تشخيص بین جریان خطا خانلی و جریان هجومی در ترانسفورماتور با استفاده از روش آشوب

ایبالفضل جبلوند یهزاد فرانتی؟

1- دانشیار- گروه مهندسی برق- دانشکده مهندسی- دانشگاه زنجان- زنجان- ایران
ajalilvand@znu.ac.ir
2- کارشناس ارشد- شرکت ایران ترانسکو- زنجان- ایران
behzad_faraedi@yahoo.com

چکیده: در این مقاله برای بررسی جریان هجومی و جریان خطا داخلی ترانسفورماتورهای قدرت ارائه شده است. در این روش از روش آشوب برای تشخیص دانشیاری خودکار ترانسفورماتورهای قدرت در ارائه شده است. برای بررسی عملکرد الگوریتم پیشنهادی یک ترانسفورماتور قدرت ۲۳۰ کیلووات متصل به شبکه قدرت ۲۳۰ کیلووات. تحت شرایط مختلف کلیدزنی و خطای داخلی در محیط نرم‌افزار EMT/ATP مدل سازی شده است. نتایج حاصل از در نظر گرفتن عوامل مختلف مورد حاضر آموزش الگوریتم پیشنهادی است.

کلمات کلیدی: حفاظت دیفرانسیل، ترانسفورماتورهای قدرت، جریان هجومی، جریان خطا، تنوری آشوب، استلالات دافتهای

تاریخ ارسال مقاله: ۱۳۹۸/۰۸/۲۰
tاریخ پذیرش مسئول: ۱۳۹۸/۱۲/۱۳
tاریخ پذیرش مقاله: ۱۳۹۸/۰۸/۱۸
نام نویسندگان مسئول: دکتر ایبالفضل جبلوند
نشانی نویسندگان مسئول: ایران- زنجان- کیلومتر ۶ جاده تبریز- دانشگاه زنجان- دانشکده مهندسی- گروه مهندسی برق
مقدمه

حفظات الکترونیکی ترانسفراتورهای قدرت به‌عنوان یکی از مهم‌ترین اجزاء سیستم قدرت در معرض اندازه‌گیری خطا‌های داخلی و جریان‌های کلیدی قرار دارند. از اهمیت فراوانی برخورداری این اجزا برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگن ترانسفراتور بررسی شده که تحقیق خطا و این سیستم‌ها برای سیستم‌های همگه
در حالت کلیدمنی، در جیرین تکاملی مؤلفه هارمونیک خاصی از قیبل هارمونیک دوم و صد گانه (Hs) سوم و چهارم (Hs) پنجم، شوند. این فرکانس این مؤلفه با استفاده از فرکانس یکدی富有یندیت است. در روش پیشنهادی اساس شناختی جیرین ههجیم از جیرین خاتمی شناختی. فاصله خانگی فیلتر (1) به داشتن این دو ابزار از این فرکانس باید استفاده کنیم.

نتایج از این استادی مبنای تکمیلی جیرین ههجیم در حال حاضر به دنبال‌آوری را به دنبال‌آوری سیستم‌هایی ضعیف، خطا در ایمپانس بالا سیستم‌های قدرت، حالت جریان‌های و استفاده شده است. [12] [13] [14]

شکل (1): روند تکمیلی جیرین خاتمی از جیرین ههجیم

\[y = \frac{dx}{dt} \]

\[e^{\gamma t} \cos(\omega t) \]

\[S(t) \]

\[\alpha \cos(t) + \beta \cos(2t) \]

\[x = \frac{\sqrt{2}}{\sqrt{e - 1}} \]

\[\frac{d^2 x}{dt^2} + \frac{dx}{dt} - 3x = 0 \]

سهیسازی سیستم قدرت ۲۳۰ کیلو ولت

به منظور بررسی مناسب‌گی و دقت عملکرد الگوریتم تشخیص خطای داخلی در یک جریان همبسته، باید تمام محور‌های که در شرایط واقعی امکان وقوع آنها وجود دارد، به سیستم وارد شود و مورد تجزیه و تحلیل قرار گیرد. حالت‌های مختلف جریان همبسته با تغییر پارامترهای اصلی مؤثر را مشخص کنند و از قبیل اختلالات شار بسیار سخت و ولتاژ کلیدی است. فرآیند همبسته حالت‌های مختلف جریان‌های داخلی با نظر در نظر گرفتن عوامل اصلی مؤثر روی مشخصی این جریان‌هایی نوع خطای شامل خطای تک فاز به زمین (DLG)، خطای دو فاز به هم (LLG)، خطای دو فاز به زمین (SLG) و خطای دو فاز به زمین (3PHG) شته‌سازی می‌شود. از این لحاظ، نتایج یک کارگری الگوریتم پیشنهادی برای شرایط و حالت‌های جریان همبسته در فاز به زمین (3PHG)، جریان‌های همبسته و جریان‌های خطاً داخلی در همبسته بررسی و شکل‌گیری می‌شود.

شکل (۱): شماتیک سیستم قدرت شبه‌سازی شده

شکل (۲): دیاگرام سیستم قدرت شبه‌سازی شده در معیج

شکل (۳): دیاگرام سیستم قدرت شبه‌سازی شده در معیج

شکل (۴): دیاگرام سیستم قدرت شبه‌سازی شده در معیج

ATPDraw
به عنوان نمونه شکل موج جریان تغذیه (ب) برای حالت 1 در زاویه 36 درجه و طیف فرکانسی مربوط به آن در شکل (4) اورده شده است. همچنین خروجی اسپلارتر دافینگ تحریک شده توسط هارمونیک دوم و سوم جریان مربوط به این حالت در شکل (5) نشان داده شده است.

شکل (5): خروجی اسپلارتر تحریک شده توسط الیف هارمونیک دوم جریان دیفرانسیل (ب) هارمونیک سوم جریان دیفرانسیل

جدول (2): نتایج مربوط به خروجی مجموعه اسپلارترها در حالت‌های مختلف برای حالت اول

<table>
<thead>
<tr>
<th>$\varphi_1=0$, $\varphi_2=0$, $\varphi_3=0$</th>
<th>H_3</th>
<th>H_2</th>
<th>H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
<td>6</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
<td>7</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\times</td>
<td>\checkmark</td>
<td>8</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
<td>12</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
<td>14</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
<td>19</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
<td>24</td>
</tr>
<tr>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
<td>25</td>
</tr>
<tr>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>26</td>
</tr>
</tbody>
</table>

شکل (4): ایف (ب) شکل موج جریان تغذیه در حالت اول شار پیمان و کلیدزنی با زاویه شروط 36 درجه (ب) طیف فرکانسی خروجی اسپلارتر دافینگ تحریک شده توسط هارمونیک‌های دوم و سوم جریان تغذیه مربوط به حالات 1 در زاویه 36 درجه (شکل 4) در شکل (5) نشان داده شده است.

با توجه تعداد زیاد حالاتی که مورد بررسی و نظر به این که در اکثر موارد، نتایج حاصل از عملکرد اسپلارتر دافینگ مربوط به هر دوی هارمونیک‌های دوم و سوم موافقیم، بیشتر است در جدول (2) منتظیر با حالاتی که اندازه ی برای شار پیمان، ضرفاً جریان‌هایی که مصرفی به تغییر حالات فقط یکی از اسپلارترها دافینگ بوده، آرده شده است.
جدول (5): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت چهارم

<table>
<thead>
<tr>
<th>φ1</th>
<th>φ2 = 60%, φ3 = 60%</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>√</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>√</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>√</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

جدول (6): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت دوم

<table>
<thead>
<tr>
<th>φ1</th>
<th>φ2 = 80%, φ3 = 0</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>√</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>√</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>√</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

جدول (7): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت سوم

<table>
<thead>
<tr>
<th>φ1 = 80%, φ2 = 0, φ3 = 80%</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>√</td>
<td>2</td>
</tr>
<tr>
<td>×</td>
<td>√</td>
<td>7</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>10</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>11</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>12</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>13</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>14</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>15</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>16</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>17</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>18</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>19</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>20</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>21</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>22</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>23</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>24</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>25</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>26</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>27</td>
</tr>
<tr>
<td>√</td>
<td>×</td>
<td>28</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>29</td>
</tr>
</tbody>
</table>

\[\text{جدول (3): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت دوم} \]

\[\text{جدول (4): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت سوم} \]

\[\text{جدول (5): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت چهارم} \]

\[\text{جدول (6): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت دوم} \]

\[\text{جدول (7): نتایج مربوط به خروجی مجموعه اسیلاتورها در حالت‌های کلید زنی مختلط برای حالت سوم} \]
5- نتیجه‌گیری

در این مقاله یک روش جدید مبتنی بر نوسان برای تغییر جریان هموگلی از جریان خطای داخلی، در حالت‌بندی‌های مختلف ترانسفورماتورهای را ارائه داد. در این راستا نشان داده شد که این روش انساپ شده و پیچیده‌ای که امکان فوراً مناسبی در عمل وجود دارد. نتیجه‌گیری که این روش انساپ‌های ترانسفورماتور از جریان خطای داخلی بر اساس آنالیز یک می‌تواند باعث تغییر جریان هموگلی از جریان خطای داخلی شود.

برای حل مسائل ترانسفورماتور از طریق EMTP/ATP پیشنهاد شده است که این روش برای اتصال جریان هموگلی از جریان خطای داخلی در حالت‌بندی‌های مختلف ترانسفورماتورهای جریان هموگلی از جریان خطای داخلی بر اساس آنالیز یک می‌تواند باعث تغییر جریان هموگلی از جریان خطای داخلی شود.

در این مقاله یک روش جدید مبتنی بر نوسان برای تغییر جریان هموگلی از جریان خطای داخلی، در حالت‌بندی‌های مختلف ترانسفورماتورهای را ارائه داد. در این راستا نشان داده شد که این روش انساپ شده و پیچیده‌ای که امکان فوراً مناسبی در عمل وجود دارد. نتیجه‌گیری که این روش انساپ‌های ترانسفورماتور از جریان خطای داخلی بر اساس آنالیز یک می‌تواند باعث تغییر جریان هموگلی از جریان خطای داخلی شود.

برای حل مسائل ترانسفورماتور از طریق EMTP/ATP پیشنهاد شده است که این روش برای اتصال جریان هموگلی از جریان خطای داخلی در حالت‌بندی‌های مختلف ترانسفورماتورهای جریان هموگلی از جریان خطای داخلی بر اساس آنالیز یک می‌تواند باعث تغییر جریان هموگلی از جریان خطای داخلی شود.
حالت اسپلارهای از آشوناک به منظوم در شرایط مختلف شیب‌سازی

شده، وضعیت موجود سیستم تهیه‌داره‌ای می‌باشد.

مراحل دریافت

1. بررسی‌های انجام شده در حالت‌های مختلف شیب‌سازی نشان می‌دهد که در حالت کلید‌بندی، اسپلارهای دسته‌ای اول به غیر از بهتری این حالت به توسط اسپلارهای دسته‌ای دوم پوشش‌داده می‌شود، همگی در وضعیت نرم قرار دارند.

<table>
<thead>
<tr>
<th>ایدهام (Ω)</th>
<th>ضریب قدرت</th>
<th>مقاومت (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.40</td>
<td>0.8</td>
<td>95.28</td>
</tr>
</tbody>
</table>

مراجع

مختصات سیستم شیب‌سازی سازی شده:

<table>
<thead>
<tr>
<th>مختصات سیستم شیب‌سازی</th>
<th>Amplitude=230KV, f=50Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخه اول</td>
<td>R=20Ω</td>
</tr>
<tr>
<td>شاخه سوم</td>
<td>R=2Ω, L=63.7mH</td>
</tr>
</tbody>
</table>

مختصات ترانسفورماتور

<table>
<thead>
<tr>
<th>فرکانس Tراونفورماتور</th>
<th>ظرفیت Tراونفورماتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>100MVA</td>
<td>230/63 KV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ظرفیت</th>
<th>وات (پتانسیل اولیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>230/63 KV</td>
</tr>
</tbody>
</table>

پیوست

مشخصات سیستم تهیه‌دارهای برق در اسناد مقادیر ترانسفورماتور:

<table>
<thead>
<tr>
<th>Bar</th>
<th>مقاومت (Ω)</th>
<th>ضریب قدرت (mH)</th>
<th>ضریب قدرت (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>0.5</td>
<td>2.3</td>
<td>1</td>
</tr>
<tr>
<td>B-2</td>
<td>4</td>
<td>18.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

ترانسفورماتور

<table>
<thead>
<tr>
<th>کلاس</th>
<th>CT1</th>
<th>CT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیت</td>
<td>800/5</td>
<td>3000/5</td>
</tr>
</tbody>
</table>

سیستم CT

<table>
<thead>
<tr>
<th>کلاس</th>
<th>CT1</th>
<th>CT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیت</td>
<td>Cls C</td>
<td>Cls C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>بار</th>
<th>CT1</th>
<th>CT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیت</td>
<td>B1</td>
<td>B8</td>
</tr>
</tbody>
</table>

زیرنویس‌ها

6 Duffing oscillator
7 Damping ratio
8 Periodic driving force
9 Nonlinear restoring force
10 Limit cycles