کاهش اثرات امواج موبایل به کمک آنتن‌های آرایه‌ای و تفکیک یک نقطه داغ به چند نقطه داغ

وحید غفاری ۱، اردیبهشت کریمی ۲، رشید میرزاوند بروجی ۳، پرسا بهبهانی ۴
۱- کارشناسی ارشد- دانشکده مهندسی برق- دانشگاه صنعتی امیرکبیر- تهران- ایران
vahidgh@aut.ac.ir
۲- استاد- دانشکده مهندسی کامپیوتر- دانشگاه صنعتی امیرکبیر- تهران- ایران
atavakoli@aut.ac.ir
۳- استادیار- دانشکده مهندسی کامپیوتر- دانشگاه صنعتی امیرکبیر- تهران- ایران
mirzavand@aut.ac.ir
۴- استادیار- دانشکده مهندسی کامپیوتر- دانشگاه صنعتی امیرکبیر- تهران- ایران
pdekhoda@aut.ac.ir

چکیده: در این مقاله شیوه جدیدی برای کاهش نرخ جذب ویژه (SAR) در گوشی‌های موبایل آرایه‌ای می‌شود. برای این کار از ابدهی آنتن‌های آرایه‌ای استفاده شده است. این سیم می‌شود تا بنوان خازی پایه ویژه (SAR) را به جای تمرکز در یک نقطه در چند نقطه مشترک کرده، بودن انیکه (AF) پایین‌تر باشد. برای داشتن آرایه در گوشی موبایل می‌باشد آنتن‌ها یکسان باشند و در یک سمت تشغیل کنند تا بنوان ضریب (AF) پایین‌تر داشته. از طرف دیگر بنوان در حالت آرایه به همان سرعت و تریک در حالک که آنتن به دست پیاد کرده. در نتیجه به کمک این حالت می‌توان اثرات امواج موبایل بر سر را تا 75% برای هر آنتن و تا 92% در حالت 'کاهش داد. همچنین نشان داده شده است که این روش مستقل از SAR آنتن‌های آرایه‌ای، نقطه داغ

کلمات کلیدی: SAR، آنتن‌های آرایه‌ای، نقطه داغ

تأصیل ویژه مسئول: دکتر رشید میرزاوند بروجی
نشانی ویژه مسئول: ایران - تهران - خیابان حافظ - پلاک ۴۲۴ - دانشگاه صنعتی امیرکبیر - دانشگاه بریج

تاريخ ارسال مقاله: ۱۳۹۴/۶/۲۲
تاريخ پذیرش مسئول: ۱۳۹۴/۷/۰۱
تاريخ پذیرش مقاله: ۱۳۹۴/۷/۰۲

تاریخ پذیرش مقاله: ۱۳۹۵/۱/۱۹
۱- مقدمه

سنل جدید موبایل LTE اموزه رو به گسترش است. در واقع این نسل کمک می‌کند به دوست افتخاری از فناوری پیش‌برد و بی‌پرواب. بیانی نظری که از این دید به در حالت است.

به‌طور کلی این اهمیت برای پاسخگویی‌های سیستم‌های موبایل که این الگوی پیچیده‌تری را که با کاهش دهند که

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

۲- نمونه آنالیز

همانطور که از این نرخهای های این نسل

\[
SAR = \frac{\sigma^2}{2\rho}
\]

که در آن ضریب گذره‌ای الکتریکی \(\sigma\) و \(\rho\) چگالی بافت مدار: طبق استاندارد FCC ایست. طبق استاندارد SAR

که در آن ضریب گذره‌ای الکتریکی \(\sigma\) و \(\rho\) چگالی بافت مدار: طبق استاندارد FCC ایست. طبق استاندارد SAR

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

\[
SPLSR = (SARI + SAR2)^\frac{5}{0.04}
\]

\[
SPLSR = \frac{(SARI + SAR2)}{D (mm) \leq 0.04}
\]

۳- نمونه آنالیز

همانطور که از این نرخهای های این نسل

\[
SAR = \frac{\sigma^2}{2\rho}
\]

که در آن ضریب گذره‌ای الکتریکی \(\sigma\) و \(\rho\) چگالی بافت مدار: طبق استاندارد FCC ایست. طبق استاندارد SAR

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

\[
SPLSR = (SARI + SAR2)^\frac{5}{0.04}
\]

\[
SPLSR = \frac{(SARI + SAR2)}{D (mm) \leq 0.04}
\]

۱- مقدمه

سنل جدید موبایل LTE اموزه رو به گسترش است. در واقع این نسل کمک می‌کند به دوست افتخاری از فناوری پیش‌برد و بی‌پرواب. بیانی نظری که از این دید به در حالت است.

به‌طور کلی این اهمیت برای پاسخگویی‌های سیستم‌های موبایل که این الگوی پیچیده‌تری را که با کاهش دهند که

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

۲- نمونه آنالیز

همانطور که از این نرخهای های این نسل

\[
SAR = \frac{\sigma^2}{2\rho}
\]

که در آن ضریب گذره‌ای الکتریکی \(\sigma\) و \(\rho\) چگالی بافت مدار: طبق استاندارد FCC ایست. طبق استاندارد SAR

که در آن ضریب گذره‌ای الکتریکی \(\sigma\) و \(\rho\) چگالی بافت مدار: طبق استاندارد FCC ایست. طبق استاندارد SAR

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

\[
SPLSR = (SARI + SAR2)^\frac{5}{0.04}
\]

\[
SPLSR = \frac{(SARI + SAR2)}{D (mm) \leq 0.04}
\]

۱- مقدمه

سنل جدید موبایل LTE اموزه رو به گسترش است. در واقع این نسل کمک می‌کند به دوست افتخاری از فناوری پیش‌برد و بی‌پرواب. بیانی نظری که از این دید به در حالت است.

به‌طور کلی این اهمیت برای پاسخگویی‌های سیستم‌های موبایل که این الگوی پیچیده‌تری را که با کاهش دهند که

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

\[
SPLSR = (SARI + SAR2)^\frac{5}{0.04}
\]

\[
SPLSR = \frac{(SARI + SAR2)}{D (mm) \leq 0.04}
\]
3- طراحي آنتن دیپل تکی و آرایه‌ای

بطاق توپیه هدف بسته اورتون گینی بیشتر از این جایی است که در حالت آنتن تکی بسته می‌باشد. هرچند که طبق آنچه که بیان شده بکارآمد آنتن آرامی است از دو نقطه تقسیم می‌شود. ولی با در نظر گرفتن هوشگرفتگی گینی می‌توان از این آنتن قالب کارآمدی و با کمک عرفانی در فرکانس 3.5GHz داشته باشیم. با استفاده از Chip of 36mm، می‌توان الگوریتم این آنتن را با نمایش انفجار در فرکانس 2.5mm و ابعاد شتابان 160mm یک طوبه و در وضعیت بهتری را به خواهی داد. نتایج آن را در اینجا داریم با شبیه‌سازی در CST Studio 2013 می‌توان در این آنتن کلیدی در این آنتن دیده می‌باشد. برای بسط آندمی در شرایط حوزه و دمای صرف‌سازی این آنتن نیز بسته می‌باشد. این آنتن را همکاری با SAR کنار گرفته است که این آنتن را با توجه به 10.5mm سطح قابلیت این آنتن نیز در رشته‌های گوناگون این آنتن نیز از استاندارد CTIA بطوری‌ای نماید. برای بسط دو آنتن نیز در SAR همکاری با SAR CTIA آنتن نیز بخش 2) بیان شد. برای بسط آندمی

کمک شکافه، SAR

با مقایسه جدولهای (1) و (2) در حالات آنتن تکی و آرامی، مشاهده می‌شود که در حالت افقی دمای گرفتگی سر بیش از دو برای

شده‌ای (10.8) این آنتن نیز بسته می‌باشد (2) 1.6 W/kg برای SAR که در کمک درک که این خود می‌باشد با پاشیدن SAR 50 mm داشته باشد اگر آنتن گینی را باست یک و دو آنتن آرامی و دو برای کردن 500 mm برای بزرگی فضای‌های فضایی، این آنتن نیز بسته یک و دو آنتن آرامی و دو آنتن آرامی که این آنتن نیز در مجموع زیرین می‌باشد.
که این همان موجود نوشته شده برای SPLSR است. مشاهده می‌گردد که این موجود برای برای برای.

SAR2 = 0.262 \quad \text{AF} = 1.9265

SAR2_{Array} = \frac{\text{SAR2}}{2 \times \text{AF}} = 0.262 \times 0.519 \div 2 = 0.068

جدول (1): مشخصات آنتن دیپل در حالات آرایه‌ای

<table>
<thead>
<tr>
<th>میزان</th>
<th>[SI] (dB)</th>
<th>BW (%</th>
<th>Efficiency</th>
<th>Gain (linear)</th>
<th>SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Dipole (absence of head)</td>
<td>8.5</td>
<td>3</td>
<td>0.9956</td>
<td>5.05</td>
<td>-</td>
</tr>
<tr>
<td>One Dipole (with head)</td>
<td>8.45</td>
<td>3.1</td>
<td>0.9412</td>
<td>5.32</td>
<td>0.741</td>
</tr>
</tbody>
</table>

جدول (2): مشخصات بدست آمده برای حالات آرایه‌ای دیپل

<table>
<thead>
<tr>
<th>میزان</th>
<th>Efficiency</th>
<th>Gain (linear)</th>
<th>SAR(W/kg) or SPLSR(W/kg*mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole1 (absence of head)</td>
<td>0.9975</td>
<td>5.3</td>
<td>-</td>
</tr>
<tr>
<td>Dipole2 (absence of head)</td>
<td>0.9975</td>
<td>5.3</td>
<td>-</td>
</tr>
<tr>
<td>Array (absence of head)</td>
<td>0.9490</td>
<td>10.8</td>
<td>-</td>
</tr>
<tr>
<td>Dipole1 (with head)</td>
<td>0.9426</td>
<td>5.3</td>
<td>0.75 W/kg</td>
</tr>
<tr>
<td>Dipole2 (with head)</td>
<td>0.9558</td>
<td>5.31</td>
<td>0.262 W/kg</td>
</tr>
<tr>
<td>Array (with head)</td>
<td>0.9527</td>
<td>10.23</td>
<td>0.0013 W/kg*mm</td>
</tr>
</tbody>
</table>

طبق اوجه بیان شده جوان گین کاملاً دو یا برای نشده، پس توان ارسالی در هر آنتن را نیز نمی‌توان کاملاً نصب کرد. لذا برای هر آنتن

داریم:

SAR1 = 0.75 \quad \text{AF} = 1.9265

SAR1_{Array} = \frac{\text{SAR1}}{2 \times \text{AF}} = 0.75 \times 0.519 \div 2 = 0.195
اثر تغییر فاز آرایه آنتن‌ها بر گیجه آنتن در شکل (۱۰) قابل مشاهده می‌باشد. هماطورگر که مشاهده می‌شود گیجه آرا به در فاز ۳۰ درجه آنتن اول نسبت به آنتن دوم بهترین گیجه را دارد. شکل (۱۰) این را را در فازهای مختلف نشان می‌دهد. هماطور که مشاهده می‌شود در فازهای که بیشترین گیجه آرا به دست می‌آید می‌توان به بهترین طبق تری دست یافته همجنین همانطور که از شکل (۱۰) پیداست بیشتر فاز ۶۰ درجه نسبت به آنتن اول تغییرات جهانی در مشاهده می‌شود. می‌توان از این تغییر فاز در آنتن برای پوشش بخش‌های بیشتری بهره برد. در واقع یکی از مهمترین مسئله در آنتن‌های آرایه‌ای نحوه پوشش پنل آنتن است.

شکل (۱۰): تغییر فاز آرایه آنتن‌ها و آنتن آبی بر گیجه آرایه (چپ) W/kg*mm SPLSR. (راست)

شکل (۱۱): گیجه آنتن دیپل تکی (چپ) و copol (راست)

شکل (۱۲): گیجه آنتن دیپل آرایه‌ای با ۵ شیفت فاز (چپ) copol و crosspol (راست)

شکل (۱۳): آنتن تفکی طول بر هر آنتن SAR
در واقع همان‌طور که مشاهده شد وجود سر سپی می‌شود که اکثریت‌ها و حتی کمتر از ۲ برای گم را در مقایسه به حالت نیترون در کنار سر، به ما به‌دست‌آورد. با مقایسه نتایج پیش‌آمد در حالت انتظار و حالت MIMO می‌توان ۲۵٪ کاهش را داشتند. و SAR میان‌برایه ۹۲٪ کاهش را نسبت حالت MIMO داشتند. لازم به ذکر است که این مقایسه در پیاده‌سازی ک형 از این نظر گرفته شده که همان ۰.۰۳۳ کیلوگرم. مقایسه می‌دانست که این مقایسه در حالت MIMO و عرض های مختلف همانند حالت انتظار تکی، در حالت تکی می‌تواند بین ۰ و ۱ فاکتور ارزیابی قرار گرفت. جریا که SPRLS می‌تواند که این مقایسه بین این دو مقدار که در این سه خط در سه خط SPRLS دارا و با جمع‌بندی وزنی با توجه به طول SPRLS14 و ۲۰ می‌باشد. سپس SPRLS و مقایسه فارغ از دارای تغییر

جدول (۴): مشخصات آنتن دیپل در حالت آرایه‌ای

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>Gain(linear)</th>
<th>SAR(W/kg) or SPRLS(W/kg*mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole1</td>
<td>۰.۹۴۱۳</td>
<td>۵.۲۸</td>
<td>۰.۷۵۸</td>
</tr>
<tr>
<td>Dipole2</td>
<td>۰.۹۵۰۳</td>
<td>۵.۲۰</td>
<td>۰.۲۶۴</td>
</tr>
<tr>
<td>Array 1 & 2</td>
<td>۰.۹۴۵۰</td>
<td>۱۰.۱۰</td>
<td>۰.۰۱۱۴</td>
</tr>
<tr>
<td>Dipole3</td>
<td>۰.۹۶۰۸</td>
<td>۵.۰۸</td>
<td>۰.۱۵۶</td>
</tr>
<tr>
<td>Dipole4</td>
<td>۰.۹۴۵۸</td>
<td>۵.۲۱</td>
<td>۰.۵۴۷</td>
</tr>
<tr>
<td>Array 3 & 4</td>
<td>۰.۹۵۳۵</td>
<td>۱۰.۱۰</td>
<td>۰.۰۰۰۸</td>
</tr>
</tbody>
</table>

شکل (۱۴): تغییر عرض آنتن و اثر آن بر SPRLS های مختلف

شکل (۱۵): تغییر طول آنتن و اثر آن بر SPRLS های مختلف

برای این منظور به‌عنوان یک منبع پیش‌آمده در هر حالت دیپل تکی و ارایه‌ای با یکدیگر مقایسه شود. ۱۱۲ و ۹۰ درجه نیسان می‌دهد. در حالت آرایه‌ای، ۱۱۲ درجه قدرتین از یک‌دیگر ۴۵ درجه درجه نیسان می‌دهد. در حالت آرایه‌ای، ۱۱۲ درجه قدرتین از یک‌دیگر ۴۵ درجه

شکل (۱۳): حالت آنتن دیپل در کنار سر MIMO

جدول (۵): مشخصات آنتن دیپل در حالت MIMO

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>Gain(linear)</th>
<th>SAR(W/kg) or SPRLS(W/kg*mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole1</td>
<td>۰.۹۳۹۸</td>
<td>۵.۳۲</td>
<td>۰.۷۵۲</td>
</tr>
<tr>
<td>Dipole2</td>
<td>۰.۹۴۹۹</td>
<td>۵.۲۶</td>
<td>۰.۵۷۹</td>
</tr>
<tr>
<td>MIMO</td>
<td>-</td>
<td>-</td>
<td>۰.۰۱۰۲</td>
</tr>
</tbody>
</table>

سال: ۱۳۹۱
پژوهشگر انجمن مهندسی برق و کنترل ایران: سال: چهاردهم - شماره تیتر: تابستان
EBG - مقاييس RSA روش های مختلف بر

جدول 5: مقایسه ایران نویسی و دیگر

<table>
<thead>
<tr>
<th>SAR</th>
<th>Efficiency</th>
<th>Gain (linear)</th>
<th>S-Para (dB)</th>
<th>SAR(W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Dipole</td>
<td>0.9412</td>
<td>5.32</td>
<td>-8.5</td>
<td>0.741</td>
</tr>
<tr>
<td>One Dipole with EBG</td>
<td>0.9353</td>
<td>4.67</td>
<td>-13.7</td>
<td>0.663</td>
</tr>
<tr>
<td>Array Dipole</td>
<td>0.9412</td>
<td>10.34</td>
<td>-8.5</td>
<td>0.195(one antenna)</td>
</tr>
</tbody>
</table>

از نکات مثبت روش تقصیم نیاز باز داشته، می‌توان به کاهش بازی اثرات انحرافی اشاره کرد. در مواردی که یک شست‌کن یا همکار فنی یا طراحی اما همانند با یک روش تقصیم نیاز دارد، می‌توان با بهره‌گیری از چنین روش‌ها، این امر را بهبود دهیم. بنابراین، نیاز به این روش‌ها برای مناسب‌سازی متغیرهای مختلف می‌باشد.

- مقایسه RSA روش های مختلف بر

مراجع

8. Sang il Kwak; Dong-Uk Sim; Jong Hwa Kwon, "Design of Optimized Multilayer MIMO With the EBG Structure for SAR Reduction in Mobile Applications,"

1 Specific Absorption Rate
2 Signal to Noise Ratio
3 Array Factor
4 Multi Input Multi Output
5 Electromagnetic Band Gap
6 electrically steerable parasitic array radiator
7 Printed Inverted F-Antenna
8 electroencephalogram
9 time-averaged simultaneous peak SAR
10 International Commission on Non-Ionizing Radiation Protection
11 Federal Communications Commission
12 SAR to Peak Location Separation Ratio