پژوهشگرانی که با توجه به اهمیت فراوانی موتورهای الکتریکی در صنعت، نگهداری و محافظت از آنها امر ضروری و حیاتی می‌باشد. یکی از راه‌های نگهداری از چنین موتورهایی بررسی می‌شود. بررسی مدل موتورهای 3-یابه‌هایی نشان می‌دهد که از طریق مدل‌سازی سنجشی سنجشی، تأثیر قابل توجهی بر مقدار پارامترهای ساختاری آن مانند مقاومت‌های استاتور و روتور، اندازه‌گیری‌های استاتور و روتور و اندازه‌گیری‌های مختلف می‌گذارد. از طرف دیگر، تخمین مدل سنجشی در دقت و دقت پارامترهای موتورهای 3-یابه‌هایی، کمک شایان جدی‌تری به کنترل و وضعیت موتور نیز خواهند کرد. در این مقاله برای تخمین پارامترهای ساختاری موتور الکتریکی از روش‌های مشابه بهره گرفته شده است. با استفاده از داده‌های استخراج شده از موتور به دست آمده از مقادیر موتر از استاتور و ضربه حرارتی که به‌کارگیری موتور الکتریکی به‌عنوان یکی از پیشنهادات جدید جستجو گرایانه یا بهبود یافته جستجوی گرایانه، جستجوی هارمونی و تبید شیب‌سانی شده، مدلی از موتور الکتریکی سنجشی سنجشی مورد طراحی تخمین زده شده است. تابع دسته‌بندی آن در هر دو حالت، از گروه‌های قبلی می‌تواند به‌عنوان مناسب برای تخمین پارامترهای موتور الکتریکی باشد. از این نظر نشان می‌دهد، می‌توان با مصایح‌های قابل سرعت، دقیق و قابلیت اطمینان با توجه به نیاز کاربر در بین الگوریتم‌های فراوانی که به‌عنوان یکی از راه‌های بهره‌گیری از موتور الکتریکی قابل استفاده از این مقاله با توجه به ویژگی‌های آنها برای استفاده از بیش از دو مدیر. نکات مهم نویسندگان مسئول: ایران - خراسان جنوبی - سهول - دانشگاه بیرجند، دانشکده مهندسی برق و کامپیوتر، گروه الکتریکی
1 مقدمه

موتور الکتریکی یکی از پرکاربردترین و مهمترین ابزارهای صنعت بر روی بشر می‌باشد. در سیستم‌های کاربردی با نیروی برق مورد استفاده قرار می‌گیرد. بررسی و فناوری موتورهای الکتریکی در تجربه‌های مختلفی به عنوان یکی از مباحث کلیدی تحقیقات برق در این زمینه می‌باشد. تحقیقات نشان می‌دهد که بهبود کارایی و بهینه‌سازی موتورهای الکتریکی در تولید برق باید به‌طور چشمگیری به توجه دریافت شود.

SVM
PSO
HP
2- گروه‌ی‌های بهینه‌سازی فراپارکاری

بیشتری که گروه‌ی‌های بهینه‌سازی فراپارکاری از می‌توانید به در گروه‌ی‌های بهینه‌سازی فراپارکاری یا هر چه جمعیت قرار گیرید. یعنی اگر گروه‌ی‌های بهینه‌سازی فراپارکاری به چنین امتیاز‌هایی گروهی می‌توانند عمل کنند، گروه‌ی‌های بهینه‌سازی فراپارکاری به چنین امتیاز‌هایی می‌توانند عمل کنند. گروه‌ی‌های بهینه‌سازی فراپارکاری به چنین امتیاز‌هایی می‌توانند عمل کنند. همچنین از گروه‌ی‌های بهینه‌سازی فراپارکاری به چنین امتیاز‌هایی می‌توانند عمل کنند.

در این مقاله سعی بران است عملکرد رپرها و گروه‌ها با مقیاس‌های مختلف فراپارکاری بهینه‌سازی فراپارکاری بازی‌های سیستمیکی سطح، مخصوصاً تخمین پارامتر موتور انجام قرار گیرد. به خصوص مورد تحلیل و بررسی قرار دیده از گروه‌های بهینه‌سازی فراپارکاری، قسمت جزء‌های بهینه‌سازی فراپارکاری (HS) انتخاب شده‌است. به طریقی در برخی از کاربردهای مرتبط مشاهده شده است که در این مقاله از گروه‌ی‌های بهینه‌سازی فراپارکاری استفاده می‌گردد. از طرفی در برخی از کاربردهای مرتبط مشاهده شده است که در این مقاله از گروه‌ی‌های بهینه‌سازی فراپارکاری استفاده می‌گردد. این مقاله یکی از مقاله‌های مربوط به گروه‌ی‌های بهینه‌سازی فراپارکاری است. به چهار نقطه توسعه و فرآیند از گروه‌ی‌های بهینه‌سازی فراپارکاری، قسمت جزء‌های بهینه‌سازی فراپارکاری (HS) به خصوص مورد تحلیل و بررسی قرار دیده از گروه‌ی‌های بهینه‌سازی فراپارکاری، قسمت جزء‌های بهینه‌سازی فراپارکاری (HS) انتخاب شده‌است. به طریقی در برخی از کاربردهای مرتبط مشاهده شده است که در این مقاله از گروه‌ی‌های بهینه‌سازی فراپارکاری استفاده می‌گردد. از طرفی در برخی از کاربردهای مرتبط مشاهده شده است که در این مقاله از گروه‌ی‌های بهینه‌سازی فراپارکاری استفاده می‌گردد.

89- گروه‌ی‌های بهینه‌سازی فراپارکاری

3- شیپ‌سازی موتور الکتریکی

شیپ‌سازی موتور الکتریکی به عنوان یکی از انواع شیپ‌سازی موتور الکتریکی است که به بهینه‌سازی فراپارکاری می‌باشد. این همکاری در این مقاله به عنوان یکی از انواع شیپ‌سازی موتور الکتریکی است که به بهینه‌سازی فراپارکاری می‌باشد.
جدول 1: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی قفسه سنجابی

<table>
<thead>
<tr>
<th>توان ناپایدار (VA)</th>
<th>ولتاژ ناپایدار (V)</th>
<th>ترکیب (Hz)</th>
<th>سرعت ناپایدار (rpm)</th>
<th>مقیاس اندازه‌گیری (mpm)</th>
<th>ضریب بار (P)</th>
<th>ضریب نیروهای (F (N.m.s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3328</td>
<td>230</td>
<td>60</td>
<td>1255</td>
<td>240</td>
<td>6</td>
<td>315</td>
</tr>
</tbody>
</table>

شکل (11): بلوک دیاگرام رویکرد جامع خاکستری برای تخمین پارامتر

جدول 2: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی قفسه سنجابی تحت تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

شکل (22): شبیه‌سازی موتور الکتریکی قفسه سنجابی تحت تحرک سینوئیسی

جدول 3: داشت استخراج شده از شبیه‌سازی موتور الکتریکی مورد مطالعه تحت گشتاورهای مختلف با تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

شکل (33): مداد مدل پارامتری برای موتور الکتریکی قفسه سنجابی

جدول 4: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی مورد مطالعه تحت گشتاورهای مختلف با تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

شکل (44): بلوک دیاگرام رویکرد جامع خاکستری برای تخمین پارامتر

جدول 5: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی قفسه سنجابی تحت تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

شکل (55): بلوک دیاگرام رویکرد جامع خاکستری برای تخمین پارامتر

جدول 6: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی قفسه سنجابی تحت تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

شکل (66): بلوک دیاگرام رویکرد جامع خاکستری برای تخمین پارامتر

جدول 7: مشخصات فنی و پارامترهای ساختمانی موتور الکتریکی قفسه سنجابی تحت تحرک سینوئیسی

<table>
<thead>
<tr>
<th>Power Factor (ضریب ضروری)</th>
<th>Slip (ضریب نیروهای)</th>
<th>Stator current (rms)</th>
<th>Torque (کشته‌گری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>0.82</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.83</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>0.84</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>
روش پیشنهادی برای تخمین پارامترهای ساختاری موثر بکار می‌رود.

طبق بررسی‌های صورت گرفته، بهترین خروجی‌های موجود که با پارامترهای ساختاری موثر بکار می‌رود، این بوده که با مقدار E و I در رابطه (5) و (6) است. این رابطه مبنای دقیق حسابی در محاسبه آنها در روابط (5) و (6) ارائه گردیده است. اما نتیجه حائز اهمیت در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

همانطور که در رابطه (4) و (5) ملاحظه می‌شود، براساس آنچه در رابطه (4) ذکر شد، مقدار متوسط مبتنی خطا برابر محاسبه جهت انجام اختلاف بین مقدار اندکی‌گذار شده و مقدار محاسبه شده مورد استفاده قرار گرفت.

$$\cos \phi = \cos \left(\frac{X_{eq}}{R_{eq}} \right)$$ (8)

$$E = \frac{1}{\pi} \left(\sum_{m=1}^{n} E_{m} - I_{m} \right) + \left(\sum_{m=1}^{n} P_{F_{m}} - P_{F_{2}} \right)$$ (9)

در رابطه فوق، E و I به ترتیب مقدار E و I است. در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

پارامترهای مربوط به سیستم مورد بررسی، بهترین پارامترهای ساختاری موثر بکار می‌رود. بهترین پارامترهای ساختاری موثر بکار می‌رود، این بوده که با مقدار E و I در رابطه (5) و (6) است. این رابطه مبنای دقیق حسابی در محاسبه آنها در روابط (5) و (6) ارائه گردیده است. اما نتیجه حائز اهمیت در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

$$\cos \phi = \cos \left(\frac{X_{eq}}{R_{eq}} \right)$$ (8)

$$E = \frac{1}{\pi} \left(\sum_{m=1}^{n} E_{m} - I_{m} \right) + \left(\sum_{m=1}^{n} P_{F_{m}} - P_{F_{2}} \right)$$ (9)

در رابطه فوق، E و I به ترتیب مقدار E و I است. در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

پارامترهای مربوط به سیستم مورد بررسی، بهترین پارامترهای ساختاری موثر بکار می‌رود. بهترین پارامترهای ساختاری موثر بکار می‌رود، این بوده که با مقدار E و I در رابطه (5) و (6) است. این رابطه مبنای دقیق حسابی در محاسبه آنها در روابط (5) و (6) ارائه گردیده است. اما نتیجه حائز اهمیت در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

$$\cos \phi = \cos \left(\frac{X_{eq}}{R_{eq}} \right)$$ (8)

$$E = \frac{1}{\pi} \left(\sum_{m=1}^{n} E_{m} - I_{m} \right) + \left(\sum_{m=1}^{n} P_{F_{m}} - P_{F_{2}} \right)$$ (9)

در رابطه فوق، E و I به ترتیب مقدار E و I است. در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

پارامترهای مربوط به سیستم مورد بررسی، بهترین پارامترهای ساختاری موثر بکار می‌رود. بهترین پارامترهای ساختاری موثر بکار می‌رود، این بوده که با مقدار E و I در رابطه (5) و (6) است. این رابطه مبنای دقیق حسابی در محاسبه آنها در روابط (5) و (6) ارائه گردیده است. اما نتیجه حائز اهمیت در اینجا نابود و در اینجا مورد استفاده در بهینه‌سازی سیستم است.

$$\cos \phi = \cos \left(\frac{X_{eq}}{R_{eq}} \right)$$ (8)

$$E = \frac{1}{\pi} \left(\sum_{m=1}^{n} E_{m} - I_{m} \right) + \left(\sum_{m=1}^{n} P_{F_{m}} - P_{F_{2}} \right)$$ (9)
برای پارامترهای ساختاری در قیاس با مقدار واقعی آنها می‌باشد و انتخاب بهترین مقدار برای عوامل کنترلی الگوریتم‌های فرآیندکاری است. در مورد الگوریتم تطبیقی شیوه‌ساز شده‌باید به این نکته اشاره شود که تعداد نهایی پارامترها است که برای هر جواب در هر تکرار ایجاد می‌شود و بهترین احراز از میان این الگوریتم‌ها انتخاب نمی‌شود. در علاوه بر این مقدار باید از مقدار میانگین استفاده شده است و T0 ضریب مکانیک این زیر آند است.

در شکل (5) میانگین محاسبه‌ی مقدار تابع فرآیندکاری PSO و SA ارائه شده است. همچنین در جدول (4) و برای ۲۰ بار اجرای مجاور کمترین، بیشترین و میانگین زمان بهره‌برداری الگوریتم‌ها و بدترین، بیشترین و میانگین مقدار بهره‌برداری همین بازگشتی تابع هدف بد از ۲۰۰ تکرار ارائه شده است. در جدول (5) حداکثر ترکیب مقدار زمان بهره‌برداری ساختاری توسط الگوریتم‌ها به همراه میانگین مقدار تخلیه زمان بهره‌برداری ارائه شده است. شایان ذکر است مقدار حداکثر میانگین هدف در جدول (5) بین‌گیری مقدار میانگین مقدار تخلیه زمان بهره‌برداری ۵ تکرار می‌باشد.

جدول (3): مقادیر انتخاب شده برای عوامل کنترلی الگوریتم‌های فرآیندکاری مورد بررسی

<table>
<thead>
<tr>
<th>S</th>
<th>nNeigh</th>
<th>BW</th>
<th>PAR</th>
<th>HMCR</th>
<th>k</th>
<th>φ</th>
<th>α</th>
<th>Wmin</th>
<th>Wmax</th>
<th>C2</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

جدول (4): زمان اجرای مقدار حداکثر هدف برای هر بار اجرای مجاور (هر الگوریتم ۲۰ بار بهره‌برداری اجرا شده است)

<table>
<thead>
<tr>
<th>SA</th>
<th>HS</th>
<th>IGSA</th>
<th>GSA</th>
<th>IPSO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>12</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>مداļل</td>
</tr>
<tr>
<td>495</td>
<td>18</td>
<td>31</td>
<td>18</td>
<td>18</td>
<td>مداļل</td>
</tr>
<tr>
<td>498</td>
<td>21</td>
<td>30</td>
<td>16</td>
<td>16</td>
<td>مداļل</td>
</tr>
</tbody>
</table>

مقدار حداکثر هدف میانگین

مقدار بیشترین

مقدار بیشترین
جدول (5): مقادیر تخمین زده شده پارامترهای ساختاری موتور الکتریکی قفسه سنجابی سفاز

<table>
<thead>
<tr>
<th>پارامترهای ساختاری</th>
<th>مقادیر واقعی</th>
<th>مقادیر تخمین زده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lm (mH)</td>
<td>2.41</td>
<td>2.41</td>
</tr>
<tr>
<td>Lr (mH)</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Rs (Ω)</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Rp (Ω)</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>چرخش</td>
<td>2.41</td>
<td>2.41</td>
</tr>
</tbody>
</table>

PSO
IPSO
GSA
IGSA
HS
SA

منابع:
1- آزمایش مدل شناسایی شده برای موتور القای

با توجه به ویژگی جهیزه، که در بخش ۲ مطرح شد و شکل (۱) و (۲)، یکنواختی پارامتر های تخمین زده شده مورد نیاز بسیار کافی بود. به همراه داده های یکنواختی پارامتر هایی که در بخش های دیگر مورد تخمین زده شده هستند، مدل پارامتر های یکنواختی شده برای موتور القایی در کنار مدل اصلی قرار گرفته و عملکرد این دو در مطالعات دیگر تشریح شده است.

۲- نتیجه گیری

در این مقاله به مرور بررسی عملکرد الگوریتم های فراترکاری در تخمین پارامترهای موتور القایی قسمت سنگین ۳HPSO توسط الگوریتم بهینه سازی جمعیت دات (IGSA) و همچنین الگوریتم بهینه سازی جستجوی هارمونی (HS) بررسی گردیده است. نتایج نشان می‌دهد که عملکرد الگوریتم‌های شناسایی شده با دقت قابل قبولی مشابه است.

Off-line

16. غ- عاف- لو- عي، "الأوتوماتيك جستجو هارموني و اتشفاً سائلاً يبيه باسرى"، "مموبدمن كنفرنس دانغوجي مهدسي برق إيران"، 1391.

مراجع

