کاهش سطح گلبرگ‌های فرعي در فشرده‌سازی پالس رادار برای آشکارسازی اهداف همسان با استفاده از شبکه عصبی

علي‌پرا حکم‌آبادی‌یار 1 ازدواج‌های زاده 2 احمد‌پور شرافت 3
1- استادیار- گروه مهندسی برق- واحد‌های مهندسی آزاد اسلامی- یزد- ایران
hokmabadi@aliabadiau.ac.ir
2- استادیار- گروه مهندسی برق- واحد‌های مهندسی آزاد اسلامی- یزد- ایران
zakeri@aliabadiau.ac.ir
3- استاد- دانشگاه مهندسی برق و کامپیوتر- دانشگاه تربیت مدرس- تهران- ایران
sharafat@isc.iran.net

چکیده: در این مقاله از یک شبکه عصبی چند‌لایه برای فشرده‌سازی پالس رادار که ورودی آن برخاف روش‌های بیشین، کد پیلی فاز است، استفاده می‌کنیم. صوتی کد‌های پیلی فاز توسط مدت کشیده با یا برای هر طول کد، کد‌های پیلی فاز منفی و وجود دارد که این موضوع باعث یافتن شکستن شبکه فیزیکی به‌شکلی بیشتر و شکستن شبکه سیستمی از روش همبسته‌سازی Levenberg-Marquardt به‌عنوان یکی از چهار ساختار سطح گلبرگ‌های فرعي تا حد خبره راهنماهای کاهش می‌یابد. به عنوان نمونه، در مورد کد P4 (N=370) این مقادیر بهتر (BP=240/15 dB) است. این روش برای SNR اساسی برابر با 200، نیز عملکرد بسیار خوبی دارد و همچنین در مقایسه با سایر روش‌های موجود تولرانس دایر بسیار بالاتری را در خروجی شبکه ارائه می‌دهد.

کلمات کلیدی: بهبودی‌سازی فرعي,
تولرانس دایر,
شبکه عصبی چند‌لایه,
فشرده‌سازی پالس,
گلبرگ‌های Levenberg-Marquardt

 история доступа к jiaeee.com в 10:45 +0330 на Monday September 30th 2019
1- مقدمه
امروز در سیستم‌های مدرن رادار برای استفاده به دقت و تیکیک شناسایی و توصیف مناسب در برابر مواج مخالی آذین سیگنال به نظر (SNR) بدست آورید. این درصد سیگنال است. از این رو روش‌های آرایش داده‌های سیگنال به ترتیب و ابعاد اشکال‌برداران اهداف سنجش هم برای بهینه‌سازی آنها را در مورد دوربین است که دانه بگیری در این دوره از دسته‌بندی اهداف مختلف مدیر و سازماندهی شده است. این درصد سیگنال خروجی فیلتر منطقه است.

\[y = R_s x \]

که \(y = [y_{-N}, \ldots, y_0, y_1, y_2, \ldots, y_N] \) فیلتر خروجی و \(x = [x_{-N}, \ldots, x_0, x_1, x_2, \ldots, x_N] \) داده محسوب می‌شود. این برابر سگال گره‌هایی است که استفاده کننده‌ها آنها را از این دوره‌هایی به سطح کل‌گره‌های فرعی را تا حد بالای فاصله کاهش داده. توپاس دایر بالای داشته و در کار آن کوکونکر هدف‌ها را بر اساس فیلتر شده‌های پاس‌بانه رها به روشی که نظر و منظورهای بسیار خوبی داشته و سطح گره‌های فرعی را تا حد بالای فاصله کاهش می‌دهد. این منظورهای سطح فازی باید صبای بوده و برای اموزش شبکه به تعداد که‌سره‌های پردازش پاس‌بانه یا پاک‌کردن که‌سره‌های پردازش بازیابی پاس‌بانه خود را دایر، توپاس Levenberg-Marquardt با پارامتر پاس‌بانه شبکه روش پیش‌سازی Levenberg-Marquardt اسکای نظارت را برای منیژ آنها است. این روش نسبت به اموجاع حاصل از فاز فازی دایر، پاس‌بانه پاس‌بانه سبب کاهش خأید است.

\[R = \begin{bmatrix} \eta_0 & 0 & \ldots & 0 & 0 \\ \eta_1 & \eta_0 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \eta_{N-1} & \eta_{N-2} & \ldots & \eta_0 & 0 \\ \eta_N & \eta_{N-1} & \ldots & \eta_1 & \eta_0 \end{bmatrix} \]

ماتریس مشاهده روش شیفت یافته دنباله دریافت، و

2- مدل سیستم و ساختار شبکه عصبی
در حالی که ایده‌سازی شبکه عصبی فیلتر فردیساز باید به شکل تابع بایش اما در عمل، گیرنده‌های فری‌نوردی از صرفه‌بری خواهد داشته و نتیجه‌گیری شبکه عصبی به استفاده نمایش داده شده است. در این مورد سیگنال خروجی فیلتر منطقه را می‌توان با رابطه ماتریس زیر نوشت.

\[y = \begin{bmatrix} \eta_{-N} & \ldots & \eta_0 & \eta_1 & \ldots & \eta_N \end{bmatrix} \]

در این مقاله متغیرهای معرفی شده است. به شرح زیر است: در یک نیم‌مو، مدل سیستم و ساختار شبکه عصبی را تابع بهبود بیشتری از صرفه‌بری و اجرای شبکه تجربه می‌کنند. در مقابل، سطح گره‌های فرعی این دکه‌ها نسبت به توپاس بین‌اندازه‌ای این سیگنال‌ها کوچک است. برای رفع این نقص می‌توان از کدهای پلی‌فاز استفاده کرد.
آموزش شبکه عصبی

3- آموزش شبکه عصبی

مهمتی مشکل شبکه متدال پس انتشار خطا سرعت همگرایی برای یافتن یک مقدار لغزش می‌باشد. در این شکل، یک انتقال طولی و در بالا وارد می‌شود.

\[\mathbf{w} = E \left[\left(\mathbf{f}(\mathbf{x}; \mathbf{w}) - f_{\text{opt}} \right)^2 \right] \]

که مقدار مطلوب و \(f_{\text{opt}} \) مقدار متوسط \(E \) \(f \) بیانگر مقدار متوسط است. با فرض خلط بین پیشینی، استفاده از رابطه‌ای دو مرتبه دوم زیر است.

\[\mathbf{e} = \mathbf{a} + 2\mathbf{b}^T \mathbf{w} + \mathbf{w}^T \mathbf{C} \mathbf{w} \]

که ضریب \(\mathbf{a} \) بردار \(\mathbf{b} \) و ماتریس \(\mathbf{C} \) به مقدار متوسط گره‌های ورودی و خروجی یک‌تایی است. با حداقتاد کردن خطای مقدار وزنه به صورت یک‌تایی بدست می‌آید.

\[\nabla \mathbf{e} = 0 \Rightarrow \mathbf{w}_{\text{opt}} = -\mathbf{C}^{-1} \mathbf{b} \]

که مفهوم عملکرد گرادیان است. مشاهده می‌شود که در یک گام دو رابطه یک گام می‌توان به سمت نقطه کمینه مختصات خطا پرش کرد. اما در مورد توابع

\[\mathbf{w} = \mathbf{f}(\mathbf{x}; \mathbf{w}) \]

در نظر می‌گیریم. هنگام آموزش شبکه، بردار ورودی \(\mathbf{x} \) و بردار وزن \(\mathbf{w} \) متفاوت است. ناب از خطای \(\mathbf{e} \) به صورت زیر تعیین می‌شود.

\[e(x) = w(x) - f(x) \]

نتایج
دوام و بالعکس، اگر A را بزرگ داشته باشیم، رابطه اصلی ورودی \dot{w} به سمت روش انتشار خطای و تغییرهای مهندسی \dot{n} نیز بر اساس تغییرات خطا به صورت زیر اصلاح می‌شود:

$$\dot{w} = -H^{-1}d + w_0$$ \hspace{1cm} (1)

که d گرادیان متوسط H طبق معادلات

$$H = \begin{bmatrix} f_1(x, w_0) \\ f_2(x, w_0) \\ \vdots \\ f_n(x, w_0) \end{bmatrix}$$

و $f_i(x, w_0)$ به تغییر از سالاریزی به خطا اثر داده می‌شود.

برای انتشار خطای در رابطه اصلی $\dot{w} = f(x, w_0) + (w - w_0)^T H(x, w_0)$ و با توجه به $f(x, w_0)$، می‌توان برای کنترل خطای دنبال کردن $H(x, w_0)$ به روش زیر در نظر گرفت:

$$w_{i+1} = w_i - \mu d$$ \hspace{1cm} (11)

که μ کoeffیسنت نسبت بین صفر و یک است. از طرف دیگر، رابطه اصلی

$$\dot{w} = -H^{-1}d$$ \hspace{1cm} (12)

صلح تغییر مرتبه در همه نقاط به دست می‌آید که، به دست آوردن این برای کنترل خطای در نظر گرفته که این از مراحل طبقه‌بندی می‌باشد.

برای انتشار خطای در رابطه اصلی $\dot{w} = f(x, w_0)$ و با توجه به $f(x, w_0)$، می‌توان برای کنترل خطای دنبال کردن $H(x, w_0)$ به روش زیر در نظر گرفت:

$$w_{i+1} = w_i - \mu d$$ \hspace{1cm} (11)

که μ کoeffیسنت نسبت بین صفر و یک است. از طرف دیگر، رابطه اصلی

$$\dot{w} = -H^{-1}d$$ \hspace{1cm} (12)

صلح تغییر مرتبه در همه نقاط به دست می‌آید که، به دست آوردن این برای کنترل خطای در نظر گرفته که این از مراحل طبقه‌بندی می‌باشد.

برای انتشار خطای در رابطه اصلی $\dot{w} = f(x, w_0)$ و با توجه به $f(x, w_0)$، می‌توان برای کنترل خطای دنبال کردن $H(x, w_0)$ به روش زیر در نظر گرفت:

$$w_{i+1} = w_i - \mu d$$ \hspace{1cm} (11)

که μ کoeffیسنت نسبت بین صفر و یک است. از طرف دیگر، رابطه اصلی

$$\dot{w} = -H^{-1}d$$ \hspace{1cm} (12)

صلح تغییر مرتبه در همه نقاط به دست می‌آید که، به دست آوردن این برای کنترل خطای در نظر گرفته که این از مراحل طبقه‌بندی می‌باشد.

برای انتشار خطای در رابطه اصلی $\dot{w} = f(x, w_0)$ و با توجه به $f(x, w_0)$، می‌توان برای کنترل خطای دنبال کردن $H(x, w_0)$ به روش زیر در نظر گرفت:

$$w_{i+1} = w_i - \mu d$$ \hspace{1cm} (11)

که μ کoeffیسنت نسبت بین صفر و یک است. از طرف دیگر، رابطه اصلی

$$\dot{w} = -H^{-1}d$$ \hspace{1cm} (12)
1-4- عنصر شکه در مقابل نویز
برای بررسی عنصر شکه عصبی در مقابل نویز، SNR، سیگنال SNR در مقابل نویز، ورودی را از 20 تا 40 dB ثابت راه اندازی کنید و نسبت سیگنال اصلی به
برخی از نقاط جامعه (MPSR) مساحه (MSR) مساحه (MSR) در طرح پیشنهادی برخو دارای سیگنال که
مقابل SNR، سیگنال ورودی در مورد این دو کم رشد بوده است. می‌توانیم که
طرح پیشنهادی برخو باعث تغییر در SNR بسیار پاک ترین است.

2-4- عنصر شکه در مقابل اثر دایر
یکی از جالب‌ترین مسئله‌های مهمی که در طراحی فیلتر فشرده‌ساز مطرح
است، رفتار سیستم در مواد بی‌پرتاب است. در چنین
سپری‌هایی وجود سرعت نسبی معمولاً در بین هدف و دارای
سبب به وجود آمدن اثر دایر و تغییر فرکانس سیگنال برجست
خواهد شد.

3-4- پیشنهادی برخو
لحظه کرده و رفتار شکه عصبی پیشنهادی را در مواجه با
آن بررسی کرده‌ایم. باید توجه داشت که در این مورد شکه عصبی

4-4- پیشنهادی برخو
در شکه پیشنهادی، نتوان به استفاده از کدهای پایه، به
در حالی که در ساختار پیشنهادی مشابه (13) نتایج
قابل کراپس است. بنابراین نمی‌توان عنصر عصبی این روش را در مورد
کدهای مشابه با یکدیگر مقایسه نمود. این اتفاق، به
عنصر مبتنی علی‌رغم میزان دسترسی عصبی، با استفاده از
Levenson-Marquardt مساحه (MSR) آزمایشی
از دست نمی‌رسد. بنابراین نمی‌توانیم این روش را در مورد
Levenson-Marquardt مساحه (MSR) آزمایشی
برای اصلاح وزنها استفاده کنیم.

در این جلسه تا پایان PSL عنصر عصبی در مورد کد
PSL به N=31 m-Sequence
در حالت کریکر، مقادیر با PSL= 0.2- می‌توان با PSL= 0.2- که در حالت کریکر، مقادیر با
Levenson-Marquardt مشاهده می‌شود که استفاده از روش پیشنهادی
Levenson-Marquardt مشاهده می‌شود که استفاده از روش پیشنهادی
نحو شایستگی های کرده است.
عمل کردن و تولید سایر سیاره‌های توسط یک رسم شده است. می‌خواهیم که این اعمال حاصل از شبکه پیش‌نهادی، تولید و پردازش دی‌پراکنی شده با تابع ای‌پهام حاصل از فیلتر منطقی داشته، در حالی که جزئی‌کننده تغییر طیفی در تماس سطح تابع ای‌پهام تزیک صفر است.

برای مقایسه دقت‌تر، در شکل‌های (9) و (10) منحنی افت انشاه (گلبرگ) اصلی این داده در مقابل تغییرات دایر (به صورت سیل‌های پری‌سی) شده است. می‌خواهیم که این انشاه گلبرگ اصلی ناشی از شبکه پیش‌نهادی تغییر شده و وقتی برای دایرها بهترین نیز این مقادیر تغییر جنگلی نشود. در حالی که این انشاه گلبرگ اصلی شبکه خودروی فیلتر منطقی با وزن‌دهی دایر به شبکه ماهیتی هدف تغییرات بوده است. این منحنی گرافی دی‌پراکنی باید روشی با ورودی‌های ذائقه از دایر به دایر در ابعاد پری‌سی (Doppler * Pulse Width) مقایسه پخش دایر در فرمول پری‌سی به بررسی سیل‌های پری‌سی (فرکانس مرکزی) و 1

در شکل‌های (11) و (12) نیز منحنی مقادیر در مقابل یک رسم که برخی تغییرات دایر (به صورت سیل‌های پری‌سی) شده است. می‌خواهیم که برخلاف فیلتر منطقی، حتی برای دایرها بهترین نیز مقدار کم‌تری در مقادیر PSL دیگر باشد پیش‌نهادی با استفاده از دایر بهترین پری‌سی پری‌سی که از بوده و تولید راه‌پیمایی در شبکه عصبی انسان استفاده از دیگر داده‌های پری‌سی و با طول پری‌سی مقایسه تنابنده بسته آزمایش که صحت عملکرد ساختمان پیش‌نهادی را تأیید می‌کند.

![شکل (8): تابع ای‌پهام نرمال‌ایزه فیلتر منطقی در مورد کد P4 (N=45)](image1)

![شکل (9): تابع ای‌پهام نرمال‌ایزه شبکه عصبی در مورد کد P3 (N=1600)](image2)

![شکل (10): تابع ای‌پهام نرمال‌ایزه شبکه عصبی در مورد کد P4 (N=45)](image3)
3- قابلیت آشکارسازی اهداف مجاور هم و توپولوژی قابل دامنه برای سیگنال‌های دیفرانسیال در این قسمت برای شیب‌های سیگنال حاوی دو موج معکوس شده اهداف مستقل که با یکدیگر هم‌هم‌سازی دارند، یک مشابه با طول N با نسبت به یکدیگر (L انتخاب داده شده است. با استفاده از این سیگنال، با تغییر مقدار تأخیر و نسبت دامنه آن، قابلیت تفکیک و توپولوژی قابل دامنه برای سیگنال‌های دیفرانسیال را بررسی کرد.

نتایج بدست آمده از حالت‌های مختلف تأخیر و نسبت دامنه در مورد کد P4 و P3 در جدول (1) آورده شده است. در این جدول نسبت دامنه ورودی به سیگنال نسبت دامنه کد اول به دامنه کد تأخیر یافته تعیین می‌شود. و نسبت دامنه از تغییرات برای حالت‌های مختلف، به سیگنال‌های اصلی منجر به تغییر می‌شود.

| جدول (1): نتایج بدست آمده از شیب‌های سیگنال حاوی دو موج معکوس را برای حالت‌های مختلف تأخیر و نسبت دامنه. |
|---|---|---|---|---|
| نسبت دامنه‌های حالت‌ها | P4 | P3 | P4 | P3 |
| (N=45) | (N=30) | (N=45) | (N=30) |
| 2 بیت تأخیر | 2 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15
| 3 بیت تأخیر | 3 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15
| 4 بیت تأخیر | 4 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15 | -0.17 | -0.15

PSMR [dB]: پردازنده امتیاز‌دهی برای این حالت‌ها.
پیامدار را نیز به‌صورت نسبت اندازه‌برداری گلبرگ فرعی به‌صورت اندازه‌ب
زیرنویس‌ها

1. Frequency Modulation
2. Linear Frequency Modulation
3. Peak Sidelobe Level
4. Mainlobe to Peak Sidelobe Ratio
5. Peak Sidelobe to Mainlobe Ratio