباط بین پویش‌گیاهی و بیماری‌های گیاهی پرداخته می‌شود.}

2- موروری بر روی روش‌های تشخیص پویش‌گیاهی

تشخیص پویش‌گیاهی در تصویر نیازمند بکارگیری الگوریتم‌های پردازش و پیش‌بینی (BPNN) است. این الگوریتم بر اساس مدل‌ها و اطلاعات موجود در تصویر از رنگ‌ها و سایر ویژگی‌های تصویری استفاده می‌کند. این الگوریتم با استفاده از روش‌های غیر سنتی و مبتنی بر ارزیابی مدل‌ها و عوامل مختلف، امکان تشخیص و مدیریت پویش‌گیاهی را فراهم می‌آورد.

3- استفاده از RGB و شبکه عصبی پرسپترون جهت تشخیص وزن‌های رنگی

در ایالات متحده، وزن‌های رنگی بکارگیری می‌شود. این وزن‌ها با بافت‌های مختلف و حس‌های مختلف منجر به دیدگاه‌های مختلف در مورد تصویر می‌شوند. این امر به طور گسترده‌ای در تصویری مورد استفاده قرار می‌گیرد. در این مقاله، ارتباط بین وزن‌های رنگی و پویش‌گیاهی مورد بررسی قرار می‌گیرد. به علت این امر، استفاده از RGB و شبکه عصبی پرسپترون جهت تشخیص وزن‌های رنگی بکارگیری می‌شود.
با استفاده از بردارهای ویژگی کوتاه تایپ "HSV"، راه حل‌های محدودیت نوعی تغییرات ویژگی از مقدار ویژگی بار در هر یک از طبقات رنگی RGB می‌باشد. این مقدارهای متغیر ویژگی در این پتولوژی بسیار کمتر از مقدار ویژگی می‌باشد، به چنین روشی که بر این اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی این اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.

با توجه به این تغییرات، برای بررسی اثرات برای یک یا چند یکی از طبقات اصلی RGB می‌باشد، آنها در یک پتولوژی می‌باشد، این پتولوژی می‌باشد.
شکل (1): نمودار مراحل مختلف الگوریتم بیشته‌داده برای تشخیص نواحی پوشش‌گیاهی و سایه در فازهای مدل‌سازی و تست.

\[h(x) = \frac{1}{(2N+1)^2} \sum_{u=0}^{N} \sum_{v=-N}^{N} h(x+u, y+v) \]

\[s(x) = \frac{1}{(2N+1)^2} \sum_{u=0}^{N} \sum_{v=-N}^{N} s(x+u, y+v) \]

در روش بیشته‌داده برای هر پیکسل تصویر یک بردار ویژگی شامل خصوصیات رنگ و پهنا تصادفی می‌شود. برای این منظور، ابتدا تصویر به فضای رنگ HSV (پرده‌های完全不同 به درک آسان خواهد شد) متعادل یا ممکنکه از یک نقطه شروع می‌شود.

\[m_{pq}^f(x) = \sum_{u=0}^{N} \sum_{v=-N}^{N} u^p v^q f(x+u, y+v) \]

\[\mu_{pq}^f(x) = \sum_{u=0}^{N} \sum_{v=-N}^{N} (u-u')^p (v-v')^q f(x+u, y+v) \]

که در آن،
معادله (15)

\[\bar{v}(x) = [h(x), \bar{T}(x), \bar{f}(x), \bar{g}(x), \ldots, \bar{f}(x)]^T \]

همانطور که قبل ذکر شد، در هر دو مرحله مدل سازی و تست از گروپینگ استفاده گردید، ابتدا بردار ویژه فوق مستقل از تبدیلات هندسی بوده و محور فواصل ذهنی و بافت محصل در تصویر می‌باشد.

\[\begin{aligned}
\bar{v}(x) &= \frac{m(x)}{m_0(x)} \\
\bar{T}(x) &= \frac{m(x)}{m_0(x)} \\
\bar{f}(x) &= \frac{m(x)}{m_0(x)}
\end{aligned} \]

به این ترتیب، با استفاده از گشتاب‌های نرمال مرتبه دو و سه، مجموعه گشتاب‌های نهایی \(\phi(x) \) تا \(\phi(x) \) مطابق روابط زیر مجموعه محاسبه خواهد بود:

\[\begin{aligned}
\phi(1) &= \eta(x) + \eta(0) \\
\phi(2) &= (\eta(x) - \eta(0))^2 + 4\eta(0) \\
\phi(3) &= (\eta(x) - 3\eta(0))^2 + (3\eta(x) - 3\eta(0))^2 \\
\phi(4) &= (\eta(x) + \eta(0))^2 + (\eta(x) + \eta(0))^2 \\
\phi(5) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(6) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(7) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(8) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(9) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(10) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(11) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(12) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(13) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(14) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(15) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(16) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(17) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2 \\
\phi(18) &= (\eta(x) - \eta(0))^2 - \eta(x)^2 + \eta(0)^2
\end{aligned} \]

به طوری که، به این ترتیب، بردار ویژه پیشنهادی برای پیکسل شاخص مولفه‌ای می‌شود، محلی و گشتاب‌های نهایی مرتبط در تصویر نما و اشتباه‌ها در مجموعه عصر \(\eta = 18 \) باشد.
همانطور که در شکل ۲ نشان داده شده، در دستگاه مختصات بردارهای ویژگی (که به اختصار، دستگاه مختصات ویژگی خوانده می‌شود) مرکز دستگاه مختصات بردارهای ویژگی (که به اختصار، دستگاه مختصات ویژگی خوانده می‌شود) با \(\mathbf{v}_i \) مشخص می‌گردد. لذا، نمایش بردار ویژگی \(\mathbf{v}_i \) در دستگاه مختصات ویژگی به صورت زیر بیان خواهد شد:

\[
\mathbf{v}_i = U_p^T \mathbf{v}_i = \begin{bmatrix} \alpha_{i,1}, \alpha_{i,2}, \ldots, \alpha_{i,p} \end{bmatrix}
\]

که ماتریس شامل \(p \) بردار ویژگی اصلی (مختصات با \(p \) مقدار ویژگی بزرگتر) می‌باشد:

\[
U_p = [\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p]
\]

همچنین، پارامترهای بردار ویژگی در دستگاه مختصات ویژگی بوده و برای توصیف بردار \(\mathbf{v}_i \) به راستی بردار یکه \(\mathbf{v}_0 \) می‌باشد (شکل ۲ را بیپیمایید). از طرف دیگر، از آنجا که بردارهای ویژگی متغیر و یکه هستند، به آسانی می‌توان نشان داد \(U_p^T \mathbf{v}_i = U_p^T \mathbf{v}_i \) با استفاده از معادله

\[
\mathbf{v}_i = U_p^T \mathbf{v}_i
\]

با چاگنداری معادله‌های (۲۰) و (۲۱) در معادله فوق داریم:

\[
\mathbf{v}_i = \sum_{j=1}^{p} \alpha_{i,j} \mathbf{u}_j
\]

به عبارت دیگر، عناصر پارامترهای یک بردار ویژگی (در دستگاه مختصات ویژگی) در مستطیل با استفاده از معادله فوق می‌توان بردار ویژگی مختصات ویژگی با آن را محاسبه نمود.

برای حل مشکل فوق، به راه کار مختلف پیشنهاد می‌شود که به پاسخ‌های متغیر متغیر خوانده شد. در روش اول، برای محاسبه \(\mathbf{v}_i \)
معمال خانقا p (عدد بردارهای ویژه قوی) به صورت تجربی انتخاب می‌شود. یک روش مشابه برای ایمنی، کاهش مقدار p تا زمانی این که متوسط خطای $\tilde{\psi}$ در مجموعه آزمون‌کردن قرار گیرد، به دست آمده‌است.

مقدار:*

$$e(\psi) = (\psi - \mathbf{U}^T_{\psi} \tilde{\psi})^T (\psi - \mathbf{U}^T_{\psi} \tilde{\psi})$$

جایی مشاهده می‌شود که برای $\tilde{\psi}$ بحران، مقدار ویژه $\tilde{\psi}$ با استفاده از ماتریس شبه ممکس، مطابق رابطه زیر محاسبه شده است:

$$\tilde{\mathbf{U}}_{\psi} = (\mathbf{U}_p \mathbf{U}_p^T)^{-1} \mathbf{U}_p \tilde{\psi}$$

**می‌توان نشان داد که اگر ماتریس \mathbf{U}_p را به عنوان (پیش‌فرض)، به مساله می‌گذاریم، حالتی ایجاد می‌شود. در این‌جا قرار‌گرفته می‌شود که بردار ویژه متغیر $\tilde{\psi}$ به پیش‌فرض مثبت، به دلیل این‌که از واریانس نمودارهای آزمون‌های این \mathbf{U}_p مقدار مجزا قرار گیرد، در حالی که در کمتر از این کالر، این شرط توسط پیش‌فرض $\tilde{\psi}$ نقض خواهد شد. لذا محدودسازی این آزادی ضرایب می‌تواند به تفکیک نمودار پیکسل‌های پیش‌فرض $\tilde{\psi}$ از پیش‌فرض مثبت، نشان دهد است. برای هر جای مشکل در روش دوم، فرض می‌کنیم که ضرایب متغیر با بردارهای ویژه ضریب تصویری بندی دارد:

$$\alpha_{ij} = 0, \quad j > p$$

دهمین، براساس رابطه (22)، بردار ویژگی متغیر با $\tilde{\psi}$ غیر ساده است.

$$\psi_{\text{rec}} = \mathbf{U}_p \mathbf{U}_p^T (\psi_{\text{rec}} - \tilde{\psi} + \mathbf{U}_p \tilde{\psi})$$

به طوری که $\tilde{\psi}$ در حقیقت $\tilde{\psi} = \psi - \tilde{\psi}$. مقداری $\tilde{\psi}$ به طوری که ψ_{rec} به بیشترین $\tilde{\psi}$ کاهش پیدا کند، به عنوان $\tilde{\psi}$ می‌باشد.

یک ضریب اساسی بوده و دانه محدودسازی را تنظیم می‌نماید.

$$\tilde{\psi}_{\text{opt}} = \mathbf{U}_p \mathbf{U}_p^T (\psi_{\text{opt}} - \tilde{\psi} + \mathbf{U}_p \tilde{\psi})$$

به طوری که $\tilde{\psi}$ در حقیقت $\tilde{\psi} = \psi - \tilde{\psi}$. مقداری $\tilde{\psi}$ به طوری که ψ_{opt} به بیشترین $\tilde{\psi}$ کاهش پیدا کند، به عنوان $\tilde{\psi}$ می‌باشد.
شکل (3): تابع سیگموند به ازای مقادیر مختلف از افزایش نرخ شبیه‌سازی از درجه معیارهای می‌شود.

4-1 پایه‌گاه داده
برای ارزیابی مناسبی پیشنهادی، از ۷۷۵ تصویر هوایی شهر ارومیه (با دقت مکانی ۷ cm/pixel و ۱۰۰۰ تصویر هوایی از شهر مشهد (زا دقت مکانی ۲۰ cm/pixel) و ۲۰۰ تصویر ماهواره‌ای از شهر تهران (زا دقت مکانی ۵۰ cm/pixel استفاده شده.

\[
\psi(v_u) = \frac{1}{|v_u|} \left[(v_u - \bar{v}) - q U_p \lambda^2 \left(\sum (v_u - \bar{v}) \right) \right]
\]

(26)

بنابراین، مدل بهبودی پیشنهادی برای ناحیه پیش‌زمینه عبارت است از \(U_p \) و \(\lambda \) و بردار میانگین \(\bar{v} \) برای نمودهای آموزشی (پیش‌زمینه) محاسبه شوند.

4-2 مرحله تست
در مرحله تست، ابتدا بردار وزنگی برای همه هپکسل‌های تصویر محاسبه می‌شود. سپس، مقادیر ذخیره \(\phi_i \) برای هر هپکسل به صورت گیاهان محاسبه می‌شود و در تصویر خطی \(R \) می‌شود. \(\phi(x) = \psi(v(x)) \)

(27)

در تصویر هپکسل‌های دارد روش‌های پیش‌زمینه است. این برای محاسبه است. \(\phi(x) = \psi(v(x)) \)

(28)

به‌طور کلی است که هرچه مقادیر وزنگی بهتر باشد، پرکندگی توان مکانی \(\mu \) و \(\sigma \) به ترتیب میانگین و انحراف معیار تصویر خطی \(\phi \) به‌طور کلی ضریب ثابت و اضافه می‌باشد.

\[
\gamma = \mu + \rho \sigma
\]

(29)

توضیحات اضافه می‌باشد.
بapasbr 21-02-0430 on Tuesday August 3rd 2021

۳-۲ تنظیم پارامترها

روش پیشنهادی تنها شامل دو پارامتر تعدد بردارهای ویژه غلبه (p) و ضریب تغییرات معیارهای ارزیابی بوده است. این پارامترها بر اساس تعداد ویژه غلبه متغیران (p) و (q) می‌باشند. در این پارامترها، برای یک مجموعه ضریب تغییرات معیارهای ارزیابی بوده، یک میانگین از مقدار معیارهای ارزیابی جمع‌آوری می‌شود. این مقدار میانگین از مقدار معیارهای ارزیابی جمع‌آوری می‌شود.

\[
A_{m} = 1 - \frac{|A_{GT} - A|}{A_{GT}}
\]

به توجه به معیارهای ارزیابی، برای هر جفت (FP) و (FN) سیگنال بهتری از سایر جفت‌های سیگنال در برابر سایر جفت‌های سیگنال برای هر جفت (FP) و (FN) مقدار معیارهای ارزیابی جمع‌آوری می‌شود.

\[
c_{pr} = \frac{TP}{TP + FP}
\]

\[
c_{rc} = \frac{TP}{TP + FN}
\]

\[
c_{oq} = \frac{TP + FP + FN}{TP + FP + FN}
\]

\[
c_{sa} = \frac{TP}{TP + FP + FN}
\]

\[
CPU \text{ Time (s)}
\]

<table>
<thead>
<tr>
<th></th>
<th>c_{m}</th>
<th>c_{rc}</th>
<th>c_{pr}</th>
<th>c_{oq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۹۱</td>
<td>/۶۵۱۲</td>
<td>/۳۸۷۲</td>
<td>/۷۷۸۷</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۶۰۱</td>
<td>/۶۵۱۷</td>
<td>/۳۸۷۷</td>
<td>/۷۷۸۲</td>
<td>/۳۸۰۲</td>
</tr>
<tr>
<td>۴۰۵</td>
<td>/۶۵۸۵</td>
<td>/۳۸۰۷</td>
<td>/۷۷۸۴</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۱۱۱</td>
<td>/۶۵۸۷</td>
<td>/۳۸۰۹</td>
<td>/۷۷۸۱</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۵۸۱</td>
<td>/۶۵۸۴</td>
<td>/۳۸۰۸</td>
<td>/۷۷۸۵</td>
<td>/۳۸۰۳</td>
</tr>
<tr>
<td>۳۴۴</td>
<td>/۶۵۸۶</td>
<td>/۳۸۰۲</td>
<td>/۷۷۸۲</td>
<td>/۳۸۰۸</td>
</tr>
</tbody>
</table>

است. همه توصیف سری‌های استفاده در فضای رنگی RGB با ابعاد

\[
A_{m} = 1 - \frac{|A_{GT} - A|}{A_{GT}}
\]

با ابعاد

\[
CPU \text{ Time (s)}
\]

<table>
<thead>
<tr>
<th></th>
<th>c_{m}</th>
<th>c_{rc}</th>
<th>c_{pr}</th>
<th>c_{oq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۹۱</td>
<td>/۶۵۱۲</td>
<td>/۳۸۷۲</td>
<td>/۷۷۸۷</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۶۰۱</td>
<td>/۶۵۱۷</td>
<td>/۳۸۷۷</td>
<td>/۷۷۸۲</td>
<td>/۳۸۰۲</td>
</tr>
<tr>
<td>۴۰۵</td>
<td>/۶۵۸۵</td>
<td>/۳۸۰۷</td>
<td>/۷۷۸۴</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۱۱۱</td>
<td>/۶۵۸۷</td>
<td>/۳۸۰۹</td>
<td>/۷۷۸۱</td>
<td>/۳۸۰۸</td>
</tr>
<tr>
<td>۵۸۱</td>
<td>/۶۵۸۴</td>
<td>/۳۸۰۸</td>
<td>/۷۷۸۵</td>
<td>/۳۸۰۳</td>
</tr>
<tr>
<td>۳۴۴</td>
<td>/۶۵۸۶</td>
<td>/۳۸۰۲</td>
<td>/۷۷۸۲</td>
<td>/۳۸۰۸</td>
</tr>
</tbody>
</table>
به عبارت دقیقتر، در تناوب از مدل‌های ترکیبی (شکل‌های 4 و 5)، همه الگوریتم‌های رقیب در تفکیک سایه‌های پوشش گیاهی دچار مدل‌سازی شده و همیشه به‌خیال نیاز به اشتیاقه به عنوان پوشش گیاهی دست‌ساخته‌سازی‌هایی بی‌برنده خود را قابل مشاهده است. این در حالی است که الگوریتم پیشنهادی به‌خوبی توانسته است علاوه بر پوشش گیاهی ترکیبی (تصاویر 4–6)، توانسته سیاست‌های بازگشتی از هم‌آمیخته نیز به‌خوبی استخراج نماید (شکل 10، پنجم).

همچنین، مطالعه جدول 1 نشان محساسی روی پیشنهادی برای بخش‌هایی از پوشش گیاهی در ترکیبی (شکل‌های 6 و 7) روی پیشنهادی با پیش‌بینی پیشنهادی برای بخش‌هایی از پوشش گیاهی در ترکیبی هم‌آمیخته نیز مشابه با تصاویر بخش اول دیده می‌شود. این نتیجه نشان می‌دهد که الگوریتم پیشنهادی در حالی است که بخش‌هایی از پوشش گیاهی در هر تصویر مشاهده را به‌خوبی استخراج نماید.

نتیجه گیری
پایان مقاله، پوشش گیاهی جهت اعمال روی رشته‌های صنعتی مدرن و توانایی ارتقای اختیاری برخورداری است. تصاویر هنگامی که ماهواره‌های در این خصوص اطلاعات دقیقه‌ای را برای هزینه و زمان کم در اختیار قرار می‌دهد. در این مقاله، مدل‌سازی (دروازه‌های تشخیصی پوشش گیاهی) در مناطق کارشناسی پیکسلی جایگزین شده است. روش پیشنهادی شامل دو قابل، مدل‌سازی و تست می‌باشد. در این مدل‌سازی، با استفاده از تعداد محدودی انتخاب نمونه (که به صورت دستی تهیه می‌شود) و براساس مدل‌سازی، روش تحلیل مکانیکی اصلی، دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجرب در پیکسل‌هایی که به‌خوبی مشاهده شدها، توانایی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود.

سپس، خطای اولیه او در بردار و پیکسل‌هایی به‌خوبی پیش‌بینی می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.

توانایی پیش‌بینی پوشش گیاهی به‌خوبی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.

بیان از انتظاری برخورداری به‌خوبی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.

پایان‌گزاری
پیش‌بینی پوشش گیاهی به‌خوبی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.

پایان‌گزاری
پیش‌بینی پوشش گیاهی به‌خوبی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.

پایان‌گزاری
پیش‌بینی پوشش گیاهی به‌خوبی استخراج نماید (شکل 10، پنجم) به‌خوبی تعیین می‌شود. در این مدل‌سازی، با استفاده از مدل‌سازی برای تکنیک‌های مجزا (که در مواردی، مانند کندنی، میزان میزان بهترین پیکسل‌های دیده است) در نهایت، با استفاده از تکنیک‌های مجزا، با دو داده آماری، برای پیش‌بینی جایگزین پوشش گیاهی و سپس بسته می‌باشد. در این مدل‌سازی و تست و تجربی پیکسل‌هایی که به‌خوبی تعیین می‌شود.
شکل (۷): نتایج حاصل از پخشیدن پوشه‌های غایه‌گر در تصویر هوایی (الف) مشهد-۸۰۰ با استفاده از (ب) روش پیشنهادی، (ج) روش آلیمیر [۱۰].
(د) روش پرآکاش و همکاران [۸]، (ه) روش کوه-سعیدی [۷]، (و) روش سپرمارسک-آنسالان [۱۱].
شکل (8): نتایج حاصل از بخش‌بندی پوشش گیاهی در تصویر ماهواره‌ای (الف) تهران-1 با استفاده از (ب) روش پیشنهادی (ج) روش آلمر (د) روش پیکاک و همکاران (ه) روش کوت-سعودی (و) روش سیگما-اسکات (ی).
شکل (56): نتایج حاصل از یکی از نواحی سایه توسط روش پیشنمایش در تصاویر (الف) «روش ۱۰۰۳»، (ب) «روش ۱۰۰۳»، (ج) «مشهد ۱۰۰۳».
(د) «مشهد ۱۰۰۳»، (ه) «تهران ۱۰۰۳» و (و) «تهران ۱۰۰۳» نشان داده شده در پرتو ترتیب شکل‌های ۵-الف تا ۱۰-الف.

17 Bi-modal
18 Morphological operators
19 Zhang
20 Unsalan and Boyer
21 Normalized saturation–value difference index
22 Luus
23 Elbakary and Iftekharuddin
24 Boundary complexity
25 Principle component analysis (PCA)
26 Principal Component Analysis (PCA)
27 Shape accuracy
28 Precision
29 Recall
30 Overall quality
31 True positive
32 False positive
33 False negative

زیرنویس‌ها

1 Iovan
2 Spectral indices
3 Support vector machine
4 Cote and Saeedi
5 Hue
6 Saturation
7 Prakash
8 Gitelson
9 Visible atmospherically resistant index
10 Almeer
11 Sirmacek and Unsalan
12 Choi
13 Near infra-red
14 Ozgun Ok
15 Tucker
16 Normalized difference vegetation index (NDVI)