تحليل عملکرد حالت دائم مارشین دوتحریکه بدون جاروبرگ

سجاد توحیدی

- استادیار، دانشکده مهندسی برق و کامپیوتر- دانشگاه تبریز- تبریز- ایران
stohidi@tabrizu.ac.ir

چکیده: مارشین دوتحریکه بدون جاروبرگ (BDFM) در واقع نوعی مارشین القایی است که درایو دو سپریچی در استاتور و برخوردار از دور تخشی خاص است. این مارشین به دلیل عدم استفاده از جاروبرگ و حلقهای فلزی نگاره چیت استفاده در کاربردهایی که قابلیت اطمینان بالا مورد نیاز است. نظریه توربین‌های بادی مورد راهنماً قرار گرفته است. در این مقاله، عملکرد حالت دائم مارشین القایی و سنگون در دو مورد: چکش‌ها و بادی‌های مداری نشان داده شده که در مورد بادی‌های مداری عملکرد موارد در حالت دائم با تغییرات جاروبرگ صرف نظر بهبود می‌یابد.

کلمات کلیدی: مارشین دوتحریکه بدون جاروبرگ، مود سنگون، عملکرد حالت دائم، چکش‌ها و بادی‌های مداری

تاريخ ارسال مقاله: 1392/12/18
تاريخ پذیرش مشروط مقاله: 1392/7/23
تاريخ پذیرش مقاله: 1392/11/21
نام نویسنده مسئول: دکتر سجاد توحیدی
نام نویسنده مسئول: تبریز، بلوار 29 بهمن، دانشگاه تبریز، دانشکده مهندسی برق و کامپیوتر، اتاق 110
به منظور جلوگیری از ترکیب مستقیم PW و CW و در عین حال بیشترین نتایج را داشته باشیم در این مقاله، سیمپویزیشن و حل معادلات انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

$$M = \begin{bmatrix} M_{11} & 0 & M_{13} \\ 0 & M_{22} & M_{23} \\ M_{31}^T & M_{32}^T & M_{33}^T \end{bmatrix}$$

(1)

مورد مطالعه در این مقاله BDFM، 8 نمونه داشت. در آن، بین دوربین PW و CW و CW انجام و در سایر انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

می‌توان به صورت سیمپویزیشن، دو مدل معمولی با تعداد BDFM سیمپویزیشن و حل معادلات انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

$$M = \begin{bmatrix} M_{11} & 0 & M_{13} \\ 0 & M_{22} & M_{23} \\ M_{31}^T & M_{32}^T & M_{33}^T \end{bmatrix}$$

(1)

مورد مطالعه در این مقاله BDFM، 8 نمونه داشت. در آن، بین دوربین PW و CW و CW انجام و در سایر انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

$$M = \begin{bmatrix} M_{11} & 0 & M_{13} \\ 0 & M_{22} & M_{23} \\ M_{31}^T & M_{32}^T & M_{33}^T \end{bmatrix}$$

(1)

مورد مطالعه در این مقاله BDFM، 8 نمونه داشت. در آن، بین دوربین PW و CW و CW انجام و در سایر انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

$$M = \begin{bmatrix} M_{11} & 0 & M_{13} \\ 0 & M_{22} & M_{23} \\ M_{31}^T & M_{32}^T & M_{33}^T \end{bmatrix}$$

(1)

مورد مطالعه در این مقاله BDFM، 8 نمونه داشت. در آن، بین دوربین PW و CW و CW انجام و در سایر انتگرالکورنیکسی از اعمال تئوری الکترومجنرینگی نیز مورد بررسی قرار گرفت. بیشتر از یک باندل CW و PW باید متقاضی باشد. این تفاوت پایدار می‌باشد و قابل ملاحظه است.

$$M = \begin{bmatrix} M_{11} & 0 & M_{13} \\ 0 & M_{22} & M_{23} \\ M_{31}^T & M_{32}^T & M_{33}^T \end{bmatrix}$$

(1)
توان در نابرابر بودن تعداد قطعه‌های سیمی بی‌فیل هاگس و کنترل استاندارد است. اگر رابطه ماکائینی و (0) تابع دور و برای با مجموع تعداد دوره‌های دخمه سیمی‌پیچ به دنبال گفته شده جریان روش و همچنین شاخص داخل استاندارد، طول استاندارد و طول پکیناکتی فاصله هواپیمای ترتفع برای گروه G و جهت پیداکتی بی‌فیل هاگس و کنترل این نتایج اکتشافات یافته در مورد استاندارد خود بود.

\[L_{12} = \frac{\mu_{0} r_{1}}{g} \int_{0}^{2\pi} \frac{n_{1}(\theta) n_{2}(\theta) d\theta}{2\pi} \]

ب در مدل تئوری ورزش‌های سیمی بی‌فیل هاگس و کنترل

\[L_{2} = \frac{\mu_{0} r_{1}}{g} \int_{0}^{2\pi} \frac{n_{1}(\theta) n_{2}(\theta) d\theta}{2\pi} \]

2- مودهای کاری

2-1- مود کاری الگوی

2-2- مود کاری الگوی

2-3- مود کاری الگوی

2-4- مود کاری الگوی

\[\text{سیمی بی‌فیل هاگس و کنترل} \]
جدول (1): های تولید شده در فازهای MMF

<table>
<thead>
<tr>
<th>سرعت الکترویکی نسبت</th>
<th>تعداد زوج فقطیها</th>
<th>تولید شده توسط</th>
</tr>
</thead>
</table>
| ω_1 | $\omega_1 - p_1\omega_r$ | $\frac{1}{p_1}$ MMF$_1$
| ω_2 | $\omega_2 - p_2\omega_r$ | $\frac{1}{p_2}$ MMF$_2$
| $\omega_1 + p_1\omega_r$ | $\omega_1 + N_1\omega_r$ | $\omega_1 + p_1\omega_r$ MMF$_{1,1}$
| $\omega_2 - p_2\omega_r$ | $\omega_2 - N_2\omega_r$ | $\omega_2 - p_2\omega_r$ MMF$_{2,2}$
| $-\omega_1 + p_1\omega_r$ | $-\omega_1 + N_1\omega_r$ | $-\omega_1 + p_1\omega_r$ MMF$_{1,2}$
| $-\omega_2 + p_2\omega_r$ | $-\omega_2 + N_2\omega_r$ | $-\omega_2 + p_2\omega_r$ MMF$_{2,1}$

$\omega_1 - p_1\omega_r = -(\omega_2 - p_2\omega_r) \Rightarrow \omega_r = \frac{\omega_1 + \omega_2}{p_1 + p_2}$

در واقع، فرکانس ω_n برابر گردیده این فرکانس می‌تواند مستقیماً به راحتی محاسبه شود طبق: $\omega_n = \frac{\omega_1}{p_1 + p_2}$

 حال اگر توایل فازهای سیمبیجیها یکنواخت و دو یکنواخت باشد و در نتیجه جمع و جیب، جهت چرخش میدان‌های دو سیمبیجی‌پیک به‌کار می‌رود بزرگ‌ترین، اگر فرکانس سیمبیجی‌های یکنواخت باشد، سرعت روبره‌ی از سرعت طبیعی خاوه به‌کار می‌رود. مجموع در سیمبیجی‌های یکنواخت و کنترل مشابه نیازمند سرعت چرخش روبره‌ی کمتر از سرعت طبیعی می‌شود (شکل 3).

\[
\omega_n = \frac{\omega_1}{p_1 + p_2}
\]

شکل (2): سرعت روبره در حالت کاری سیمبیج

بدین ترتیب، لفت شده برای مولفدهای p_1 و p_2 در جایی قطعی شار فازهای هوشی به صورت زیر خواهد بود:

\[
\begin{align*}
\sigma_1 &= \frac{\omega_1 - p_1\omega_r}{\omega_1 - N_1\omega_r} \\
\sigma_2 &= \frac{\omega_1 - p_1\omega_r}{\omega_1 - N_1\omega_r}
\end{align*}
\]

گشتاور الکترومغناطیسی از رابطه (2) به‌دست می‌آید [11]

\[
T_e = 1.5p_1\text{Im}[\lambda_1i_1] + \frac{3}{2}p_2\text{Im}[\lambda_2i_2]
\]

\[
T_e = T_{11} + T_{12} + T_S
\]

\[
T_{11} = -1.5M_1L_2p_1(\lambda_{1a}d\lambda_{a} - \lambda_{1a}\lambda_{ra})
\]

\[
T_{12} = 1.5M_2L_1p_2(\lambda_{2d}\lambda_{a} - \lambda_{2a}\lambda_{ra})
\]

\[
T_S = 1.5M_1M_2\frac{(p_1 + p_2)}{L}(\lambda_{1a}\lambda_{2a} - \lambda_{1a}\lambda_{2a})
\]

اما گشتاور سیمبیجیهای ناشی از توزیع λ_1 و λ_2 از رابطه (2) می‌تواند به‌طور مستقیم توزیع حاصل کند. در واقع روبره به دلیل رفتار خاص خود مشابه یک آمپ می‌کند و با تبدیل میدان‌های مغناطیسی p_1 و p_2 جایی قطعی به‌کار می‌گردد. این سیستم از روابط (4) و (5) روبره در واقع به نتیجه هدفی خود می‌رسد.

\[
\lambda_{1d} = L_1i_{1d} + M_1r_{1d}
\]

\[
\lambda_{2d} = L_2i_{2d} + M_2r_{2d}
\]
تحقیقات در مورد طراحی این ماسیون کمک‌کننده داشته باشد. شکل (3) نشان می‌دهد که به ترتیب حدوداً دارای فرکانس‌های 50 هرتز و 10 هرتز هستند. این فرکانس‌ها را همانند (4) را نیز می‌گوییم.

\[
\lambda_3 = L_1 i_1 + M_1 i_r q
\]
\[
\lambda_2 = L_2 i_2 + M_2 i_r d
\]
\[
\lambda_1 = L_2 i_2 + M_2 i_r d
\]
\[
\lambda_0 = L_1 i_1 + M_1 i_r q
\]

جهت تاوند رواند قوی در نتایج عملی استفاده شده است. یک چیز مشخص است که می‌تواند در پایه آمده است [12] در مورد BDFM سنتکی و از این می‌تواند در فاصلهٔ 40 برحسب BDFM بادن‌های شده و محاسبه شده است. این شکل به روشی درستی رابطه (6) و (7) را نشان می‌دهد. اختلاف مشاهده شده در موارد اندوزگیری شده، و محاسبه شده می‌تواند ناشی از عوامل زیر باشد:

- خطای در تخمین پارامترها و اندوزگیری گشاتور
- وجود گستاتور کالیفو از هارمونیک‌های بالاتر فضایی، خصوصاً با توجه به ساختار خاصی که نمی‌توان به تولید با محتوای هارمونیک بالایی می‌گردد می‌باشد.

نادیده گرفته اثر اشباع وسیله.

مطلب مهمتری که با یاد مورد بررسی قرار گرفت، تغییر سهم گستاتورهای القایی و سنتکی است که این کار را در جدول (2) انجام هدست است. با توجه به این نمودار به روشی می‌توان دریافت که در مورد سنتکی، گستاتور سنتکی نشان می‌دهد که در هر دو راه دارد و گستاتور القایی به مرتبه سهم کمتری دارد. در حالی که این امر را می‌توان لزوم یک بایلی باید در سرعت سنتکی در مورد 600 دور بر دقیقه نسبت به میدان چهار دارای نشانه CW و همچنین اندوزگیری نشان Qp توجه ندارد است. نتیجه محاسبه می‌تواند قابل توجه نبیند. در مورد سنتکی و در گستاتور القایی مشاهده شده می‌تواند بود که که در محاسبه گستاتور القایی در مورد سنتکی می‌توان با تقریب خوبی از BDFM به‌طور محاسبه شده و در اینجا قابل توجه نبیند. از این جهت (5) قابل توجه نبیند. در اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a در PW و جریان فاز a در CW از اینجا قابل توجه نبیند. در اینجا قابل توجه نبیند. در اینجا قابل توجه نبیند. در اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه نبیند. در اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستاتور، جریان فاز a درPW و جریان فاز a در CW از اینجا قابل توجه Nمودارهای اندوزگیری شده گستا
سیاست‌گذاری

این مقاله مستند از گزارش تحقیقی طرح پژوهشی با عنوان "تجربه و تحلیل استفاده از زنادر ترانزیت برش‌دار در توربین"- های بادی"، به پاس که از مدل‌های پیشرفته‌تر دانشگاه تیمز اسکایلر، گردد است.

مقدمه

5. محروم‌عزیزی، مدل قابلیت اطمینان سیستم توربین دو‌تعداده دوگانه کاربردی، رسانه دکترای تخصصی، دانشگاه صنعتی شریف، ایبضای 1387.
6. فرهاد برادر، فرآیند مصرف و یا پایه سازی سیستم ترانزیت برش‌دار در توربین‌های بادی، رسانه دکترای تخصصی، دانشگاه صنعتی شریف، 1389.

1 Brushless Doubly Fed Machine
2 Power Winding
3 Control Winding
4 Gris Side Inverter
5 Machine Side Inverter
6 Magneto-motive Force