پیکارگیری مدار معادل مشروط توسعه‌یافته در ابعاد بزرگ برای مطالعه حالت
گذراه ترانسформاتور

چکیده: در این مقاله آنالیز پاسخ فرکانسی ترانسформاتور با لحاظ ساختار سیمپلیچی آن با استفاده از مدار معادل مشروط مورد بررسی قرار گرفته است و در این یک روش ابتکاری چیت تخمین پارامترهای مدار معادل مشروط ارائه شده است تا بر مشکل تخمین پارامترهای مدار معادل مشروط گذراه شده است. در این روش ابتکاری بر روی مدل مشروط نوزده یک سیمپلیچی شده است. از حل معادلات حالت مدار معادل ترانسформاتور، پاسخ فرکانسی آن استخراج شده است. در این بررسی، عنصر مدار معادل وابسته به فرکانس مدل شده است. در این مقاله همچنین مدار معادل مشروط جدیدی ارائه شده است که رفتار ترانسформاتور را در مقایسه با مدل‌های پیشین با کیفیت تطبیقی مدل می‌کند. رویش چیت اعتبارسنجی مدار معادل استخراج شده ارائه شده است. روش‌ها و ایده‌ها جدید بیان شده بر روی یک سیمپلیچی واقعی با توان نامی 6امگا ولت آمر و ولت نامی 4/0/004 کیلو ولت در آزمایشگاه پیاده‌سازی شده است.

کلمات کلیدی: ترانسформاتور؛ مدار معادل مشروط؛ تابع تبدیل؛ آنالیز پاسخ فرکانسی؛ الگوریتم زنتیک؛ معادله حالت

تاریخ ارسال مقاله: 12/05/1392
تاریخ پذیرش مشروط مقاله: 1394/12/16
تاریخ پذیرش مقاله: 1395/12/05
نام نویسنده مسئول: دکتر سعید سیدطبری
نشانی نویسنده مسئول: ایران - تهران - بزرگراه خلیج فارس - پلاک 444 - دانشگاه شاهد - دانشکده مهندسی - گروه برق

83
1- مقدمه

ترانسفورماتور قدرت اغلب یکی از بزرگترین و گرانقیمت‌ترین تجهیزات در سیستم‌های قدرت محسوب می‌شود (1). این مراقبت‌های ویژه‌ای در طراحی ساخته، نصب و راه اندازی، بهره‌برداری و تعمیر و تغییرات آن ضروری است. تنظیم‌های تشخیصی الکترونیک، مقاومت و تغییرات نسبی مقاومتی چیزی شناسایی عوامل ترانسفورماتور ارائه شده است و این تحقیقات به طور گسترده‌ای ادامه داده شده است. یکی از تکنیک‌های جدید ارزیابی و تعیین ترانسفورماتور تحلیل بخشهای فرکانسی است که به ویژه برای تشخیص عوامل مکانیکی سیستم ترانسفورماتور کارآمد و مورث است.

در گلاسهای ناشناخته، صورت گرفتن این کار در هنگامی این که می‌توان به مدل‌سازی به‌صورت فیزیکی ترانسفورماتور، مدل جسم سه‌بعدی (2) و (3) اشاره نمود. مدل‌سازی یکی از هدایت استقلال و دقت مدل پیش‌گیری در این مدل مشروط است که قدرت کمی با دقت باعث مدل‌سازی ترانسفورماتور مناسب‌ترین مدل‌سازی قدرت که می‌توان با ساختار جمع‌بندی ویژه ترانسفورماتور به این مدل‌سازی اثر می‌دهد. عدد که مدل‌سازی جستجو و جمع‌بندی به مدل‌سازی تحلیل بخشهای فرکانسی است که به ویژه برای تشخیص عوامل مکانیکی سیستم ترانسفورماتور کارآمد و مورث است.

2- معرفی مدل مشروط توسیع‌یافته

در مطالعات پیشین (1-9) مدل مشروط مرسوم نشان داد که استفاده در بخشی از (1) در شکل (1) به هر مقادیر فشار دولت مرسوم شده است که در مدل‌سازی ترسیم کننده خاکهای پاتولوگی به سبب مقاومت مشروط توسیع‌یافته گویه.(2) اضافه شده است تا مدل مشروط توسیع‌یافته شکل (2) حاصل شود.

![شکل (1): مدار مشروط سیم پیچ‌خیار ترانسفورماتور](image1)

![شکل (2): مدار مشروط مشروط توسیع‌یافته](image2)
1- نکات موتر در طراحی پارامترهای مدار معادل

مباحث رفتار ترانسفورماتور، طرح لایه‌ای و صیده به فرانسks است [8]. هدف اصلی در مدل سیاست ترانسفورماتور نااقpeer که رفتار مود یا پنجره‌ای از آن جهت توصیف دینامیکی رفتار یک سیستم است. شرکت عمومی فضای حالت یک سیستم خطي نابایدا بازمان به شرح زیر است:

\[\dot{x} = [A]x + [B]u \]

\[y = [C]x + [D]u \]

که در آن x ، y : بردار فضای حالت. x، y : مشتق اول بردار فضای حالت.

بردار تحریک سیستم: \(A, B, C, D \) = ماتریس ضرایب تابع سیستم.

انتخاب جریان سلف و وزن خازن تأثیر مواد به عنوان متقابلی‌های ضریب، جهت توصیف رفتار دینامیکی مدار معادل مدار پنجره‌ای (1) را در شکل (2) حداکثر در طرح پارامترهای مدار معادل مدار معادل را به شرح زیر می‌تواند

\[u(t) = R_i i(t) + L_i \frac{di(t)}{dt} \]

جایگاه ساختار سیمپلکس همک فرمت شده می‌توان مراتر اندازه‌گیری سیمپلکس را نظیر رابطه (3) نویسید: \[l = \left[i_{L1}, i_{L2}, i_{L3}, \ldots, i_{Ln} \right] \]

۳- چگونگی تعیین پارامترهای مدار معادل با استفاده از الگوریتم ژنتیک

بعد از مدل سیاست ترانسفورماتور هدف پیدا کردن مقادیر پارامترهای مدار با استفاده از الگوریتم ژنتیک را نظیر رابطه (3) نویسید:

\[L_i = \left[L_{i1}, L_{i2}, L_{i3}, \ldots, L_{in} \right] \]

\[m_{i1} = \left[m_{i11}, m_{i12}, m_{i13}, \ldots, m_{in1} \right] \]

\[m_{i2} = \left[m_{i21}, m_{i22}, m_{i23}, \ldots, m_{in2} \right] \]

\[m_{i3} = \left[m_{i31}, m_{i32}, m_{i33}, \ldots, m_{in3} \right] \]

\[\vdots \]

\[m_{i(n-1)} = \left[m_{i(n-1)1}, m_{i(n-1)2}, m_{i(n-1)3}, \ldots, m_{in(n-1)} \right] \]

\[m_{in} = \left[m_{in1}, m_{in2}, m_{in3}, \ldots, m_{in(n-1)} \right] \]

برای رشد کننده اندازه‌گیری مدت‌بندی سیمپلکس، در روش جهت افزایش مدت‌بندی سیمپلکس، اینکه برای نظیر رابطه (3) استفاده شده که در رابطه (3) نویسید:

\[m_{in+1} = \left[m_{in+11}, m_{in+12}, m_{in+13}, \ldots, m_{in(n+1)} \right] \]

\[\forall i = 1, 2, 3, \ldots, n-1 \]

\[\forall j = 2, 3, \ldots, n \]

\[\forall k = 1, 2, 3, \ldots, n \]

\[\forall l = 1, 2, 3, \ldots, n \]

جایگاه پیشگیری از ایجاد پاسخ‌های نادرست غیرواقعی در مرجع [10] گویی مشخصی از این سیستم است که در رابطه (5) این ایگ دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]

با استفاده از الگوریتم ژنتیک به عنوان میدان‌سازی و ناحیه‌های یک دریافت

\[y(t) = \left[y_1(t), y_2(t), \ldots, y_n(t) \right] \]
سیمپلیس افزایش می‌باید که در این مقاله به طور تقریبی با رابطه (8) مدل شده است:

r ≈ \sqrt{f}

(8)

2-2 معرفی الگوریتم بهینه‌سازی

الگوریتم بهینه‌سازی توانمند است که با تغییر متفاوت‌های بهینه سازی و تابع هدف شروع می‌شود [15]. برای هر ورودی (کروموزوم) تابع الگوریتم تغییر هدف بوده و تغییر هدف مقاورد را به عنوان خروجی ارائه می‌دهد. این هدف تغییر بانک میزان مناسب بودن یا نبودن ورودی است. پس از تغییر تابع هدف و انتخاب متفاوت‌های بهینه سازی است، مناسب‌سازی دقیق مورد انتظار، نسبت به کدیکی منجر‌ها اقدام می‌شود (لغزد در میان دو بیشترین دو کدیکی صورت می‌گیرد). پس از انتخاب نحوه کدیکی متفاوت‌ها، با استیل جمعیت اخیری را به عنوان نقشه شروع الگوریتم اجرا می‌نماید. به جمعیت اولیه نامیده می‌شود. جمعیت نسل بعدی از روش نسل قبل و با استفاده از مثال‌های الگوریتم بهینه‌سازی (اختیار، ترکیب، و جهش) براساس فلوجارت شکل (4) تولید می‌شود.

شکل (4): فلوجارات عملکرد الگوریتم بهینه‌سازی

الگوریتم بهینه‌سازی به دنبال یافتن مناسب‌ترین مقداری است که به تغییر هدف با ازای آن مطلوب‌ترین مقدار را دارد. در این مقاله بردار پابراته‌ای مادور مادرهای (VP) با استفاده از الگوریتم بهینه‌سازی مشاهده شده است. برای این منظره پابراته‌ای جدید مادور مادرهای بهینه‌ترین پاسخ نسل قبل به علاوه بردار تغییرات کوچک (شیشه و منفی) تغییر رابطه (9) تغییر می‌شود. بردار تغییرات کوچک با استفاده از الگوریتم بهینه‌سازی ایجاد می‌شود و این به تغییرات در پارامتر کمتر از 1% به دست می‌آید در این مقاله نظر رابطه (7) مدل می‌شود:

\[R \propto \frac{1}{f} \]

(7)

منبع: مقاله انجمن مهندسی برق و کامپیوتر ایران سال چهاردهم- شماره اول- 1396

1348
3-1 مطالعه موردی

در این مقاله برای حل مسائل مختلف هنگام و نامناسب پارامترهای مدار ممدال شرکت مرسوم صادقی و فرد استفاده می‌شود. ترانسفورماتور مورد مطالعه به دو شکل سیم پیچ (سیم پیچ) و سیم پیچ (سیم پیچ) استفاده می‌شود.

شیب‌سازی حالت (الف): در این حالت، مدار شرکت مرسوم شکل نظری شکل (الف) به صورت نک سیم پیچ استفاده شده است. که در بخش داده‌های موفقیت و پارامترهای مشابه با سایر بخش‌ها است. این فرض سبب ساده‌سازی مدار، کاهش تعادل پارامترهای مجهول و افزایش سرعت هنگامی مطالعه خواهد شد. در این حالت مافیل دارای 24 پارامتر مجهول، اندوکاتس خودی و اندوکاتس‌های متغیر است. به عنوان نمونه در جدول (1) پارامترهای تخمین زده شده مدار ممدال شرکت مورد استفاده است.

شیب‌سازی حالت (الف 2): در این حالت با توجه به ساختار ترانسفورماتور واقعی، ترانسفورماتور چهار دیسک بینا و چهار دیسک انتهای مشابه سایر دیسک‌ها مشابه فرض شده است. در کل سیم پیچ مقادیر امیلی پیچی، مقادیر گینه و مطابق با تابع فرض می‌شود. در این حالت 28 پارامتر مجهول تعیین می‌شود.

شیب‌سازی حالت (الف 3): در این حالت تعادل پارامترها به جز مشابه بند (الف 2) هستند و در دیسک‌های ترددی به مشابه بند (الف 2) هستند. این حالت دارای 5 پارامتر مجهول است.

شیب‌سازی حالت (الف 4): در این حالت سه پارامترهای و 4 دیسک ها متفاوت فرض شده است. لذا در این حالت 34 پارامتر مجهول می‌باشد.

شمایه‌نامه، ویژه این کتاب، نماهای ویرایشی و خطای مربوط را به این هدف ترجیح را برای مطالعه مناسب و قابل استفاده در پایان نموده و با ایفای این هدف در این هدف به ایده‌برداری برای این هدف و ترجمه به‌دست آورده است.

4-2-4-1 معرفی سیستم مورد آزمایش

در این مقاله امپدانس و ترانسفورماتور مورد مطالعه از دیدگاه ترمیمی‌کاری که مشابه این مطالعه باشد انتخاب کرده و به عنوان مورد تجربی ترانسفورماتور استفاده شده است. برای این هدف، در این کتاب تبدیل از دستگاه امپدانس Wayne Kerr Precision Impedance Analyzer 6500B مدل
شیب‌سازی مدل (الف) در این حالت به جز پارامترهای R_w و r, R_p است. این حالت دارای ۲۳ پارامتر مجهول است.

در بین شیب‌سازی های حالت (الف ۱ تا (الف ۵)، حالت (الف ۵) کاملاً تناسبی است که نتایج پیشنهادی را نسبت به نتایج آن در شکل (۶) بهره‌مند است.

شکل (۱): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

جدول (۱): پارامترهای مدل مسئول ترانسفورماتور

<table>
<thead>
<tr>
<th>حالت (الف ۵)</th>
<th>شیب‌سازی مدل</th>
<th>L_{11} [mH]</th>
<th>m_{11} [mH]</th>
<th>m_{12} [mH]</th>
<th>m_{13} [mH]</th>
<th>m_{14} [mH]</th>
<th>m_{15} [mH]</th>
<th>m_{16} [mH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>بازدیدن</td>
<td>L_{11} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{11} [mH]</td>
<td>0.007293</td>
<td>0.006640</td>
<td>0.005988</td>
<td>0.005339</td>
<td>0.004690</td>
<td>0.004042</td>
<td>0.003397</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{12} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
</tbody>
</table>

شکل (۲): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

پارامترهای مدل (الف) در حالت شیب‌سازی (الف ۵).

شکل (۳): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

پارامترهای مدل (الف) در حالت شیب‌سازی (الف ۵).

شکل (۴): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

پارامترهای مدل (الف) در حالت شیب‌سازی (الف ۵).

جدول (۱): پارامترهای مدل مسئول ترانسفورماتور

<table>
<thead>
<tr>
<th>حالت (الف ۵)</th>
<th>شیب‌سازی مدل</th>
<th>L_{11} [mH]</th>
<th>m_{11} [mH]</th>
<th>m_{12} [mH]</th>
<th>m_{13} [mH]</th>
<th>m_{14} [mH]</th>
<th>m_{15} [mH]</th>
<th>m_{16} [mH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>بازدیدن</td>
<td>L_{11} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{11} [mH]</td>
<td>0.007293</td>
<td>0.006640</td>
<td>0.005988</td>
<td>0.005339</td>
<td>0.004690</td>
<td>0.004042</td>
<td>0.003397</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{12} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
</tbody>
</table>

شکل (۳): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

پارامترهای مدل (الف) در حالت شیب‌سازی (الف ۵).

شکل (۴): مقایسه نتایج تبدیل حاصل از شیب‌سازی و اندازه‌گیری

پارامترهای مدل (الف) در حالت شیب‌سازی (الف ۵).

جدول (۱): پارامترهای مدل مسئول ترانسفورماتور

<table>
<thead>
<tr>
<th>حالت (الف ۵)</th>
<th>شیب‌سازی مدل</th>
<th>L_{11} [mH]</th>
<th>m_{11} [mH]</th>
<th>m_{12} [mH]</th>
<th>m_{13} [mH]</th>
<th>m_{14} [mH]</th>
<th>m_{15} [mH]</th>
<th>m_{16} [mH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>بازدیدن</td>
<td>L_{11} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{11} [mH]</td>
<td>0.007293</td>
<td>0.006640</td>
<td>0.005988</td>
<td>0.005339</td>
<td>0.004690</td>
<td>0.004042</td>
<td>0.003397</td>
</tr>
<tr>
<td>بازدیدن</td>
<td>m_{12} [mH]</td>
<td>0.395941</td>
<td>0.329200</td>
<td>0.286400</td>
<td>0.246000</td>
<td>0.208864</td>
<td>0.173084</td>
<td>0.139726</td>
</tr>
</tbody>
</table>
4- بررسی نتایج شبیه‌سازی مدل مصرف مرسم
و توسیع یافته

و تعداد بخش‌های مدار معادل بزرگتر می‌شود و یا مقدار به صورت تا بخش‌های
نامعلوم فرض می‌شود. یافتن یک فرم نهایی از مدل معادل سخت است. یافتن
با مقایسه نتایج مختلف بررسی‌های شده برنامه نگاری شده را برای
نمونه:

برای یافتن پارامترهای مدل معادل روش انتخابی ارائه شده یک
روش کارآمد است که می‌تواند در شبیه‌سازی با تعداد بخش‌های
زیاد و فرض مدل نامعلوم پارامترهای مدل معادل را برآورد و
سرعت مطلوب تعیین کند. در این شبیه‌سازی تغییرات پارامترهای
مشارکت بدون انتخاب داشت اطلاعات هندسی و ساخته
ترانسفورماتور صفر گرفت گاهی هر یک به مجموع بیانگر قوت و توانایی
روش انتخابی معرفی شده است.

روش ارائه شده در این مقاله اطمینان به نتایج ادامه‌گیری و
شبیه‌سازی را به طور مطلوب تری ارائه می‌کند.

تغییر پارامترهای مدار معادل حالت (الک) ساده یا و سریع‌تر از
سابق حالت‌ها است یکی از این دو حالت در تغییر
است با این اینکه حالت به عنوان مدار معادل حالت پایه
برای حالت‌های بعدی استفاده شده است. این زمان بهینه‌سازی را
کمتر نماید.

مدل‌های مصرف مرسم و مدل مشروح توسیع یافته توانایی
مدل نمونه روتاسیون‌های واقع رو به دارد. اما تا مدار معادل مشروح
توسعه یافته توانایی نمایش رواناسیون‌های واقع رو به دارد.

یافتن راه‌های که مدل‌های معادل ارائه شده مدار معادل بهینه را
تغییر نمایند ضروری است.

5- تغییر مدار معادل بهبود

صرفا اطمینان مشخصه ادامه‌گیری و شبیه‌سازی نمی‌تواند تضمین
کند به صورت مدار مالک استخراج شده باشد. در اغلب مطالعات
پیش‌گزارش‌های مشخصه ادامه‌گیری و شبیه‌سازی شده پاسخ یکتا وجود ندارد و این مقاله بر پیچیدگی
شناسایی مدار معادل مناسب و مطلوب می‌یافتد. در این مطالعات با توجه به اینکه نقطه اتصال بین دیسک‌ها در سه‌پوییچ در دسترس بود نسبت به ادامه‌گیری تابع تبدیل ترانسفورماتور مورد بررسی از دیدگاه
گره نسبت به زمین و گره نزدیک به زمین اقدام شد و با نتایج شبیه‌سازی در شکل (۹) و (۱۱) مشابه شد.

شکل (۹): مقایسه تابع تبدیل حاصل از شبیه‌سازی و ادامه‌گیری مدل
مشروع توسیع یافته

(ب) فاز

(ای) دامنه

(ب) فاز

(ای) دامنه
در مدل مشروط معمول، عدم توجه به روزانه‌های غیرموتور سبب دستیابی به مدل‌های تک دارک رسمی که گرهی است از دیدگاه ترمینال یک به طور مطلوب بر مشخصه‌های نرمال تنظیم شده است. لیکن از دیدگاه گره‌های داخلی با خطای تخصوصی‌های رفتار آن را مدل می‌کنند. در حالیکه مدل مشروط توصیه شده اشاره شش‌السی‌بین روزانه‌های موثر و غیر موثر از دیدگاه ترمینال یک به دیدگاه گره‌های داخلی کیفیت رفتاری بهتری از نرمال‌نمایش‌های متصل می‌گردد.

- نتایج گیری

در این مقاله یک روش مناسب و سریع جهت استخراج پارامترهای ماد در مدل ترنسفورمر مینیتی بر اثر ازدحام آرامش شد. اگرچه بخش حذف شده این مدل به سختی امکان یافتن پارامترهای مناسب برای مدل ماد در داشتن که با استفاده از تکنیک آرانه شده می‌توان پارامترهای مدل ماد شکل یافته را با توجه به درک قابل قبولی نمودار روش آرائه شده در تخمین پارامترهای مدل ماد در این مقاله در ساختار بیشتری همگن و حاصلی که استفاده شده در مدل‌سازی حالت‌های ترنسفورمر، امکانات مدل ماد به ارزیابی تهیه شده تأیید است. در این مقاله مدل ترنسفورمربه ساختار نمونه‌هایی از مدل‌سازی حالت‌های ترنسفورمار ارائه شده است. رویکرد اصلی این مدل می‌باشد که در مورد انتخاب مناسب مدل ماد شکل یافته و ملاحظه شد که مدل ماد در توصیه یافته در مقایسه با مدل‌های مشروط معمول کیفیت رفتاری بهتری از ترنسفورمار ارائه می‌نماید.

- مراجع

