کاهش اثرات امواج موبایل به کمک آنتن‌های آرایهای و تفکیک یک نقطه داغ به چند نقطه داغ

مقدمه:
در این مقاله شویه جدیدی برای کاهش نرخ جذب ویژه (SAR) در گوشی‌های موبایل آرایه می‌شود. برای این کار از ابده آنتن‌های آرایه استفاده شده است. این سپس می‌شود تا بتوان با بهره‌گیری از گیم بیشتر در این نوع آنتن‌ها، اثر گوشی‌های موبایل را به‌جای تمرکز در یک نقطه در چند نقطه متشرک کرد. به‌دلیل اینکه (SAR) صورتی را نشان می‌دهد که در هر یک از نقاط پرپلاک آرایه (AF) بهتری داشته باشد. از طرف دیگر بازیابی SRN در حالت آرایه به همان و پرپلاک در حالی که آنتن‌های بسته بیاد کرده در نهایت به کمک این روش می‌توان اثرات امواج موبایل بر سر را تا 75% برای هر آنتن و تا 95% در حالت MIMO کاهش داد. همچنین نشان داده شده است که این روش نسبت به روش EBG، نتایج بهتری دارد.

کلمات کلیدی: SAR، آنتن‌های آرایه‌ای، نقطه داغ

تاریخ ارسال مقاله: 1394/06/23
تاریخ پذیرش مسئول: 1395/06/09
تاریخ پذیرش مسئول: 1395/01/19
نام نویسنده مسئول: دکتر رحیم المنطقة برگنی
نشانی نویسنده مسئول: ایران - تهران - خیابان حافظ - پلاک 424 - دانشگاه صنعتی امیرکبیر - دانشکده برق

1- کارشناسی ارشد - دانشگاه مهندسی برق - دانشگاه صنعتی امیرکبیر - تهران - ایران
vahidgh@aut.ac.ir
2- استاد - دانشگاه مهندسی کامپیوتر - دانشگاه صنعتی امیرکبیر - تهران - ایران
atatavakoli@aut.ac.ir
3- استادیار - دانشگاه مهندسی کامپیوتر - دانشگاه صنعتی امیرکبیر - تهران - ایران
mirzavand@aut.ac.ir
4- استادیار - دانشگاه مهندسی کامپیوتر - دانشگاه صنعتی امیرکبیر - تهران - ایران
pdekhoda@aut.ac.ir
1- مقدمه

نسل جدید موبایل LTE امروزه رو به گسترش است. در واقع این نسل کمک می‌کند ازبود انتقالات از طرف فناکستی بیشتر و با توان بیشتر پنل‌های کنترلی مثل ایستگاه‌های مهندسی نیست. در حقیقت استفاده از موتور می‌تواند به اینسان کمک دهد که باکس همکاری با رایانه فناکستی بسیار کمی شود.

\[
SPLSR = \frac{(SARI + SAR2)}{D}
\]

که σ در ان ضریب گرند به‌کار می‌برده است. در واقع این نسل کمک می‌کند ازبود انتقالات از طرف فناکستی بیشتر و با توان بیشتر پنل‌های کنترلی مثل ایستگاه‌های مهندسی نیست. در حقیقت استفاده از موتور می‌تواند به اینسان کمک دهد که باکس همکاری با رایانه فناکستی بسیار کمی شود.

2- تاثیر آنی های آسیا ای و چند نقطه داغ

همانطور که از اسم تور که با توان یک پداس هدف تخمین کی پنل داغ به دو یا چند نقطه داغ است. در واقع اگر بتوان یک پنل داغ را به شکل SAR چند نقطه داغ با انرژی کمتر (استیل) به دو نقطه داغ کمter (استیل) به دو نقطه داغ کمتر (استیل) به دو نقطه دаг
شاد و بحری میانگین کردن توان ارسالی بر روی سیر به این‌گونه سیر به
در آنتن‌های آرامی‌های می‌توان توان ارسالی را با گیپ بینشبرای
شکل متمرکزی ارسال کرد. در واقع طبق رابطه (2) برای آنتن‌های
آرامی‌های نه تنها ارسالی از طریق دو آنتن ارسالی می‌شود. البته
گنگ آنتن نیز در مجموع زیادتر می‌شود:

\[E_{\text{Array}} = E_{\text{one-antenna}} \times \sin(\theta) \]

(4)

در رابطه (4) ضریب آرامی است و \(E(0,0) \) A، و

\[\frac{\text{d} E_{\text{Array}}}{\text{d} \theta} \]

در واقع، آنتن‌های آرامی با در

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\frac{\sin(\theta)}{\sin(0)} \]

به شکلی متمرکزی ارسال می‌کنند. لذا، در واقع

\[\cos(\theta) \]
که این همان مقدار نوشتی مشاهده شده برای SPLSR است.

جدول (1): مشخصات آنتن دیپل در حالت MIMO

<table>
<thead>
<tr>
<th>One Dipole (absence of head)</th>
<th>One Dipole (with head)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency (linear)</td>
<td>Gain (linear)</td>
</tr>
<tr>
<td>0.9975</td>
<td>5.3</td>
</tr>
<tr>
<td>0.9975</td>
<td>5.3</td>
</tr>
<tr>
<td>0.9490</td>
<td>10.8</td>
</tr>
<tr>
<td>0.9426</td>
<td>5.3</td>
</tr>
<tr>
<td>0.9558</td>
<td>5.31</td>
</tr>
<tr>
<td>0.9527</td>
<td>10.23</td>
</tr>
</tbody>
</table>

طق انتهای بین شروع و پایان جیر کردن کابل دو برابر نشده، پس ون ارسالی در هر آنتن را نیز نیاز دارد. بنابراین که این مقدار نیاز دارد.

دایریم:

SAR1 = 0.75 AF = 1.9265
SAR1Array = SAR1 / 2 * AF = 0.75 * 0.519 / 2 = 0.195
اثر تغییر فاز آرایه آننت‌ها بر گین آننت در شکل (10) قابل مشاهده می‌باشد. همان‌طور که مشاهده می‌شود گین آرایه در فاز 30 درجه آننت اول نسبت به آننت دوم به‌ترتیب گین را دارد. شکل (10) را در فاز‌های مختلف نشان می‌دهد. همان‌طور که مشاهده می‌شود در فازی که بیشترین گین از آرایه بدست می‌آید می‌توان به تغییرات جنبی در SPLSR توان به تغییرات جنبی در SPLSR عرض آننت ها می‌شود. می‌توان از این تغییرات جنبی در SPLSR آرایه‌ای تغییرات جنبی به جهت در واقع یکی از مهم‌ترین مسائل در آننت‌های آرایه‌ای نحوه پوشش پنجره آنتن است.

شکل (10): تغییر فاز آرایه آنتن‌ها و آنتن بر گین آرایه (چپ)

W/kg*mm SPLSR. (راست)

شکل (11): گین آنتن دیپل تکی (راست) و copol (چپ)

شکل (12): گین آنتن دیپل آرامهای با 5 شیفت فاز (180°) copol (راست) و crosspol (چپ)

شکل (13): اثر طول آنتن بر گین آنتن‌ها

SAR هر آنتن

شکل (14): اثر تغییر طول بر SAR
در واقع هماپاتور که مشاهده شد وجود سر سپی می‌شود که کاهش داشته باشد و هنک کمتر از ۲ برابر گیم را می‌تواند در آن حالت می‌شود.

با مقایسه نتایج بررسی در حالت MIMO مشاهده می‌شود که MIMO Array پرایه هز در ۷۵% کاهش را داشته و SAR MIMO ۹۲% کاهش را نسبت حالت MIMO و سپرایه MIMO داشته است. در این بررسی، این مقایسه بین دیدنی‌ها در حالت MIMO SPRLSR از طول رشته خفیف همانند نتایج آراهای تکی و نتایج مورد یافتن گرفتگی‌ها نشان می‌دهد.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

سپشتفور در حالت MIMO مشاهده می‌شود که جهت حمایت از این آراهای این نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

در حالت MIMO مشاهده می‌شود که جهت حمایت از این آراهای این نیز جزئی است.

یک قانون برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

ورود پریش بین دیدنی HPRBW و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.

برای این منظور با نمایش پرایه هز در حالت دیپلک تکی و آراهای با چندگات می‌شود و در حالت آراهای در حال افزایش ۹۰ درجه پرایه HPRBW نشان می‌دهد. پس هرچند گرفتگی فاز بسیار کم می‌شود و این آراهای برای تهیه کننده این افزایش آراهای نیز جزئی است.
EBG - مقایسه با روش مولتیلایه‌ای

از نکات مثبت روش تکسیم مقدار داغ می‌توان به کاهش برخی اثرات انرژی اشاره کرد. این روش به‌طور کلی بهبود سیستم‌های امکان‌پذیر نشان می‌دهد. با این حال، تحقیقات بیشتری در این زمینه لازم است.

جدول ۵: مقایسه اثرات روش‌های مختلف بر

<table>
<thead>
<tr>
<th>روش</th>
<th>اثربخشی</th>
<th>پارامتر S-Para (dB)</th>
<th>SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBG</td>
<td>0.9412</td>
<td>5.32</td>
<td>0.741</td>
</tr>
<tr>
<td>One Dipole with EBG</td>
<td>0.9353</td>
<td>4.67</td>
<td>0.663</td>
</tr>
<tr>
<td>Array Dipole</td>
<td>0.9412</td>
<td>10.34</td>
<td>0.195</td>
</tr>
</tbody>
</table>

دیگر یک نکته مثبت این روش نسبت به EBG انرژی امکان‌پذیر بر روی سایر سیستم‌های دیگر انرژی کاهش دارد. این بدان معناست که در این روش، تغییرات کاهش انرژی حاصل از روش‌های مختلف احتمالاً بهبود می‌یابد.

1 Specific Absorption Rate
2 Signal to Noise Ratio
3 Array Factor
4 Multi Input Multi Output
5 Electromagnetic Band Gap
6 electrically steerable parasitic array radiator
7 Printed Inverted F-Antenna
8 Electroencephalogram
9 time-averaged simultaneous peak SAR
10 International Commission on Non-Ionizing Radiation Protection
11 Federal Communications Commission
12 SAR to Peak Location Separation Ratio