طراحی مرجع ولتاژ یک ولت قابل کاشت در بدن با دقت

15 میکرومتر ppm

با استفاده از ترانزیستورهای ذاتی

(Native)

پروژه امیری ۱
آوآ هدایتی بور ۲
شقاوق اصلاح زاده ۳

۱- استادیار- دانشکده مهندسی برق- دانشگاه تربیت دیبر شهردی رجایی- تهران- ایران
pamiri@srttu.edu

۲- کارشناسی ارشد- دانشکده مهندسی برق- دانشگاه تربیت دیبر شهردی رجایی- تهران- ایران
ava.hedayati@srttu.edu

۳- کارشناسی ارشد- دانشکده مهندسی برق- دانشگاه تربیت دیبر شهردی رجایی- تهران- ایران

چگینه‌ی در این مقاله با توجه به افزایش نیاز به مراجع ولتاژ با توان مصرفی و ولتاژ تغذیه یاپین به خصوص در تجهیزات پزشکی،
یک مرجع ولتاژ با استفاده از اختلاف ولتاژ آستانه (Vth) و یک ترانزیستور معمولی اثر میدان (FET) و یک ترانزیستور ذاتی (Native) استفاده از تکنولوژی ۰.۸ میکرومتر ضریب دمایی ۱۵ ppm در حسابت ۰.۹۸٪/°C مقدار سطح ولتاژ ولتاژ خروجی به دست آمد. حداقل ولتاژ تغذیه برای این مدار ۲۰ و ولتاژ مصرفی در دمای اتاق ۲۰۰ نانووات ولتاژ خروجی ۴ میلی امپر است که این مرجع را برای تجهیزات نانو آمپری مناسب می‌سازد. در انتهای برای پیش‌آزند تغییرات پروپسیون روش برای تنظیم دیجی‌تال
این نوع مراجع ولتاژ ارائه شده است.

کلمات کلیدی: مرجع ولتاژ CMOS ترانزیستورهای ذاتی، توان مصرفی یاپین، چپن دمایی، تنظیم دیجی‌تال.

تاريخ ارسال مقاله: ۱۳۹۴/۰۳/۰۵
تاريخ پذیرش مشروط مقاله: ۱۳۹۵/۰۴/۲۷
تاريخ پذیرش مقاله: ۱۳۹۵/۰۷/۱۳
نام نویسنده مسئول: دکتر برونا امبیری
نشانی نویسنده مسئول: ایران - تهران - لویران - دانشگاه تربیت دیبر شهردی رجایی - دانشگاهی برق
1- مقدمه
امروزه میکرو و الکترونیک یکی از ابزارهای قدرتمند سیستم‌های الکترونیکی برای کاربردهای مختلف بسیاری می‌باشد. از این بین، برخی از ابزارهای عمده‌ای به همین روش در طراحی و مهندسی هستند که برای قرار دادن تام سیستم در داخل را نیاز دارند. با این حال، سیستم‌های تشخیص بیماری‌های عضیک کمک می‌کنند. طراحی سیستم‌های میکرو و الکترونیکی، هدف دقیق و درمان سیستم در داخل را می‌تواند هدف کنسرت، سیستم‌های الکترونیکی و الکترونیکی داشته باشد. گرگن تام این سیستم ها در بند محدودیت سیستم بیماری و جرداری کم پدیده توان مصرفی مانند سیستم‌های جریان‌های بیماری وجود دارد. در این مقاله، استفاده از الکترونیک و CMOS سیستم‌های الکترونیکی و الکترونیکی از چنین ابزارهای معمولی استفاده می‌گردد. به همراه حساسیت تغییرات، می‌تواند میکرو و الکترونیکی در اثر اگزای و پیش‌بینی‌های ناشناخته‌های یکی از موارد استفاده از الکترونیک و الکترونیکی در این مقاله مورد بررسی قرار گرفته است.

2- تقسیمات مرجع و لیست با استفاده از اختلاف
ولنتز و الکترونیک
برای مدفوع زندی، منابع شکاف باند به عنوان مرجع ولنتز و الکترونیک در زمین‌های کاربردی استفاده می‌شوند. ولنتز و الکترونیک شبکه باند درایای ولنتز و الکترونیک پایدار در برخی از تغییرات فراوان نسبت به این عملیات الکترونیکی انتقال دو فیلدی استفاده می‌کنند. ولنتز و الکترونیک به عنوان یکی از استفاده‌های ولنتز و الکترونیک الکترونیکی استفاده می‌گردد. به‌طور خلاصه، ولنتز و الکترونیک یکی از مدل‌های اصلی استفاده در طراحی سیستم‌های میکرو و الکترونیکی است. ولنتز و الکترونیک در مدل‌های دیگر در حالت فعالیت می‌تواند تغییرات هر نوعی از تغییرات را در دست دارد. ولنتز و الکترونیک یکی از مدل‌های دیگر در حالت فعالیت می‌تواند تغییرات هر نوعی از تغییرات را در دست دارد. ولنتز و الکترونیک یکی از مدل‌های دیگر در حالت فعالیت می‌تواند تغییرات هر نوعی از تغییرات را در دست دارد.
که در آن، اقلابیت تحرک الکترودها در کانال، خازن اکسید در Cox و W و L طول کانال، ولتاژ استاتیک VTH و ضعیف مولفه ولتاژ می‌باشد. به ترتیب طول و عرض کانال هستند، با در نظر گرفتن (1) و

\[V_{REF} = V_{GS2} - V_{GS1} = V_{TH2} - V_{TH1} + \frac{\sqrt{I}}{\frac{1}{k_2} - \frac{1}{k_1}} \]

که در آن جریان در شکل ۱ نشان داده شده است، به نسبت مشتق \(k_i = \mu C(X/W/L) \) را نشان می‌دهد. این رابطه نسبت به دما با استفاده از رابطه (3) باید مورد نظر باشد.

\[\frac{\partial V_{REF}}{\partial T} = \frac{\partial (V_{TH2} - V_{TH1})}{\partial T} + \frac{1}{2} \frac{1}{\sqrt{k_2}} \frac{1}{\sqrt{k_1}} \frac{\partial V_{TH1}}{\partial T} + \frac{1}{2} \frac{1}{\sqrt{k_2}} \frac{1}{\sqrt{k_1}} \frac{\partial V_{TH2}}{\partial T} \]

همانطور که در رابطه (3) دیده می‌شود، برای کاهش ویژگی‌های باده برای I و آمپری قابل سرفصل بودن نرم‌های دوم و سوم باید VREF = VTH2-VTH1 به‌شکلی که یک قطع می‌تواند با استفاده از اختلاف ولتاژی (شکل ۲) محاسبه شود.

\[V_{REF} = \frac{W}{L} (V_{GS} - V_{TH}) (1 + \frac{I_{DS}}{I_{DS}}) \]

شکل (۲): مرجع ولتاژ طریحی شده

شکل (۱): یک مدار معمول مرجع ولتاژ بر اساس اختلاف Vm

\[I_d = \frac{\mu C_{ox} W}{2} (V_{GS} - V_{TH}) (1 + \frac{I_{DS}}{I_{DS}}) \]

آسان‌ساز

مدار ساده مورد مرجع ولتاژ بر اساس تفاوت بین ولتاژ‌های گیت و سورس برای دو ترانزیستور اثر می‌باشد که در شکل ۱ نشان داده شده است. هر دو ترانزیستور در هر احساس کار می‌کند. مشخصه جریان ولتاژ یک ترانزیستور NMOS در آن‌ها معکوس ضعیف و میانه می‌تواند با این معادله سهمی تخمین دهد شود:

\[I_d = \frac{\mu C_{ox} W}{2} (V_{GS} - V_{TH}) (1 + \frac{I_{DS}}{I_{DS}}) \]
می‌شود این اندمازها حذف جریان و در نتیجه هدایت توان مصرفی را برای مدار تامین می‌کند.

جدول (1): اندازه طول با عرض ترانزیستورهای تامین کننده جریان

<table>
<thead>
<tr>
<th>ترانزیستور</th>
<th>W(µm)/L (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>13/20</td>
</tr>
<tr>
<td>Q4</td>
<td>1/20</td>
</tr>
<tr>
<td>Q5</td>
<td>0.5/10</td>
</tr>
<tr>
<td>Q6</td>
<td>1/20</td>
</tr>
<tr>
<td>Q7</td>
<td>13/20</td>
</tr>
<tr>
<td>Q8</td>
<td>13/20</td>
</tr>
<tr>
<td>Q9</td>
<td>13/20</td>
</tr>
<tr>
<td>Q10</td>
<td>13/20</td>
</tr>
<tr>
<td>Q11</td>
<td>26/20</td>
</tr>
</tbody>
</table>

در شکل ۲ ترانزیستورهای Q3 و Q6، Q4، Q7 و Q2 مربع جریان اصلی هستند، ترانزیستور Q5 برای شروع به کار مدار فعال داده شده است. با رسمی کردن مدار به همراه پایان قطع شده و از مدار خارج می‌شود، پس از Q5 درست ترانزیستورهای Q6 و Q4 و ترانزیستورهای Q3 و Q7 با k بالایی ترانزیستورهای Q3 توجه به تابع طول به عرض آن جریان را برای می‌کند:

\[I_{ref}(Q_i) = K I_{out}(Q_i) \]

در صورتی که نیاز به استفاده از جریانهای پایین‌تر باشد، می‌توان از مدار شکل ۲ استفاده کرد و روابط مربوط به این میزان جریان به این صورت تعریف می‌شود:

\[V_{ss} = V_{th} + \frac{2I_{out}(Q_i)}{\mu_n C_{ox} \left(\frac{W}{L} \right)} + V_{TH6} \]

\[V_{SS} = V_{th} + \frac{2I_{out}(Q_i)}{\mu_n C_{ox} \left(\frac{W}{L} \right)} + V_{TH7} + I_{out}(Q_i) R_S \]

\[I_{out}(Q_i) = \frac{2}{\mu_n C_{ox} \left(\frac{W}{L} \right)} \left(\frac{1}{R_s} \right) \left(1 - \frac{1}{\sqrt{K}} \right) \]

در ترانزیستور Q3 نقطه ابتدا برای این میزان جریان می‌باشد و جریان این‌تر باشد. ترانزیستور Q4 و Q7 جریان این‌تر باشد ترانزیستور Q5 سیستم، این‌تر برای این میزان تابع طول به عرض دو Q2 و Q1 برای است در نتیجه مجموعاً جریان L2 از ترانزیستورهای Q1 و Q2 کشیده می‌شود.

نیاز به تابع طول برای ترانزیستورهای تامین کننده جریان در جدول ۱ ارائه شده است. همانطور که در قسمت بعد توضیح داده شود:

\[\phi_p(T) = \frac{kT}{q} \ln \left(\frac{n}{n_r(T)} \right) \]

اگر سیلیکن با ناخالصی مختلف با زیرپایه دوب شود، یکسانی اساس به نپ نشان داده می‌شود. به همین صورت نیاز به کار نیمه‌های گیت با ماهیت (۹) برای یک گیت دوب شده با n محاسبه می‌شود.

\[\phi_p(T) = \frac{kT}{q} \ln \left(\frac{n}{n_r(T)} \right) \]

و نیاز به تابع طول برای ترانزیستورهای تامین کننده جریان در جدول ۱ ارائه شده است. همانطور که در قسمت بعد توضیح داده شود:

\[\phi_p(T) = \frac{kT}{q} \ln \left(\frac{n}{n_r(T)} \right) \]
که در ان ناخالصی ذاتی حامل، عامل مربوط به دما، NP ناخالصی
نی آنتی‌سیلینک هستند. مهگینن با این توجه کرد که اثر دما
بر تغییر باین قابل اطمینان است [12]. مهگینن با تغییر دما تغییرات کوچکی در ولتاژ آستانه به دلیل تغییر
در خاکی اکسید و بیانه سطح به وسیله می‌آید [13]. [1] که این
تغییرات به دلیل کوچک بودن مربوط به دما
توجه به رابطه‌های عوامل شده و همانطور که در شکل 4، قابل مشاهده
است، شب و ولتاژ آستانه برای میان رابطه تر ان‌تین‌سین‌تور ان‌دکی منظور است.
در سه‌گی چهار پی‌بار کوچک قرار داده شد نمایش ولتاژ خروجی
مرجع ولتاژ نهایی حدود 30 میلی ولت در 100 درجه احراز
خواهد داشت. چهار درگیران در حدود چند میکرون و تنظیم
مناسب می‌توان این احراز را با استفاده از ترم دمو عادی به
جهان کرد. کمترین ولتاژ کار برای این نوع می‌تواند در حدود
1.7 ولت باشد، ولتاژ خروجی برای هر ولتاژ حدود 70 ولتاژ ورودی
است.

شکل 4: تغییرات ولتاژ آستانه تر ان‌تین‌سین‌تور معمولی (شکل بالا) و
تر ان‌تین‌سین‌تور ذاتی (شکل پایین) با دما

نتایج شبیه‌سازی
نتایج شبیه‌سازی در تکنولوژی 0.18 میکرو ولتاژ ورودی 80 ولت در
شکل 5 نشان داده شده است. در این حال حالت جریان کشیده شده از
مجموع 2 میکرو ولتاژ و Q1 بر روی 1.5 میکرو ولتاژ امیر تشریح
شد است. نمونه‌های کل این حالات 1 میکروولتون برای
امد برای این مقادیر ضرب دما از رابطه (10) پیامد

\[
T_{C} [ppm] = \frac{(max(V_{ref}) - min(V_{ref}))}{(V_{ref}(T = 20^\circ C))} \times 10^5
\]

مجله انجمن مهندسان برق و الکتریک ایران - سال چهاردهم - شماره دوم - تابستان 1399

111
شکل ۶: (الف) جلسه‌ی ولتاژ-خروجی به دما و (ب) ولتاژ تغییر در جریان کم

۷- تنظیم دیجیتال

برای حداکثر کمکی پراکندگی ضرب دما و ولتاژ خروجی، یک مرجع ولتاژی با تنظیم دیجیتالی را طراحی کرده‌ایم که در شکل ۷ نشان داده شده است. این دستگاه طول و عرض دو قطعه همان‌طور که در قسمت قبل نشان داده شد، برای ضرب دمایی بسیار حیاتی است، هرچند طول و عرض ترانزیستورهای هر تراشه، ممکن است به علت تفاوت‌های بروزهای تولید نباشد. به همین دلیل باید که طراح استفاده کننده برای تغییرات عرض را بپس از پروسه ساخت سیلیکن تغییر دهد.

این طراحی می‌تواند به صورت اختصاصی لایه‌ی ترانزیستور بالایی و لایه‌ی ترانزیستور پایینی را استفاده کنیم که طوری که در اینجا نشان داده شده است. مقدار ماتریکس به عنوان مقدار ماتریس بوده و mmod کدی است برای عرض ترانزیستور ۴۶ حالت مختلف تغییر می‌کند. سیگال کنترلی دارای سیگنال‌های کنترلی سیلیکن بوده و همچنین به فریمینگ شامل full rail ولتاژ تغییرهای نازک ندارد، حافظه‌های دیجیتالی و ولتاژی تغییرهای نازک ندارد. همچنین که سیگنال‌ها شامل سیگنال‌ها هستند که قطر بالایی با پایین‌تری که اخیراً از قابل اطمینان بر ولتاژ خروجی دارند و به صورت یک کاردی دارای این قابلیت خروجی عمل می‌کنند. ترانزیستورهایی به طول زیاد در اینجا هم برای حداکثر کردن مصرف مصرف، شده‌اند. هرچند برای کم کردن مصرف شده، می‌توان 1 واریانس کننده در ایستگاه‌های مختلف که در ناحیه و خاکش کردن بخش آماده است، در مدار طراحی شده، استفاده از ترانزیستورهای ذاتی مشکل نیاز به قدم‌های اضافی در بررسی ساخت را حل می‌کند. همچنین به عنوان ترانزیستورهای با ولتاژ استان بپردازید. مصرفی بایستی امسال و ولتاژ مورد نیاز برای کار به حداقل می‌رسد.

شکل ۷: (الف) تغییر ولتاژ-خروجی به دما و (ب) ولتاژ تغییر در جریان کم

شکل ۸: (الف) نتایج از خروجی‌های مختلف که در ناحیه و خاکش کردن استفاده شد.
جدول ۲: مقایسه سایر مراجع ولنئز با مرجع ولنئز اثره شده

<table>
<thead>
<tr>
<th>طراح</th>
<th>پارامترهای مقایسه شده</th>
<th>Vdd</th>
<th>توان مصرفی</th>
<th>TC [ppm/°C]</th>
<th>LS [%/V]</th>
<th>تکنولوژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annema [2]</td>
<td>۰.۹</td>
<td>۱۲.۶ μW</td>
<td>۹۶۲</td>
<td>na</td>
<td>۳۲ nm</td>
<td></td>
</tr>
<tr>
<td>Leung [3]</td>
<td>۰.۹۸</td>
<td>۱۷.۶ μW</td>
<td>۱۵</td>
<td>۳.۶</td>
<td>۰.۶ μm</td>
<td></td>
</tr>
<tr>
<td>Doyle [4]</td>
<td>۰.۹۵</td>
<td>۱۰ μW</td>
<td>na</td>
<td>۰.۵ μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leung [6]</td>
<td>۱.۴</td>
<td>۲۹.۱ μW</td>
<td>۳۶.۹</td>
<td>۰.۰۱۲</td>
<td>۰.۶ μm</td>
<td></td>
</tr>
<tr>
<td>Vita [9]</td>
<td>۰.۹</td>
<td>۳۶nW</td>
<td>۱۰</td>
<td>۰.۲۷</td>
<td>۰.۳۵ μm</td>
<td></td>
</tr>
<tr>
<td>Giustolisi [15]</td>
<td>۱.۲</td>
<td>۴.۳ μW</td>
<td>۱۱۹</td>
<td>na</td>
<td>۱.۲ μm</td>
<td></td>
</tr>
<tr>
<td>Kingel [16]</td>
<td>۰.۵۵</td>
<td>۳۹۸ μW</td>
<td>۲۷۰</td>
<td>۱۲.۱</td>
<td>۹۰ nm</td>
<td></td>
</tr>
<tr>
<td>Kingel [16]</td>
<td>۰.۵۵</td>
<td>۴۸۲ μW</td>
<td>۱۵۰</td>
<td>۲۰.۷</td>
<td>۹۰ nm</td>
<td></td>
</tr>
<tr>
<td>Annema [17]</td>
<td>۱.۱</td>
<td>۱.۵۴ μW</td>
<td>۳۰</td>
<td>na</td>
<td>۰.۱۶ μm</td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>۰.۷</td>
<td>۷۲۰ nW</td>
<td>۱۵</td>
<td>۰.۹۸</td>
<td>۰.۱۸ μm</td>
<td></td>
</tr>
</tbody>
</table>

یمنویس‌ها

<table>
<thead>
<tr>
<th>Voltage Reference ۱</th>
<th>BIT ۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>complementary-to-absolute-temperature ۵</td>
<td>proportional-to-absolute-temperature ۵</td>
</tr>
<tr>
<td>CMOS ۹</td>
<td>Selective channel implantation ۹</td>
</tr>
<tr>
<td>Native ۹</td>
<td>Process Variation ۹</td>
</tr>
</tbody>
</table>

مراجع