Voltage Stability Constrained OPF Using A Bilevel Programming Technique

Turaj Amraee1 Alireza Soroudi2

1 Associate Professor, Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
amraee@kntu.ac.ir

2 SFI Industry Fellow, Department of Electrical Engineering, University College Dublin, Dublin, Ireland
Alireza.soroudi@ucd.ie

Abstract:
This paper presents a voltage stability constrained optimal power flow that is expressed via a bilevel programming framework. The inner objective function is dedicated for maximizing voltage stability margin while the outer objective function is focused on minimization of total production cost of thermal units. The original two stage problem is converted to a single level optimization problem via the KKT optimality conditions. Here to assure that the KKT optimality conditions are both necessary and sufficient the original inner problem is replaced with an equivalent problem with different structure. The applicability of the proposed method is demonstrated by implementing it in IEEE-30 bus test system.

Keywords: Voltage Stability, Optimal Power Flow, Bilevel Optimization, Complementary conditions, Convexity.

Submission date: 7 May 2015
Conditionally acceptance data: 19, Sep., 2015
Acceptance date: 31, Oct., 2016
Corresponding author: T.Amraee
1. Introduction

The primary aim of power system operators is to supply demand load with a desired level of stability and security under various fault conditions. Voltage stability as one of most important types of stability phenomena refers to the ability of power system to maintain a desired level of voltage magnitude at all buses under normal and under credible contingencies [1]. Voltage stability problem could be optimized as a separate problem (i.e. as a Volt-VAr problem or as an ancillary service market) or could be satisfied as a constraint in an optimal power flow problem named Voltage Stability Constrained Optimal Power Flow (VSC-OPF). Voltage stability has been considered in optimal VAr planning [2], [3], optimal dispatch in deregulated power systems [4], sensitivity-based security-constrained OPF market clearing model [5], assessing reactive power reserves [6], [7], optimal under-voltage load shedding [8]-[11]. However, due to the interconnected and complex nature of power system it is required to optimize the voltage stability margin inside the main optimal power flow. The successful applications of bilevel programming techniques are reported in the literature such as optimal contract pricing of DG units in distribution networks [12], capacity expansion in the integrated supply network in electricity market [13], generation [14] and transmission [15] expansion planning and vulnerability analysis under multiple contingencies [16].

Appearance of new resources have added type of uncertainties in voltage stability analysis. Probabilistic voltage stability assessment has been done in [17], [18]. The uncertain voltage stability problem could be analyzed using different techniques such as Information Gap Decision Theory. The IGDT technique has been implemented in power system studies [19], [20] such as self-scheduling of a wind producer [21], unit commitment in high wind power penetration [22]. It is noted that the uncertainty modeling is not the focus of this paper and can be found in other references [23]. Recently voltage stability has been considered in microgrids and distribution systems [24]-[27].
The power flow equations should be satisfied in each bus of the network as follows:

\[\text{min}_x \quad F^{up}(x, y^*) \] \hspace{1cm} (1) \\
\text{s.t} \quad H^{up}(x, y^*) \leq 0 \hspace{1cm} (2) \\
G^{up}(x, y^*) = 0 \hspace{1cm} (3) \\
y^* = \arg\{\min_y \quad f^{low}(x, y)\} \hspace{1cm} (4) \\
\text{s.t} \quad h^{low}(x, y) \leq 0 \hspace{1cm} (5) \\
g^{low}(x, y) = 0 \hspace{1cm} (6) \\
\]

Where \(x \in X \subseteq R^n \) and \(y \in Y \subseteq R^m \) are called upper-level and lower-level decision variables respectively. The \(F^{up}(x, y) \); \(R^{n+m} \rightarrow R \) is upper level objective function, \(H^{up}(x, y) ; R^{n+m} \rightarrow R^p \) and \(G^{up}(x, y) ; R^{n+m} \rightarrow R^q \) are upper level constraints. Parameters \(p, q \) are dimensions of inequality and equality constraints of the upper level optimization. The \(f^{low}(x, y) ; R^{n+m} \rightarrow R \) is the lower level or inner objective function. \(h^{low}(x, y) ; R^{n+m} \rightarrow R^l \) and \(g^{low}(x, y) ; R^{n+m} \rightarrow R^w \) are upper level constraints. \(l \) and \(w \) are dimensions of inequality and equality constraints of the upper level optimization problem. The upper and lower level optimizations are also called leader and follower in the context of bilevel optimization.

2. Framework of the Proposed Optimization

The bilevel optimization technique is defined as solving an optimization problem (in the upper level) which contains another optimization problem in the constraints (in the lower level). The general formulation of a bilevel optimization problem can be expressed as follows.

\[\text{min}_x \quad F^{up}(x, y^*) \] \hspace{1cm} (1) \\
\text{s.t} \quad H^{up}(x, y^*) \leq 0 \hspace{1cm} (2) \\
G^{up}(x, y^*) = 0 \hspace{1cm} (3) \\
y^* = \arg\{\min_y \quad f^{low}(x, y)\} \hspace{1cm} (4) \\
\text{s.t} \quad h^{low}(x, y) \leq 0 \hspace{1cm} (5) \\
g^{low}(x, y) = 0 \hspace{1cm} (6) \\
\]

Where \(x \in X \subseteq R^n \) and \(y \in Y \subseteq R^m \) are called upper-level and lower-level decision variables respectively. The \(F^{up}(x, y) \); \(R^{n+m} \rightarrow R \) is upper level objective function, \(H^{up}(x, y) ; R^{n+m} \rightarrow R^p \) and \(G^{up}(x, y) ; R^{n+m} \rightarrow R^q \) are upper level constraints. Parameters \(p, q \) are dimensions of inequality and equality constraints of the upper level optimization. The \(f^{low}(x, y) ; R^{n+m} \rightarrow R \) is the lower level or inner objective function. \(h^{low}(x, y) ; R^{n+m} \rightarrow R^l \) and \(g^{low}(x, y) ; R^{n+m} \rightarrow R^w \) are upper level constraints. \(l \) and \(w \) are dimensions of inequality and equality constraints of the upper level optimization problem. The upper and lower level optimizations are also called leader and follower in the context of bilevel optimization.

3. Concept of Bilevel VSC-OPF

The bilevel voltage stability constrained optimal power flow (VSC-OPF) contains two objective functions namely: operating cost minimization (in the upper level) and voltage stability maximization (in the lower level). In this section, each objective function along with its associated constraints are defined as follows:

3.1. Leader Problem

The decision variables in this level are the active power outputs of thermal units, \((P_G) \). The operating cost of thermal generating units depends on the total fuel consumption. It is usually expressed as a quadratic function of produced power of each unit as follows:

\[\text{Min}_i \quad F^{up}(x, y^*) \] \hspace{1cm} (1) \\
\text{s.t} \quad H^{up}(x, y^*) \leq 0 \hspace{1cm} (2) \\
G^{up}(x, y^*) = 0 \hspace{1cm} (3) \\
y^* = \arg\{\min_y \quad f^{low}(x, y)\} \hspace{1cm} (4) \\
\text{s.t} \quad h^{low}(x, y) \leq 0 \hspace{1cm} (5) \\
g^{low}(x, y) = 0 \hspace{1cm} (6) \\
\]

Where \(x \in X \subseteq R^n \) and \(y \in Y \subseteq R^m \) are called upper-level and lower-level decision variables respectively. The \(F^{up}(x, y) \); \(R^{n+m} \rightarrow R \) is upper level objective function, \(H^{up}(x, y) ; R^{n+m} \rightarrow R^p \) and \(G^{up}(x, y) ; R^{n+m} \rightarrow R^q \) are upper level constraints. Parameters \(p, q \) are dimensions of inequality and equality constraints of the upper level optimization. The \(f^{low}(x, y) ; R^{n+m} \rightarrow R \) is the lower level or inner objective function. \(h^{low}(x, y) ; R^{n+m} \rightarrow R^l \) and \(g^{low}(x, y) ; R^{n+m} \rightarrow R^w \) are upper level constraints. \(l \) and \(w \) are dimensions of inequality and equality constraints of the upper level optimization problem. The upper and lower level optimizations are also called leader and follower in the context of bilevel optimization.

3.1. Leader Problem

The decision variables in this level are the active power outputs of thermal units, \((P_G) \). The operating cost of thermal generating units depends on the total fuel consumption. It is usually expressed as a quadratic function of produced power of each unit as follows:

\[F^{up}(x, y^*) = \sum_{i \in G} (a_i P_G^2 + b_i P_G + c_i) \] \hspace{1cm} (7) \\

The power flow equations should be satisfied in each bus of the network as follows:
The voltage stability margin is defined as the loading margin. For a maximized voltage stability margin, the voltage at the follower problem is to maximize this margin over particular operating point, the amount of additional load in a specific pattern of load increase that would make the voltage collapse point is determined as the results of the inner optimization problem shown by \(V_i^c \):

\[\begin{align*}
\tilde{G}_{ii}^{up}: V_i - V_i^c &= 0 \quad i \in \Psi_g \\
\tilde{G}_{ii}^{up}: \sum_{j \in \Psi} V_j \left(G_{ij} \cos(\delta_{ij}) \right) + B_{ij} \sin(\delta_{ij}) &= 0 \\
\tilde{G}_{ii}^{up}: Q_{gi} - Q_{di} + B_S V_i^2 &= 0 \\
\tilde{G}_{ii}^{up}: \sum_{j \in \Psi} V_j \left(G_{ij} \sin(\delta_{ij}) \right) - B_{ij} \cos(\delta_{ij}) &= 0
\end{align*} \]

(8)

(9)

(10)

The voltage magnitudes at all PV buses is determined as the results of the inner optimization where \(\Psi_g \) contains include the voltage magnitudes at PV nodes, for reactive shunt switching (i.e. BS) the same equations as given in (10), (14), and (15) could be written. The input parameters of the follower problem include \(P_{gi}, Q_{gi}, \) and \(P_{di}. \) In other words these variable are optimized by the leader problem and are then passed to the follower problem. The steady state equality constraints at the maximum loadability point are written as follows:

\[\begin{align*}
\tilde{g}_{ii}^{low}: (1 + \lambda + k_g)(P_{gi} + P_{di}) - (1 + \lambda)P_{di} &= 0 \\
\tilde{g}_{ii}^{low}: \lambda + k_g P_{gi} - \lambda P_{di} &= 0 \\
\tilde{g}_{ii}^{low}: Q_{gi}^c - (1 + \lambda)Q_{di} + B_S(V_i^c)^2 &= 0 \\
\tilde{g}_{ii}^{low}: \sum_{j \in \Psi} V_j \left(G_{ij} \sin(\delta_{ij}^c) \right) - B_{ij} \cos(\delta_{ij}^c) &= 0
\end{align*} \]

(16)

(17)

where \(\lambda \) is the loading margin between the base case operating point and the LISB point. The \(k_g \) parameter forces the \(\lambda \)th generator to participate in active power loss compensation in a distributed slack mode.

Other operational limits are expressed as follows:

\[\begin{align*}
\tilde{h}_{ii}^{low}: Q_{gi}^c - Q_{gi}^\min &\leq 0 \\
\tilde{h}_{ii}^{low}: Q_{gi}^c - Q_{gi}^\max &\leq 0 \\
\tilde{h}_{ii}^{low}: V_i^c - V_i^\min &\leq 0 \\
\tilde{h}_{ii}^{low}: V_i^c - V_i^\max &\leq 0 \\
\tilde{h}_{ii}^{low}: |S_{ij}^c| - |S_{ij}^\max| &\leq 0
\end{align*} \]

(18)

(19)

(20)

(21)

(22)

3.2. VSM maximization problem (Follower)

The aim of inner or follower objective function is to maximize Voltage Stability Margin. The voltage stability margin is defined as the loading margin. For a particular operating point, the amount of additional load in a specific pattern of load increase that would cause a voltage collapse is called the loading margin. Here the voltage collapse point is determined considering reactive power limits of voltage controlled nodes. This type of bifurcation is named Limit Induced Static Bifurcation (LISB). At the limit induced static bifurcation point the two solutions of steady state equations merge and disappear. This point coincide with the maximum loadability point in power flow models. The decision variable in this level includes the values of voltage magnitudes at voltage controlled nodes, \(V_i^c(\Psi_g) \). The objective function of the follower problem is to maximize this margin over probable scenarios as follows:

\[V_i^c(\Psi_g)^\star = \max_{V_i^c(\Psi_g)} f_{low} = \lambda \]

(15)

3.3. Solution Method

The follower optimization problem should be converted into a set of constraints using the optimality conditions of Karush-Kuhn-Tucker (KKT). These constraints give the optimal values of lower optimization variables and are then passed to the upper level. The Lagrangian function of the lower optimization problem \(L_{low}^\star \) is defined as follows: where \(x \) contains the upper-level decision variables namely, \(P_{gi} \). The lower-level decision variables, \(y \), contains include the voltage magnitudes at PV nodes, \(V_i^c(\Psi_g)^\star \).

3.4. Single Level VSC-OPF

The KKT optimality conditions are necessary and sufficient for defining the optimum of the inner level problem only under convexity conditions. In other words the KKT optimality conditions are necessary and sufficient if for fixed \(x \), the control variable of outer problem, 1) the inner functions \(f, g, \) and \(h \) are
continuous and second order differentiable and 2) the inner functions \(f\) and \(h\) are convex and \(g\) is linear in \(y\).

\[
\tilde{f}^{low}(x, y, \alpha, \beta) = f^{low}(x, y) - \sum_{j \in \psi_g} \alpha_j g_j^{low}(x, y) - \sum_{j \in \psi_{slack}} \alpha_j g_j^{low}(x, y) - \sum_{j \in \psi_g} \beta_j h_j^{low}(x, y) + \sum_{j \in \psi_{slack}} \beta_j h_j^{low}(x, y) - \sum_{j \in \psi_g} \beta_j h_j^{low}(x, y) + \sum_{j \in \psi_{slack}} \beta_j h_j^{low}(x, y).
\]

The optimality conditions are categorized into three groups:

- Stationary conditions:
 \[\nabla_x \tilde{f}^{low}(x, y, \alpha, \beta) = 0\] (23)

- Primal feasibility conditions:
 \[g_i^{low}(x, y) = 0, \quad \forall i \in \psi, i \notin \psi_{slack}\] (24)

- Complementary slackness conditions:
 \[(\beta_{si}, \beta_{ai}) \leq (0, 0), \quad \forall i \in \psi_g\] (25)

\[\beta_{si} \leq 0, \quad \forall i \in \psi_i\] (26)

\[\beta_{ai} \leq 0, \quad \forall i \in \psi_a\] (27)

\[\beta_{si} \leq 0, \quad \forall i \in \psi_i\] (28)

\[\beta_{ai} \leq 0, \quad \forall i \in \psi_a\] (29)

\[\beta_{si} \leq 0, \quad \forall i \in \psi_i\] (30)

The final single level VSC-OPF formulation could be summarized as follows:

\[\tilde{g}^{new}(x, y, \alpha, \beta) = \begin{cases} \tilde{g}_{new} & \alpha \geq 0 \\ \tilde{g}_{new} & \beta \geq 0 \end{cases}\]

Subject to

\[\min_{\beta_{si}, \beta_{ai}} \tilde{g}^{new} = 0\] (31)

\[\tilde{g}_{new}^{low} = \begin{cases} \tilde{g}_{new}^{low} & k = 1, \ldots, 3 \\ \tilde{g}_{new}^{low} & k = 1, \ldots, 5 \end{cases}\]

4. Simulation Results

The proposed bilevel structure for VSC-OPF problem is applied IEEE 30-bus test case. The single line diagram of IEEE30 bus network has been illustrated in Fig. 2. The conventional OPF and bilevel VSC-OPF are simulated using voltage control and reactive shunt switching as control variables.

4.1. Conventional OPF

The results of conventional OPF without considering voltage stability constraint are given in Table 1 for three different strategies. In the first strategy as given in first column of Table 1 the active power of generators have been considered as the control variable. The second column of this table contains the results of conventional OPF with considering active power and terminal voltage of generators as control variable. At the third column the shunt switching has been added to the control vector. It can be seen that the total production cost has a little change.
Table 1. OPF results without voltage stability constraints

<table>
<thead>
<tr>
<th>Gen No</th>
<th>OPF with no control</th>
<th>OPF with voltage control</th>
<th>OPF with voltage control and shunt switching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pg</td>
<td>Qg</td>
<td>Vg</td>
</tr>
<tr>
<td>1</td>
<td>43.0</td>
<td>-5.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>57.2 36.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>21.0 11.8</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>31.2 9.60</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>43.1 -1.00 1.050</td>
<td>57.1 8.00 1.047</td>
<td>21.0 16.3 7.00 1.054 1.050 43.1 -7.80 1.050 22.9 28.9 1.046 16.6 1.80 1.052</td>
</tr>
<tr>
<td></td>
<td>Pg</td>
<td>Qg</td>
<td>Vg</td>
</tr>
<tr>
<td>1</td>
<td>43.0</td>
<td>-5.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>57.2 36.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>21.0 11.8</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>31.2 9.60</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>43.1 -1.00 1.050</td>
<td>57.1 8.00 1.047</td>
<td>21.0 16.3 7.00 1.054 1.050 43.1 -7.80 1.050 22.9 28.9 1.046 16.6 1.80 1.052</td>
</tr>
<tr>
<td></td>
<td>Pg</td>
<td>Qg</td>
<td>Vg</td>
</tr>
<tr>
<td>1</td>
<td>43.0</td>
<td>-5.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>57.2 36.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>21.0 11.8</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>31.2 9.60</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>43.1 -1.00 1.050</td>
<td>57.1 8.00 1.047</td>
<td>21.0 16.3 7.00 1.054 1.050 43.1 -7.80 1.050 22.9 28.9 1.046 16.6 1.80 1.052</td>
</tr>
<tr>
<td></td>
<td>Pg</td>
<td>Qg</td>
<td>Vg</td>
</tr>
<tr>
<td>1</td>
<td>43.0</td>
<td>-5.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>57.2 36.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>21.0 11.8</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>31.2 9.60</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>43.1 -1.00 1.050</td>
<td>57.1 8.00 1.047</td>
<td>21.0 16.3 7.00 1.054 1.050 43.1 -7.80 1.050 22.9 28.9 1.046 16.6 1.80 1.052</td>
</tr>
<tr>
<td>Total</td>
<td>Cost ($674.33</td>
<td>572.714</td>
<td>571.383</td>
</tr>
</tbody>
</table>

The voltage profile of the network has been illustrated in Fig. 3. A flat voltage profile is resulted by using additional voltage control.

4.2. Bilevel VSC-OPF

In this case, the results of proposed bilevel formulation is presented. The inner voltage stability problem is converted to a series of constraints using KKT optimality conditions. According to Table 2 the total production cost is $667.751 with a voltage stability margin of $\lambda_{SM} = 2.221$. Values of shunt switching for conventional OPF and bilevel VSC-OPF have been given in Table III. The voltage profile of the network has been illustrated in Fig. 4.

Table 2. Results of bilevel VSC-OPF problem

<table>
<thead>
<tr>
<th>Gen No</th>
<th>Pg (MW)</th>
<th>Qg (MVar)</th>
<th>Qg (MVar)</th>
<th>Vg (pu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>7.20</td>
<td>27.6</td>
<td>1.050</td>
</tr>
<tr>
<td>2</td>
<td>50.5</td>
<td>-20.0</td>
<td>84.0</td>
<td>1.044</td>
</tr>
<tr>
<td>13</td>
<td>40.0</td>
<td>18.6</td>
<td>62.6</td>
<td>1.073</td>
</tr>
<tr>
<td>22</td>
<td>50.0</td>
<td>2.70</td>
<td>87.5</td>
<td>1.053</td>
</tr>
<tr>
<td>23</td>
<td>17.3</td>
<td>-10.0</td>
<td>16.8</td>
<td>1.031</td>
</tr>
<tr>
<td>27</td>
<td>33.2</td>
<td>-15.0</td>
<td>21.1</td>
<td>1.034</td>
</tr>
<tr>
<td>Total</td>
<td>Cost ($)</td>
<td>667.751</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Results of bilevel VSC-OPF problem

<table>
<thead>
<tr>
<th>Bus No</th>
<th>Conventional OPF</th>
<th>Bilevel-VSCOPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>3.60</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>6.60</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>16.4</td>
</tr>
<tr>
<td>7</td>
<td>7.90</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>22.9</td>
<td>25.0</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>5.70</td>
<td>19.2</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>24.6</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>1.50</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>2.60</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>1.70</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>5.40</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>0.90</td>
<td>7.30</td>
</tr>
<tr>
<td>19</td>
<td>3.20</td>
<td>1.90</td>
</tr>
<tr>
<td>20</td>
<td>0.80</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>10.3</td>
<td>6.30</td>
</tr>
<tr>
<td>24</td>
<td>6.10</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>2.10</td>
<td>7.20</td>
</tr>
<tr>
<td>28</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>2.10</td>
<td>9.20</td>
</tr>
</tbody>
</table>

5. CONCLUSION

A bilevel VSC-OPF model was proposed to minimize total production cost and maximize voltage stability margin at the same time. The inner voltage stability problem is converted to a set of constraints using the KKT optimality conditions. The new formulation optimizes the voltage magnitude of PV nodes and reactive shunt switching to provide the maximum voltage stability margin. The results of the proposed scheme was applied over the IEEE 30-bus test system. The obtained results verify the performance of bilevel VSC-OPF model.
Acknowledgment
This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/IFA/4324.

References