کاهش سطح گلبرگ‌های فرعی در فشرده‌سازی پالس رادار برای آشکارسازی اهداف همسان با استفاده از شبکه عصبی

علیرضا حمید آبادی ۱ - آزرو ذاکری ۲ - احمدضا شراتف

۱- استادیار- گروه مهندسی برق - واحد على آباد کنول - دانشگاه ازاد اسلامی - على آباد کنول - ایران
hokmabadi@aliabadiau.ac.ir

۲- استادیار- گروه مهندسی برق - واحد على آباد کنول - دانشگاه ازاد اسلامی - على آباد کنول - ایران
zakeri@aliabadiau.ac.ir

۳- استاد- دانشکده مهندسی برق و کامپیوتر- دانشگاه تربیت مدرس- تهران- ایران
sharafat@isc.iranet.net

چکیده: در این مقاله از یک شبکه عصبی چند لایه برای فشرده‌سازی پالس رادار که ورودی آن بر خلاف روش‌های پیشین، کد پلی فاز است. استفاده می‌کنیم. مزیت کد‌های پلی فاز نسبت به کد‌های پایه، داشتن سطح گلبرگ‌های فرعی کمتر و تولید کننده بسیار بیشتر است. بعلاوه، بر خلاف کد‌های پایه، برای هر طول کد، کد‌های پلی فاز متغیر وجود دارد که این موضوع باعث ارائه گردش Levenberg-Marquardt می‌شود. بیشتر شبکه پیشنهادی می‌شود. برای آموزش شبکه نیاز از روش پیشنهادی Levenberg-Marquardt می‌باشد که سرعت همگام‌بندی شبکه را تا حد قابل توجهی افزایش می‌دهد. پس از ۱۰۰ بر آموزش شبکه مورد اشکال، سطح گلبرگ‌های فرعی تا حد خبره کد‌های کاهش می‌یابد. به عنوان نمونه، در مورد کد P4 (N=45) این مقدار برای SNR=240 دB (N=45) این مقدار برای SNR=240 دB (N=45) این مقدار برای SNR=240 دB

کلمات کلیدی: پیش‌سازی، تولید، شبکه عصبی چند لایه، فشرده‌سازی پالس، گلبرگ‌های فرعی

تأثیر ارسال مقاله: ۱۳۹۱/۱۰/۱۹

تأثیر پذیرش مسئول مقاله: ۱۳۹۱/۱۱/۱۲

تأثیر پذیرش مقاله: ۱۳۹۵/۸/۱۶

نام نویسنده مسئول: دکتر علی‌اکبر باب‌یاد

نشانی نویسنده مسئول: گروه مهندسی برق - واحد على آباد کنول - دانشگاه ازاد اسلامی - على آباد کنول - ایران

Downloaded from jiaeee.com at 3:59 +0430 on Monday August 31st 2020
1- مقدمه
اموزه در سیستم‌های مدرن رادار برای دستیابی به دقیق مناسب در برد دور و ناحیه اتفاقی نسبت سیگنال به نویز (SNR) بدون افزایش حداکثر نرخ سیگنال به محدودیت وسیعی از روش‌های فشرده‌سازی با سه استفاده می‌شورد [10]. اما مناسب‌ترین این کاربرد منهم امری است که برای روش‌های فشرده‌سازی پیشنهاد شده، خواهند داشت. ضمناً این سیگنال‌های فشرده‌سازی در تعدادی از شرایط معمولی از این طرف دیده می‌شود [4]. طراحی سیستم‌های فشرده‌سازی و پخش ورودی است که ممکن است برای تامین سیگنال‌های فشرده‌سازی که در دامنه‌ای گسترده‌ای از اهداف مختلف قرار می‌گیرد، متأسفانه در بعضی از اهداف کارکرد و نهایتاً، برای مواجهه با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکته داده، توانایی پاسخ بالایی داشته و فکر کننده فری در این حالت با جنگ‌های دیگر که سطح متقابل‌های فری در حال یک توجهی کاملاً یا نکте‌
آموزش شبکه عصبی

همه‌ی مسئله مشکل متدال پی انتشار خطأ سرعت همبستگی بسیار باین است. در این شکل ایک گام ثابت به سمت کم‌ترین مقدار خطای که در گذشته از طول گام‌های متغیری بسته به شیب منحنی خطای، با استفاده از شرایط ورودی شبکه محاسبه شده است. در این حال، برای حل این مشکل در این مقاله از روش بهینه‌سازی برای آموزش شبکه بهره‌گرفته‌ایم. Levenberg-Marquardt نیست و به صورت زیر تعریف می‌شود.

$$e(w) = E \left[f(x, w) - f_{opt} \right]^2$$

که مقادیر مطلوب و f_{opt} بیانگر مقادیر متوسط است. با فرض خروجی ورودی شبکه، تابع خطا به صورت رابطه زیر است.

$$e(w) = a + 2bh + w^T C w$$

که ضریب a بردار b و ماتریس C به مقادیر متوسط کوچکی ورودی و خروجی است. w به حداکثر کردن خطای مقدار وزن‌ها به صورت زیر بدست می‌آید.

$$\nabla e(w) = 0 \Rightarrow w_{opt} = -C^{-1}b$$

که مشخص می‌کند که منحنی خطا برای وزن‌ها به صورت زیر می‌باشد.

$$w_{opt} = -C^{-1}b$$
دوم و بالعكس، اگر \(\lambda \) بزرگ باشد، رابطه اصلی وزن به سمت روش زیر است:

\[
\text{خطای } \delta \text{ به صورت زیر تنظیم می‌شود:}
\]

- اگر از افزایش‌یافته، ژاکل و خطا حالت در اینتیا داده و خطا را محاسبه می‌کریم. این برای زمانی که خطای زیرکت از مقدار بالای شود، نیاز می‌باشد.

- اکثر‌الاله ها، ایجاد وزن‌های مناسب به دلیل و حلال با تغییر \(\lambda \) و یک عدد کوچکتر (مثلاً 10 برای هر مقدار) سعی می‌کنیم سرعت همگامی شبکه را افزایش دهیم. با محاسبه مجدداً خطای فاصله میان داده‌های جواب داده شده داده شده که تغییر \(\lambda \) با مقدار افزایش یافته، ژاکل و خطا افزایش یافته، واضح است که تغییرات در شدت داده می‌کند با مقدار افزایش یافته، خطا به طور شامل خطای کمینه خلا دیگر و محاسبه می‌کنیم.

- با تغییر مقدار وزن و حلال با تغییر \(\lambda \) به یک عدد کوچکتر (مثلاً 10 برای هر مقدار) سعی می‌کنیم سرعت همگامی شبکه را افزایش دهیم. با محاسبه مجدداً خطای فاصله میان داده‌های جواب داده شده که تغییر \(\lambda \) با مقدار افزایش یافته، خطا به طور شامل خطای کمینه خلا دیگر و محاسبه می‌کنیم.
برای بررسی عملکرد شبکه جدیدی در مقابل نویز، نرخ SNR، و فرکانس (PSL) برای کد P4 با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

شکل 3: عملکرد شبکه جدیدی در مقابل نویز

این عملکرد شبکه جدیدی در مقابل نویز نشان داد که با استفاده از کد P3، شبکه می‌تواند با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

شکل 4: عملکرد شبکه جدیدی در مقابل نویز

این عملکرد شبکه جدیدی در مقابل نویز نشان داد که با استفاده از کد P4، شبکه می‌تواند با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

ملاحظه: سه مدل سیگنال خروجی شبکه جدیدی با استفاده از کد P3 (N=30) و P4 (N=45) برای پاسخ (PSL) برای کد P4 با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

شکل 5: نمودار پاسخ کد P3 (N=30)

شکل 6: نمودار پاسخ کد P4 (N=45)

این عملکرد شبکه جدیدی در مقابل نویز نشان داد که با استفاده از کد P3، شبکه می‌تواند با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

ملاحظه: سه مدل سیگنال خروجی شبکه جدیدی با استفاده از کد P3 (N=30) و P4 (N=45) برای پاسخ (PSL) برای کد P4 با استفاده از گام 2 و 35/64 dB تغییر می‌کند.

شکل 7: نمودار پاسخ کد P3 (N=30)

شکل 8: نمودار پاسخ کد P4 (N=45)
عمل کردن و تولید دایر بیس خویی دارد. همچنین برای مقایسه، در شکل‌های (1) و (2) تابع اپهام نرمال‌های شده فیلتر منطقی نیز در شده است. می‌توان به این اپهام حالتی مانند این اپهام حالتی دارید که فیلتر منطقی داشته، در حالی که در حالی که می‌توان اپهام نرمال‌های فری تری‌گوا در تام سطح تابع

![شکل (4): تابع اپهام نرمال‌های شبکه علمی در مورد کد P4 (N=45)](image)

در شکل‌های (3) و (4) تابع نرمال‌های شبکه علمی در مورد کد P4 (N=45) و P3 (N=30) نمایش داده شده است. می‌توان به این اپهام حالتی داد نیز در مورد کد P3 (N=30) تابع نرمال‌های شبکه علمی در مورد کد P3 (N=30) نمایش داده شده است.
4-۳ قابلیت آشکارسازی اهداف مجاور هم و تولوان قابل قبول دانه برای سیگنال‌های دریافتی در این قسمت برای شبیه‌سازی سیگنال‌های دو موج معکوس شده در زمان مستقل که با یکدیگر همبستگی دارند، در مدل با طول N اهداف مستقل که با یکدیگر همبستگی دارند، نتایج آماری جاده (L ≤ N & L < N) یا نتایج L بین تأخیر داده به دنبال یکدیگر راه‌اندازی شده برای تولوان به دنبال ورودی شکل کارایی است. با این سیگنال‌ها، قابل قبول و تولوان قابل قبول دانه برای سیگنال‌های دریافتی را بررسی کرد.

نتایج بدست آمده برای حالت‌های مختلف تأخیر و نسبت دانه در (N=۴۵) P4 و (N=۳۰) P3 در جدول (1) آورده شده است. در این جدول نسبت دانه ورودی به سیگنال است. در این جدول نسبت دانه که اول‌بار به دانه که نسبت پایین تأخیر نیز به سیگنال است. حالت‌های سیگنال‌های مورد به سیگنال ورودی را بررسی کرده. تأخیر می‌شود.

جدول (۱): نتایج بدست آمده برای حالت‌های مختلف تأخیر و نسبت دانه.

<table>
<thead>
<tr>
<th>نسبت دانه‌های خروجی</th>
<th>PSMR [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=۴۵) P4</td>
<td>(N=۳۰) P3</td>
</tr>
<tr>
<td>2 پیت تأخیر</td>
<td>۱</td>
</tr>
<tr>
<td>۳ پیت تأخیر</td>
<td>۱</td>
</tr>
<tr>
<td>۴ پیت تأخیر</td>
<td>۱</td>
</tr>
</tbody>
</table>
در این مقاله از یک شکه عصبی چند لایه برای تبدیل سایز پایین مقدار استفاده کردیم که ورودی آن برخلاف روش پیشین، که پیش از این است، عملکرد از گذشته بهبود یافته موجود در این دستگاه بوده است. در این تحقیق برای یک نرم‌افزار جدید، به‌عنوان یک کرایه‌سازی جدید برای سیستم‌های عصبی مورد استفاده قرار گرفت. مدل‌سازی حجمی جهانی در حال تکامل و بهبود یافته در طول دو روز تحقیق به طور مداوم انجام می‌شود. و مدل‌سازی حجمی جهانی در حال تکامل و بهبود یافته در طول دو روز تحقیق به طور مداوم انجام می‌شود.
پژوهشگران

1. "بسامد، نظراتی از مدارات و محاسبات بواسطة تکنیک رادیو"، مجله انجمن مهندسان برق و الکترونیک ایران، شماره 1388.

زیرنویس‌ها

1. Frequency Modulation
2. Linear Frequency Modulation
3. Peak Sidelobe Level
4. Mainlobe to Peak Sidelobe Ratio
5. Peak Sidelobe to Mainlobe Ratio