تخمین جهت منابع با استفاده از زیرفضای ختی-راثو

سینا مجدیان
فرزند حدادی

1- کارشناسی ارشد- دانشکده مهندسی برق- دانشگاه علم و صنعت ایران- تهران- ایران
s_majidian@elec.iust.ac.ir

2- استادیار- دانشکده مهندسی برق- دانشگاه علم و صنعت ایران- تهران- ایران
farzanhaddadi@iust.ac.ir

چکیده: یک مقاله به بررسی تخمین جهت منابع با استفاده از زیرفضای آرایه خاتمی می‌پردازد. در حالتی که تعداد منابع بیشتر از تعداد عناصر آرایه است، روش زیرفضای ختی-راثو مختص منابع شبیه سالن‌ راست به کار می‌رود. در این مقاله اثباتی انجام شده است. علاوه بر این کران کاربری-راثو برای حالتی که تعداد منابع شده و شرط باید بالای هالهای مختلف ارائه خواهد شد. علاوه بر این کران کاربری-راثو برای حالتی که تعداد منابع بیشتر از تعداد عناصر آرایه می‌آید، محاسبه خواهد شد.

همچنین نتایج حاکی از آن است که عملکرد روش ختی-راثو از نظر خط در حدود 3DB با کران کاربری-راثو فاصله دارد.

کلمات کلیدی: پردازش سیگنال آرایه‌ای، تخمین جهت منابع، منابع آیستن، ختی-راثو

تاريخ ارسال مقاله: 1394/6/16
تاريخ پذيرش مراجعه مقاله: 1395/9/1
تاريخ پذيرش مقاله: 1395/9/2
نام نویسندگان مسئول: دکتر فرزان حدادی
نشانی نویسندگان مسئول: ایران- تهران- نام- دانشکده علم و صنعت- دانشگاه مهندسی برق.
facebook

کیکی از گزارش‌های سیار مهم آرایه‌ای از آن‌های تخمین جهت منابع می‌باشد. از طرف دیگر، روش‌های پایداری به حساب اندازه‌گیری از ورودی نمونه‌ای می‌باشد.

1- مقدمه

یکی از این روش‌ها، می‌تواند به صورت زیر خواهد بود:

d(1)

مدل سیاله تخمین جهت منابع به صورت زیر خواهد بود:

\[
x(t) = \sum_{k=1}^{q} a(\theta_k) s(t) + n(t)
\]

که در آن \(p\) شکل برداری \(a(\theta_k)\) مقادیر \(\theta_k\) می‌باشد.

\[
a(\theta_k) = \begin{bmatrix}
 e^{2\pi i \sin(\theta_k)} \\
 e^{2\pi i \cos(\theta_k)}
\end{bmatrix}
\]

که در آن \(p\) استفاده می‌شود.

\[
A = \begin{bmatrix}
 a(\theta_1) \\
 \vdots \\
 a(\theta_q)
\end{bmatrix}
\]

\[
s(t) = \begin{bmatrix}
 s_1(t) \\
 \vdots \\
 s_q(t)
\end{bmatrix}
\]

بدین ترتیب به صورت زیر می‌توان نوشته اد:

\[
x(t) = A(\theta)s(t) + n(t)
\]

که در آن \(A(\theta)\) استفاده می‌شود.

\[
R_p = E[x(t)x^*(t)] = AR_p A^* + R_n
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

در این صورت جهت منابع می‌تواند در طبق بالا می‌باشد.

2- روش میوزیک

میوزیک‌یکی از مدل‌های زیر روش‌ها در تخمین جهت منابع است. با استفاده از تعریف مقداری می‌باشد.

\[
v_n = [q_{q+1}, \ldots, q_p]
\]

\[
A(n) = \begin{bmatrix}
 a(\theta_1) \\
 \vdots \\
 a(\theta_q)
\end{bmatrix}
\]

\[
s(t) = \begin{bmatrix}
 s_1(t) \\
 \vdots \\
 s_q(t)
\end{bmatrix}
\]

\[
x(t) = A(\theta)s(t) + n(t)
\]

\[
R_p = E[x(t)x^*(t)] = AR_p A^* + R_n
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E|s(t)|^2 = r_i(m)
\]

\[
t \in \{m-1, mK - 1, \ldots, M\}
\]

\[
k = \min\{r_i \leq M, k_i \leq K\}
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
v_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E[x(t)x^*(t)] \in C^{p \times p}
\]

\[
R_p = E[x(t)x^*(t)] = AR_p A^* + R_n
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E|x(t)x^*(t)|^2 = r_i(m)
\]

\[
t \in \{m-1, mK - 1, \ldots, M\}
\]

\[
k = \min\{r_i \leq M, k_i \leq K\}
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
v_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E[x(t)x^*(t)] \in C^{p \times p}
\]

\[
R_p = E[x(t)x^*(t)] = AR_p A^* + R_n
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E|x(t)x^*(t)|^2 = r_i(m)
\]

\[
t \in \{m-1, mK - 1, \ldots, M\}
\]

\[
k = \min\{r_i \leq M, k_i \leq K\}
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
v_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E[x(t)x^*(t)] \in C^{p \times p}
\]

\[
R_p = E[x(t)x^*(t)] = AR_p A^* + R_n
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]

\[
E|x(t)x^*(t)|^2 = r_i(m)
\]

\[
t \in \{m-1, mK - 1, \ldots, M\}
\]

\[
k = \min\{r_i \leq M, k_i \leq K\}
\]

\[
q_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
v_i = \min\{r_i \leq M, k_i \leq K\}
\]

\[
\rho_{\text{Music}}(\theta) = \frac{1}{a H(\theta) V_n V_r^* a(\theta)}
\]
3-1- تئوری
مدل راه شده در (5) را می‌توان به صورت ماتریس نیز نشان داد:

\[X = A(\theta)S + N \]

\[\hat{A}(\theta) = [a_1(\theta), \ldots, a_p(\theta)]_{(p \times q)} \]

\[S = [S_1, \ldots, S_q]^T \]

\[\eta = \text{rank}(S) \]

\[\text{rank}(SS^H) = \eta \]

3-2- یکتاپای روش خری - راتو برای هر مجموعه داده
یکی از نواورهایی که پروژه محسوبه شرایط یکتاپای جواب مستقل
خویش را می‌باشد. در این بخش می‌توانید که داده‌ها و یا هر مجموعه
برای هر محقق از داده‌ها مقررات می‌کنید. از یکتاپای که
توصیف‌گری بر مبنای داده‌های یکتاپای ندارد. از این صرف نظر شدید.

\[B = A^*A \]

\[Y = B(\theta)\psi = B(\theta')\psi' \]

\[[B(\theta) B(\theta')] \begin{bmatrix} \psi \\ -\psi' \end{bmatrix} = 0 \]

\[\zeta = \text{null}[B(\theta)B'(\theta)] < V = \text{rank} \begin{bmatrix} \psi \\ -\psi' \end{bmatrix} \]

\[\eta = \text{rank}[\psi] \]

\[r_m = \text{vec}(R_x^{(m)}) = \text{vec}(\text{AR}_x^{(m)}A^H) + \text{vec}(R_m) \]

\[Y_m = \text{vec}(R_x^{(m)}) = \text{vec}(\text{AR}_x^{(m)}A^H) + \text{vec}(R_m) \]

\[X = A(\theta)S + N \]

\[\hat{A}(\theta) = [a_1(\theta), \ldots, a_p(\theta)]_{(p \times q)} \]

\[S = [S_1, \ldots, S_q]^T \]

\[\eta = \text{rank}(S) \]

\[\text{rank}(SS^H) = \eta \]

3-3- یکتاپای در مساله تخمین جهت منبع
بخت مه‌ی در تخمین جهت منبع با استفاده از بردارش از ایرادهای
یکتاپای جواب‌بردارش. در این بخش می‌توانید شرایطی است که در آن
بتون به صورت یکتاپای جهت منبع زد این مساله برای ارائه
خطیکیکنخود توسط بررسی موردنامه و یا در داده‌ها
دیده‌ای به در نظر گرفته می‌شود.

\[V \geq \eta = \text{rank}[\psi] \]

\[\zeta = \text{null}[B(\theta)B'(\theta)] < V = \text{rank} \begin{bmatrix} \psi \\ -\psi' \end{bmatrix} \]

\[\eta = \text{rank}[\psi] \]

\[r_m = \text{vec}(R_x^{(m)}) = \text{vec}(\text{AR}_x^{(m)}A^H) + \text{vec}(R_m) \]

\[Y_m = \text{vec}(R_x^{(m)}) = \text{vec}(\text{AR}_x^{(m)}A^H) + \text{vec}(R_m) \]

\[X = A(\theta)S + N \]

\[\hat{A}(\theta) = [a_1(\theta), \ldots, a_p(\theta)]_{(p \times q)} \]

\[S = [S_1, \ldots, S_q]^T \]

\[\eta = \text{rank}(S) \]

\[\text{rank}(SS^H) = \eta \]
3-3- یکتاپی روش خنثی- روان برای تقریب هر مجموعه داده

حال یکتاپی را برای هر مجموعه داده Y در جز مجموعه‌های با احتمال صفر بررسی می‌کنیم. مجموعه‌ی محدود شده از ماتریس Y به نظر بگیرید:

$$Y(\theta) = \{ Y | Y = B(\theta)\psi \}$$

فرض می‌کنیم θ و θ' دو مجموعه جواب باشند. حال تعریف می‌کنیم:

$$D(\theta) = U_{\theta'} D(\theta, \theta')$$

که بر آن

$$D(\theta, \theta') = \{ Y | Y = B(\theta)\psi = B(\theta')\psi \}$$

از انجایی که $Rank(Y) = \eta$ و هر سرویسنگ η کسترسیز (2p - 1) از η است. بنابراین برای توصیف Y به نظریه یکتاپی قابل ملاحظه است

$$\dim Y(\theta) = 2(2p - 1)\eta$$

$$\dim D(\theta, \theta') = 2\eta \zeta$$

و همکاری می‌گیریم.

$$\zeta < 2q - (2p - 1)$$

$$\dim D(\theta) \leq 2(2q - (2p - 1))\eta + q$$

$$\dim D(\theta) < \dim Y(\theta)$$

$$q < \frac{4\eta}{4\eta + 1} (2p - 1)$$

3-4- یکتاپی روش خنثی- روان برای داده های مشروط

در این قسمت فرض می‌کنیم محدودیتی بنیاد صورت زیر بر سری‌گال باشد:

$$E[f(t_1)]^2, \lambda_{ij}^k = 0$$

$$k = 1, \ldots, m \text{ and } j = 1, \ldots, f$$

$$f(t_1) \text{ که در آن } t_1 \text{ مانند مرتیه دوم می‌گیرد در زمان } E[\sum_{j=1}^f \lambda_{ij}^k] \text{ یک تغییرات از ایندکس مختلط خط حیاتی است. یک بردار از پارامترها با } \mu \text{ پارامتر حقیقی است}$$

$$\begin{aligned}
\text{حال باید داشته باشیم:} \\
q &< \frac{4\eta}{4\eta + 1} (2p - 1)
\end{aligned}$$
3- توصیف روش خزیرای-راون برای منابع آبیاری

همانطور که گفته شد روش خزیرای-راون برای منابع شیب‌سازی معرفی شده است. این روش کارایی این روش برای منابع ایستان به طور مختصر تبعیضی مشود. منابع ایستان به هر فرم تخمینی از ماتریس همبستگی معرفی می‌شود. سپس با ماتریس سایر مربوط به هر فرم به عنوان ستون y_m جمله y قرار می‌دهیم.

$$Y = [y_1, \ldots, y_{\mu}]$$

بدین ترتیب خواهیم داشت:

$$Y = (A' \otimes A) \mu + \sigma^2 \text{vec}(I) 1_M$$

که می‌تواند نتیجه از تخمین‌هایی در فرم‌های خاص $Q = [y_1^T \ldots y_{\mu}^T]^T$ باشد.

4- بسته روش خزیرای-راون برای منابع آبیاری

همانطور که گفته شد روش خزیرای-راون برای منابع شیب‌سازی معرفی شده است. این روش کارایی این روش برای منابع ایستان به طور مختصر تبعیضی مشود. منابع ایستان به هر فرم تخمینی از ماتریس همبستگی معرفی می‌شود. سپس با ماتریس سایر مربوط به هر فرم به عنوان ستون y_m جمله y قرار می‌دهیم.

$$Y = [y_1, \ldots, y_{\mu}]$$

بدین ترتیب خواهیم داشت:

$$Y = (A' \otimes A) \mu + \sigma^2 \text{vec}(I) 1_M$$

که می‌تواند نتیجه از تخمین‌هایی در فرم‌های خاص $Q = [y_1^T \ldots y_{\mu}^T]^T$ باشد.

$$Y = (A' \otimes A) \mu + \sigma^2 \text{vec}(I) 1_M$$

که می‌تواند نتیجه از تخمین‌هایی در فرم‌های خاص $Q = [y_1^T \ldots y_{\mu}^T]^T$ باشد.
جهر منبع به تعداد q تا می‌باشد. جذر واریانس نوزه می‌باشد.
یک بردار شامل عنصری روی چند، یک تخمین ρ مجموعه عناصر با ماتریس همبستگی منبع است. این صورت برای به‌طور خلاصه خطای تنها یکی از وضعیت مهم، اما غیرسنجی نیست، و به صفر بررسی‌پذیرا می‌باشد. بنابراین ρ است پس

$$\rho: \left[R_s^{(1)}, \ldots, R_s^{(q,q)} \right]^T$$

با استفاده از رابطه (19) و خواص ستونی سایز داریم.

CRB - 5 - کران کارم-رانو

معیار بسیار مهم بسیار سنجش عاملی و تخمین گر خطای آن است.
کم بودن خطای مجموعه‌ای عاملی و تخمین است. این صورت می‌تواند خطای مقدار حداکثری گر در مبنا نماید. قدم بسیار مهم، حداقل خطای مقدار حداکثری گر مسابقه کارم-رانو، و ماتریس همبستگی منبع است.

$$\rho: \left[R_s^{(i,j)}, \Im(R_s^{(i,j)}) \right]$$

$$\text{FIM}_{ij} = N\text{Tr} \left(\frac{dR_s}{d\theta_i} \frac{dR_s}{d\theta_j} \right)$$

$$\text{FIM} = -E \left[\frac{d^2|\ln p(x; \alpha)|}{d\alpha^2} \right]$$

$$\alpha = [\theta^T \rho^T \sigma]^T$$

$$\theta = [\theta_1, \ldots, \theta_q]^T$$

که در آن σ^2 میانگین و FIM و α رتبه ماتریس اطلاعات فیشر و بردار می‌باشد.

5.2 کران کارم-رانو برای منابع ناشی‌برنده بیشتر از تعداد عنصر آرایه

در این بخش مبنا نمایش کردن کارم-رانو برای منابع ناشی‌برنده به تعداد بیشتر از تعداد عنصر آرایه مقدار است. در این شرایط، می‌توانیم میانگین عنصری بیشتر فرکتالی ماتریس همبستگی منبع نیست و آن را یکی از فرضیه‌های نظری می‌گیریم. در این صورت بردار می‌باشد به صورت زیر است:

$$\alpha = [\theta^T \rho^T \sigma]^T$$

$$\theta = [\theta_1, \ldots, \theta_q]^T$$

که در آن σ^2 میانگین و FIM و α رتبه ماتریس اطلاعات فیشر و بردار می‌باشد.

5.1.2 کران کارم-رانو برای تعداد منابع کمتر از تعداد عنصر آرایه

همانطور که اشاره شد درباره ماتریس همبستگی سیگنال در رابطه دیده است:

$$R_s = AR_s A^H + \sigma^2 I$$

در این مثال بردار می‌باشد به صورت زیر است:

$$\alpha = [\theta^T \rho^T \sigma]^T$$

$$\theta = [\theta_1, \ldots, \theta_q]^T$$

که در آن σ^2 میانگین و FIM و α رتبه ماتریس اطلاعات فیشر و بردار می‌باشد.
همچنین
\[\frac{dvec(R_x)}{d\theta} = (A^* \otimes A)vec(\mathbf{I}) \]

که در آن \(I \) تار ماتریس همبستگی که می‌تواند یک تار است. این تار سطحی از این شکل است که همه دیاک- \(q \times p^2 \) (\(q \times q(r + 1) \) ام که یک می‌باشد.

در این عبارت با یک ماتریس همبستگی که رقیق تار مقدار دارد، هر از این تار برای بررسی مشتق می‌گردد. منظور از این مشتق درست نیست که همه دیاک- \(q \times q(r + 1) \) ام که یک می‌باشد.

به صورت زیر است:

\[\mathbf{u} = \left(R_x^T \otimes R_x^{-1} \right) \frac{dr}{d\sigma} \]

به صورت زیر است:

\[\frac{1}{N} \text{FIM}_{ij} = \text{vec} \left(\frac{dR_x}{d\alpha} \right) \left(R_x^T \otimes R_x^{-1} \right) \text{vec} \left(\frac{dR_x}{d\alpha} \right) \]

و به طور معادل

\[\frac{1}{N} \text{FIM} = \left(\frac{dr}{d\alpha} \right)^T \left(R_x^T \otimes R_x^{-1} \right) \left(\frac{dr}{d\alpha} \right) \]

که در آن

\[r = \text{vec}(R_x) = (A^* \otimes A)\text{vec}(R_x) + \sigma^2 \text{vec}(I) \]

متونام به دو بخش جدا کنیم:

\[\left(R_x^T \otimes R_x^{-1} \right) \frac{dr}{d\theta} = \left(R_x^T \otimes R_x^{-1} \right) \frac{dr}{d\sigma} \]

به صورت زیر است:

\[\frac{1}{N} \text{FIM} = \begin{bmatrix} \mathbf{G} & \frac{\mathbf{D}^H \mathbf{D}}{\Delta} \end{bmatrix} = \begin{bmatrix} \mathbf{G}^H & \frac{\mathbf{G}^H \mathbf{D} \mathbf{D}^H \mathbf{G}^{-1}}{\Delta} \end{bmatrix} \]

به طور جداکنیم که با دیال کردن از این مشتق فقط مکوس بلوک اولی از ماتریس اطلاعات فوق بیانی کافی است. با استفاده از رابطه اول قسمت مکوس ماتریس

\[\text{CRB}(\theta) = \frac{1}{N} (\mathbf{G}^H \mathbf{G} - \mathbf{D}^H \mathbf{D})^{-1} \]

به صورت زیر است:

\[\Delta = \begin{bmatrix} \frac{dr}{d\theta} & \frac{dr}{d\sigma} \end{bmatrix} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]

به صورت زیر است:

\[\frac{dR_x}{d\theta} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \frac{\mathbf{A}^* + \mathbf{A}_c \mathbf{d}_k^*} \frac{\mathbf{d}_k}{\mathbf{d}_k} \]
شکل (4): مقایسه RMSE و کران کرم-رانو برای روش خری-رانو.

شکل (5): تغییر RMSE برای روش خری-رانو در مقایسه با مونتاژ کامیاب.

شکل (3): مقایسه خطای روش خری-رانو بر حسب تعداد منابع برای $SNR=10,15,20,25,30,35,40,45,50$ dB. نتیجه گرفته که کران کرم-رانو برای تعداد منابع ناهم‌سنتی بیشتر از چهار منبع از منابع هشتی به کار می‌رود.

شکل (2): مقایسه خطای روش خری-رانو بر حسب تعداد منابع برای $SNR=10,15,20,25,30,35,40,45,50$ dB. نتیجه گرفته که کران کرم-رانو برای تعداد منابع ناهم‌سنتی بیشتر از چهار منبع از منابع هشتی به کار می‌رود.

شکل (1): خطیت روش خری-رانو در مقایسه با مونتاژ کامیاب.

همچنین در این حالات، توزیع مقادیر خطای δ داده‌های دریافتی را می‌توانیم با استفاده از منابع برای روش خری-رانو در شکل (4) نشان دهیم.

برای یک کانال ناهم‌سنتی بیشتر از $\theta = 10^\circ, 30^\circ, 55^\circ, 70^\circ$ در محدوده ± 5 درجه، توزیع زمینه مقادیر خطای روش ارائه شده کران رسم شده است.

$RMSE^2 = \frac{1}{N_M} \sum_{i=1}^{N_M} (\theta - \theta_i)^2$ (110)

که در آن θ_i نمودار اجرای مونتاژ i-کانالی به این شکل نشان می‌دهد.

شکل زیر مقادیر میزان خطای روش ارائه شده کران رسم شده است.
شکل (۶): مقایسه بین توزیع مقدار بروزه داده‌ها برای دو منبع ایستا و شیب ایستا. مشاهده می‌گردد که اختلاف بین مقدار بروزه‌های موزیک که برای دو منبع ایستا و شیب ایستا به‌طور جداگانه به دست آمده است در ادامه خطا تخمین برای دو منبع ایستا و شیب ایستا بر حسب طول فریم مقایسه شده است. تعداد نمونه‌ها N=1000 و نسبت SNR=10dB در این مقاله این داده به‌طور پیشنهادی تخمین چه جهت منابع با استفاده از آرایه‌ای از آنتن مورد بررسی قرار گرفته است. در سال 2010 برای تخمین تعداد منابع در این روش اینکه که بایستی از تعداد عنصر ارایه هگانیک هستند. مشاهده شده است. با این حال این مقاله، شایعه برای کارکردهای جواب مالی تخمین جهت منابع در محل خروجی‌ها بررسی شده است. به صورت نامشخصی برای تعداد منابع قابل تخمین بر حسب تعداد عنصر آرایه راهبردی برای مشاهداتی است. در این مقاله تعداد منابع قابل تخمین برای روی خروجی‌ها بیشتر از تعداد عنصر آرایه به دست می‌آید. همچنین این ابزار کارایی روش خروجی راهبردی برای منابع ایستا را ارائه داشته است.

شکل (۷): مقایسه روش خروجی‌ها برای منبع ایستا و شیب ایستا. با افزایش طول فریم روش برای منابع شیب ایستا بهتر عمل می‌کند.

همچنین مشاهده می‌گردد که خطا برای منبع ایستا را بهتر از ایستا است. این بدان علت است که برای منبع ایستا گزارش خنک می‌کند. با افزایش طول فریم تجربه می‌کند. خود را با این تغییرات همانندی که به آن ممکن است تبادل متغیر در محاسبه ضریب ماتریس همبستگی ناتورال گزارش خنک که برای منبع ایستا دارد. در شرایطی که تعداد نمونه‌ها نخستین خطا تخمین برای منابع ایستا کمتر از منابع شیب ایستا است، که این موضوع به دست ناتوانی در تخمین واریانس منابع به دست آمده است.
بدین ترتیب در این شرایط گروه‌ی PMHT-Rao برای منابع ایستاژ
نسبت به منابع هم‌تیز عملاً اکثریت پهپاد دارد.

ضمن ایم

در این قسمت اثبات قضیه 2 آنچه می‌تواند به راه نشان دادن رته ستونی کامل بودن با احتمال یک می‌باشد:

\[P(Q \text{ be full column rank}) = 1 \]

\[P(c^T Q = 0) = 0 \]

که در آن \(c^T \) یک بردار با \(M + 1 \) می‌باشد. به طور مداوم:

\[P \left(\sum_{i=1}^{M} c_i \psi_i + c_{M+1} \mathbf{1}_M^T = 0 \right) = 0 \]

که در آن \(\psi_i \) ستونی از \(\psi \) است. اگر نامگذاری کنیم:

\[W = \sum_{i=1}^{M} c_i \psi_i \]

\[k = -c_{M+1} \mathbf{1}_M^T \]

به طور مداوم می‌توان نوشته:

\[P(W = k) = 0 \]

صدای تاب خواهد بود. همچنین از آنگاهی که منابع گوسی فرض
شدید، تخمین متاسف همبستگی دارای توزیع بیشتری می‌باشد.
بنابراین، پس از توجه به آن \(\psi_i \) دارای توزیع واریانس خواهد بود.
از آنجایی که تکیپ خلیان \(W \) هم یک متغیر تصادفی با توزیع
پیوسته است، احتمال رخ دادن رابطه فضای خواهید بود. بدین ترتیب
اثبات قضیه کامل است. بدین ترتیب با حذف نویز و نزدیکی متداوم و به
می‌توان جدید شرایط را تخمین زد.

مراجع

جله انجمن مهندسان برق و الکترونیک ایران - سال جامعه - شماره دوم - تابستان 1396

پایه یک

بام‌پردازی‌ها

beam forming
Capon
Bartlett
MUSIC (multiple signal classification)
Khatrī-Rao approach
nested array
'co-prime array
'dynamic array
'Cramer-Rao band (CRB)
'steering vector
'vectorization
'projection
'Singular Value Decomposition (SVD)
'Bresler
'Wax and Ziskind
'Every batch
'Almost every batch
'unbiased
'regularity
'Stoica
'Hermitian
'MATLAB
'Root mean square error
'Monte-Carlo
'Wishart