برنامه‌ریزی توسه در نظر گرفتن منابع انرژی تجدیدپذیر و طرح‌های حمایتی با استفاده از الگوریتم جستجوی گرانشی

هادی صادقی ۱ محسن محمداکوی ۲ امیر ابدهی ۳ مسعود رشیدی‌نژاد ۴

۱- دانشجوی ارشد دانشکده فنی - دانشگاه شهید باهنر - کرمان - ایران
Hd.sadeghi65@yahoo.com
۲- استادیار- دانشکده فنی - دانشگاه شهید باهنر - کرمان - ایران
m.mohammadian@uk.ac.ir
۳- استادیار- دانشکده فنی - دانشگاه شهید باهنر - کرمان - ایران
a.abdollahi@uk.ac.ir
۴- استاد- دانشکده فنی - دانشگاه شهید باهنر - کرمان - ایران
mrashidi@uk.ac.ir

چکیده: در این مقاله به بررسی اثر طرح‌های حمایتی در ترویج منابع انرژی تجدیدپذیر در قالب برنامه‌ریزی توسه توجه پرداخته و ضمن در نظر گرفتن محدودیت‌های زیست‌محیطی، برنامه‌ریزی بهینه بر اساس الگوریتم جستجوی گرانشی که می‌تواند بر تشویق‌های مالی است، ارائه می‌شود؛ سپس با دنبالگاه تکاملی تابع می‌گردد. حل مسائل بهینه‌سازی حاصل با استفاده از یک روش جدید، تحت عنوان الگوریتم جستجوی گرانشی که می‌تواند بر قوانین حرفه و جاده نیروی می‌باشد. صورت می‌گیرد. نتایج بدست‌آمده از شبیه‌سازی حاکی از ضرورت اعمال طرح‌های حمایتی در گسترش منابع تجدیدپذیر در یک سطح قابل توجه و بدین‌گونه که آنان به‌آسان‌تری زیست‌محیطی ناشی از بخش تولید است.

کلمات کلیدی: برنامه‌ریزی توسه تولید، منابع تجدیدپذیر، طرح‌های حمایتی، محدودیت‌های زیست‌محیطی

تاريخ ارسال مقاله: ۱۳۹۲/۳/۱۹
تاريخ پذیرش مشروط: ۱۳۹۲/۴/۶
تاريخ پذیرش مقاله: ۱۳۹۲/۷/۱۱
نام نویسنده‌ه مسئول: دکتر مسعود رشیدی‌نژاد
نشانی نویسنده‌ه مسئول: کرمان - انتهای پل‌های بار - دانشگاه شهید باهنر کرمان - دانشکده فنی - بخش برق
از رایگاه کارآمدی الگوریتم مزیت تبعیت با مقاسه عملکرد آن با الگوریتم تازه‌سازی (PSO) در حل مسائل بهینه‌سازی مورد نظر صورت می‌گیرد.

بمنظور پوشش کامل مطالعه، بخش‌های بعدی مطالعه بدين ترتیب در نظر گرفته می‌شوند. می‌توان گفت لحاظ کردن اثر آنها در انجام یک برنامه‌ریزی دقیق و مقید به محدودیت‌های زیست محیطی، ضروری است. در این راستا پوزش‌های معمولی در قابل مطالعات مختلف انجام شده‌است که به ادامه به برخی از آنها اشاره می‌شود.

در مرجع [1] پیشگیری از انتشار آلایندگی‌های گروه توسط بخش تولید برق یکی از مهم‌ترین ملاحظات را در توجه کرده، لذا از انجام برنامه‌ریزی توزیع برق مصرفی یک راهبرد عملی برای کاهش انتشار آلودگی نقش مهمی می‌آورد.

در مقالات مختلف تحقیقات و تجربیات، بخش تغییرات یکی از استفاده‌های مهمی بوده و در حال حاضر ارائه می‌شود. اما در مقالات مختلف تحقیقات و تجربیات، بخش تغییرات یکی از استفاده‌های مهمی بوده و در حال حاضر ارائه می‌شود.
بین برای پرداختن به جستجوی گرانتی و نیروی جامعه از اجرام، فضا را به صورت مخصوص مشخص می‌گیرد.

Quota obligation

سایسته‌های شویویکی است. این طرح مبتنی بر‌مدادرعانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند مشخصی را در حد مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

به‌یک‌درگ‌متغیره‌سند، توانای اپل و بازرسی آن‌هم فردی‌رفته، در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند.

به‌یک‌درگ‌موت‌سیستم، در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

برای افزایش‌بی‌سند، این هر شرکت توپیک‌دهی‌متغیره‌سند

به‌یک‌درگ‌موت‌سیستم، در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

Emission trading

دیگر طرح‌های مبتنی بر‌م.agarı‌برای‌منسوب‌از‌میزان‌ان‌است. غیرالجرا، مبتنی بر‌توپیک‌دهی‌میزان‌برای‌مینی‌جی، طرح‌یک‌حوزه‌بی‌سند. در این‌طرح، این‌چک‌بوده‌سند در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

به‌یک‌درگ‌موت‌سیستم، در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

Algorithm

رویکردی‌بی‌سند، این هر شرکت توپیک‌دهی‌متغیره‌سند

به‌یک‌درگ‌موت‌سیستم، در حالت‌مدادردانی‌قانوی‌بناست، این هر شرکت توپیک‌دهی‌متغیره‌سند

Gravitational Search

(گرانتی‌جستجو گرانشی)

یک‌گرانتی‌جستجوی با وابستگی به‌هوش‌جمع‌وسایسته‌های GSA (به‌سادگی Algorithm) است. یک‌گرانتی‌جستجوی با وابستگی به‌هوش‌جمع‌وسایسته‌های GSA (به‌سادگی Algorithm) است. یک‌گرانتی‌جستجوی با وابستگی به‌هوش‌جمع‌وسایسته‌های GSA (به‌سادگی Algorithm) است. یک‌گرانتی‌جستجوی با وابستگی به‌هوش‌جمع‌وسایسته‌های GSA (به‌سادگی Algorithm) است.
در رابطه (8) نسبت گرانش در زمان t است که یک پارامتر
مناسب برای کنترل توانایی کاشی کاوی بهره‌وری در این
گروه‌های شماره G_0 و G هم‌اکنون به شمار می‌رود. مقدار برگ برای این پارامتر باعث
توییب توانایی کاوش گروه‌ها و مقدار کوچکی آن باعث افزایش
توانایی بهره‌وری گروه‌ها می‌شود. از آنجا که در مراحل اولیه
جستجو لازم است که گروه‌ها به جستجوی نقاط جدیدی در
فضا مساله برداشته و در مرحله پایانی باید با افزایش توان یپره
وری به بهبود جواب‌های دیده‌شده برپادازد، گزینه مناسب برای
نسبت گرانش این است که با فاصله مقادیر برگ شروع شده و با
گذشته زمان مقادیر کافی را بپذیرد.

در رابطه (6) نسبت R/G_0 فاصله اقلیدسی بین دو جرم i و j، و
ϵ یک عدد بسیار کوچک است. بینت ترتیب کل نروی وارد بر d در i جرم
در زمان t بر اساس مجموع ضریب تصادفی از
تئم نروی‌های است که سایر اجرام سیستمی بر این جرم وارد می‌
کنند که با استفاده از رابطه 8 (8) بصورت زیر محاسبه می‌شود:

$$ F_{t}^{i}(t) = \sum_{j=1, j \neq i}^{N} \text{rand} \cdot F_{t}^{j}(t) $$

$$ a_{t}^{i} = \frac{F_{t}^{i}(t)}{M(t)} $$

$$ t_{\text{rand}}(i) = \text{rand} \cdot x_{t}^{i}(n) + a_{t}^{i}(t) $$

$$ t_{\text{rand}}(i+1) = \text{rand} \cdot x_{t}^{i}(n+1) + t_{\text{rand}}(i) $$

در رابطه فوق a_{t}^{i} مقدار d نشان دهنده جرم در هر t زمان
است. سرعت هر جرم بر اساس مجموع ضریبی از سرعت فعلی جرم و
شتاب جرم است که تا بطق رابطه 10 تعريف می‌شود. همچنین
مقدار جدید d به عنوان مجموع موقعیت فعلی و سرعت آن
طقب رابطه 11 (11) می‌باشد.

$$ t_{\text{rand}}(i+1) = \text{rand} \cdot x_{t}^{i}(n+1) + t_{\text{rand}}(i) $$

$$ t_{\text{rand}}(i) = \text{rand} \cdot x_{t}^{i}(n) + a_{t}^{i}(t) $$

در رابطه 8 و 10 توابع rand و rand مربوط به تصادفی
اعداد تصادفی با توزیع بکسیوند در باره 10 هستند که با بهبود
حفظ خاصیت تصادفی روند جستجو می‌گردد. برای تنظیم نسبت
گرانش نیز از رابطه 12 استفاده می‌شود. طبق این رابطه ضریب
گرانش به مرور زمان کاهش می‌یابد که شبک کاهشی آن بسته
به مسئله مورد بررسی می‌باشد مقدار مشخصی را به خود
احساس دهد و تنظیم نهایی در بهبود عملکرد گروه‌ها موتور
خواهد بود.
بهره‌برداری قرار می‌گیرد.

\[\pi_{\text{FIT}} \]

نیز مجموعه‌ی تشویق‌های مالی متقارن با فناوری تجربه‌نگاری و قیمت بازار را در سال مربوط به ناشان می‌دهد.

بر این اساس، در رابطه (13) ترم‌های معروف کل درآمد حاصل از فروش انرژی در سال مربوط به تولیدهای ناشین‌های تجربه‌نگاری، ترم سوم درآمد ناشین از انرژی تولیدهای توانایی واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

4- قیود مساله

به‌منظور تحقیق چه بیشتر یک مدل کارآمد برای برنامه‌ریزی تولید نزدیک به حاصل از فروش انرژی سالیانه به واحدهای تجربه‌نگاری، به‌منظور معرف به واحدهای تجربه‌نگاری از انرژی تولیدهای توانایی واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

این قید بصورت زیر بیان می‌شود:

\[E_{\text{r}} = \sum_{r=1}^{N_{\text{t}}} E_{\text{f}}^{\text{r}} + \sum_{r=1}^{N_{\text{t}}} E_{\text{w}}^{\text{r}} \quad (14) \]

4- قید بودجه

این قید بودجه سرمایه‌گذاری کل شده توسط شرکت تولیدی مورد نظر در طول یک سال مربوط به واحدهای تجربه‌نگاری، به‌منظور معرف به واحدهای تجربه‌نگاری از انرژی تولیدهای توانایی واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

\[\pi_{\text{FIT}} \]

در رابطه فوق، \(t \) تصریح بیره، \(\pi_{\text{FIT}} \) یک محدوده توانایی در تولید، \(E_{\text{r}} \) کل انرژی مورد نظر در صورتی که، \(\pi_{\text{FIT}} \) به‌منظور معرف به واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

\[\sum_{r=1}^{N_{\text{t}}} \sum_{i=1}^{N_{\text{r}}} (1+i)^{-t} (r, CP, CN_{\text{r}}^{\text{t}}) \leq In_{\text{fit}} \]

\[(15) \]

که در آن، \(\sum_{r=1}^{N_{\text{t}}} \sum_{i=1}^{N_{\text{r}}} (1+i)^{-t} (r, CP, CN_{\text{r}}^{\text{t}}) \leq In_{\text{fit}} \]

\[\text{FIT new u} \]

از این و در این مطالعه مدلی سازگار با این محتوا برای برنامه‌ریزی توسعه تولید در نظر گرفته شد. در این بخش به این سوال کل جامع برای برنامه‌ریزی توسعه تولید می‌پردازیم.

یک مدل معرف به واحدهای تجربه‌نگاری از انرژی تولیدهای توانایی واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

با مبنا به مقایسه طرح‌های سرمایه‌گذاری مختلف در سال بالای، با توجه به کل بودجه در دسترس، از روش ارزش فعلى در محاسبه‌ی ی درآمد و هزینه‌ها استفاده می‌گردد. در ادامه، نتایج هدف و قیود در نظر گرفته شده بیان و بررسی می‌شود.

1- هدف

تایب هدف

فروش انرژی تولیدی در سال سالیانه برای برنامه‌ریزی در طول یک سال M افق مدل می‌باشد. به‌منظور معرف به واحدهای تجربه‌نگاری از انرژی تولیدهای توانایی واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

\[\pi_{\text{FIT}} \]

در رابطه فوق، \(t \) تصریح بیره، \(\pi_{\text{FIT}} \) یک محدوده توانایی در تولید، \(E_{\text{r}} \) کل انرژی مورد نظر در صورتی که، \(\pi_{\text{FIT}} \) به‌منظور معرف به واحدهای تجربه‌نگاری منتفی و ترم مکمل معرف به واحدهای سرمایه‌گذاری مربوط به واحدهای مجدد در سال مورد نظر ناشان می‌شود.

\[\sum_{r=1}^{N_{\text{t}}} \sum_{i=1}^{N_{\text{r}}} (1+i)^{-t} (r, CP, CN_{\text{r}}^{\text{t}}) \leq In_{\text{fit}} \]

\[(15) \]

که در آن، \(\sum_{r=1}^{N_{\text{t}}} \sum_{i=1}^{N_{\text{r}}} (1+i)^{-t} (r, CP, CN_{\text{r}}^{\text{t}}) \leq In_{\text{fit}} \]
فید انتشار آینده‌های گازی

ترجمه فیزیکی با استفاده از سوختهای فیزیکی باعث ورود آلایندگی مختلف جویانه را به خود اختصاص می‌دهد. فیزیک استریو نسبت به همگزینی بین آلایندگی و نسبت طرف‌داری تولید می‌شود. این مسئله با توجه به سرویس‌های موجود و به‌طور کلی به برنامه‌ریزی موثر است که تولیدی به درجه افزایش تولیدی، با توجه به معادله حرکت‌ها و نیز ضرایب انتشار مشترک با طرح تولیدی سیستم‌های فیزیکی می‌باشد.

یک نظر ترکیب سوخت

در مقالات مختلف میزان انتشار واحدهای بر سوختهای سلولی با استفاده از توان تهدید جنگلی با نمایی با ترکیبی از هیدر بروز می‌تواند اثرات بسیاری بیاورد. در این مطالعه، نتایج بررسی‌ها میزان انتشار واحدهای مختلف از ترکیبی تشکیل‌دهنده می‌باشد.

شایعه‌سازی یا ارائه نتایج

در این بخش، نتایج مربوط به برنامه‌ریزی توسعه ذخیره‌سازی از واحدهای تشکیل‌دهنده تولیدی سیستم‌های نوین که در حال حاضر دارای نقش بسزایی در دانستاری و نیز تدوین آنها است. در رابطه (18) حداکثر میزان مجاز انتشار بر حسب تن در سال (\(W_t\)), ساعت (\(P_{\text{et}}\)), و \(\eta, \gamma, \beta, \alpha\) نتیج ضرایب انتشار منطقی با هر یک از فناوری‌های تولید مبتنی بر سوختهای فیزیکی می‌باشد.

\[
\sum_{i} (\alpha_i + \beta_i \gamma_i + \beta_i P_{\text{et},i}) + \eta \exp(\mu_i, P_{\text{et},i}) \leq W_{t,max}
\]

در رابطه (16) حداکثر میزان مجاز انتشار بر حسب تن در سال (\(W_t\)), ساعت (\(P_{\text{et}}\)), و \(\eta, \gamma, \beta, \alpha\) نتیج ضرایب انتشار منطقی با هر یک از فناوری‌های تولید مبتنی بر سوختهای فیزیکی می‌باشد.

\[
\sum_{i} (\alpha_i + \beta_i \gamma_i + \beta_i P_{\text{et},i}) + \eta \exp(\mu_i, P_{\text{et},i}) \leq W_{t,max}
\]

در رابطه (17) حداکثر میزان مجاز انتشار بر حسب تن در سال (\(W_t\)), ساعت (\(P_{\text{et}}\)), و \(\eta, \gamma, \beta, \alpha\) نتیج ضرایب انتشار منطقی با هر یک از فناوری‌های تولید مبتنی بر سوختهای فیزیکی می‌باشد.

\[
\sum_{i} (\alpha_i + \beta_i \gamma_i + \beta_i P_{\text{et},i}) + \eta \exp(\mu_i, P_{\text{et},i}) \leq W_{t,max}
\]

در رابطه (18) حداکثر میزان مجاز انتشار بر حسب تن در سال (\(W_t\)), ساعت (\(P_{\text{et}}\)), و \(\eta, \gamma, \beta, \alpha\) نتیج ضرایب انتشار منطقی با هر یک از فناوری‌های تولید مبتنی بر سوختهای فیزیکی می‌باشد.

\[
\sum_{i} (\alpha_i + \beta_i \gamma_i + \beta_i P_{\text{et},i}) + \eta \exp(\mu_i, P_{\text{et},i}) \leq W_{t,max}
\]

در رابطه (19) حداکثر میزان مجاز انتشار بر حسب تن در سال (\(W_t\)), ساعت (\(P_{\text{et}}\)), و \(\eta, \gamma, \beta, \alpha\) نتیج ضرایب انتشار منطقی با هر یک از فناوری‌های تولید مبتنی بر سوختهای فیزیکی می‌باشد.

\[
\sum_{i} (\alpha_i + \beta_i \gamma_i + \beta_i P_{\text{et},i}) + \eta \exp(\mu_i, P_{\text{et},i}) \leq W_{t,max}
\]
سال های مربوطه نیز در جدول (۳) نشان داده شده است. جدول (۳) نیز مشخصات فنی و اقتصادی مربوط به منابع منابع را نشان می دهد.

جدول (۱): اطلاعات مربوط به واحدهای موجود در سال مبنای [۸]

<table>
<thead>
<tr>
<th>سال</th>
<th>تولید (MW)</th>
<th>هزینه تولید (€/MWh)</th>
<th>ظرفیت (MW)</th>
<th>تعداد</th>
<th>واحدهای میلیون (H/year)</th>
<th>تولید (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>۳۲/۹۹</td>
<td>۴۰/۸۸</td>
<td>۶۰۰</td>
<td>۴۰۰</td>
<td>۵۰۰</td>
<td>۴۴/۹۹</td>
</tr>
<tr>
<td>CCGT</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Nuclear</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Hydro</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Wind</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Biomass</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Waste</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
<tr>
<td>Solar</td>
<td>۳۲/۹۹</td>
<td>۳۲/۹۹</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۳۵۰</td>
<td>۴۰/۴۰</td>
</tr>
</tbody>
</table>

جدول (۲): اطلاعات مربوط به برق پیشینی کشور بر قدر [۱۳]

جدول (۳): مشخصات فنی و اقتصادی واحدهای منابع [۱۳]

همانگونه که در جدول (۳) امده است، اطلاعات مربوط به سنگین‌کارگری هر یک از انواع واحدها در کلاستر تولید هر واحد حاصل از برنامه‌بری بهینه تعبیر کننده قیمت‌های ارزی است. هر یک از سال‌های برنامه‌بری که باز می‌تواند در طول هر سال یک واحدهای منابع به‌طور ماهیتی بیشتر از موارد چون طول دوره عمر سالانه مربوط به هر یک از انواع فناوری‌های تولید (واحدهای منابع)، به عنوان مثال، بهترین خریداری و نوسانات تولید بیشتر (nondispatchable sources) به معنی اینست که باز این در اطلاعات مربوط به بهره‌برداری آنها در طول سال‌های سال‌های گذشته، مثبته قابل قبولی تجربه شد. به این بزرگی باید به‌طور محدبی باشد. سیستم درجه‌بندی بحثی چنین می‌شود. این برنامه‌بری می‌تواند در منابع هر یک از انواع واحدها با توجه به اطلاعات مربوط به بهره‌برداری آنها در طول سال‌های گذشته بطور محدبی است. به‌طور محدودی باشد. به‌طور محدودی باشد. به‌طور محدودی باشد.

برای پرداخت بررسی سال‌های استفاده مربوط به سال‌های گذشته، عملاً می‌تواند در منابع هر یک از انواع واحدها توجه داشته باشید، البته که این توجه به‌طور محدودی است. به‌طور محدودی باشد.
سیستم‌های تغییر و حذف‌داری می‌تواند طور مستقیم و غیرمستقیم، نحوه تغییر صورت‌گیری شکست‌های تولیدی را در سرتاسر گذاشته و گسترش منابع تجدیدپذیر، تحت تأثیر قرار دهد. با توجه به میزان تناوبی در سالهای اندیشی افقت توتیم و یدکین بودن میزان انتشار نسبت به حجم مجاز، نتایج حاصله کم‌پوشی شده که تبلیغ شکست دولتی در سرتاسر گذاشته و همراه با تاکیدی را نشان می‌دهد که این امر ناشی از کم‌پوشی بودن میزان تشکیل‌های قادر آنتی‌فای چهاردهان، تعیین‌ناپذیر و تواننده جایگزین‌های کامپوزیتی، تعداد اقتصادی ممکن است و رشد که این امر منجر به کاهش سیستم‌های تجدیدپذیر را بروی این منابع می‌گردد.

به منظور بررسی بهتر نقص طرح‌های حاصلی در ترکیب منابع تجدیدپذیر و تأثیر این واحدها در کاهش میزان انتشار، برناخت رزی توسعه بار دیگر به ارزی جدید تشکیل‌های مالی و نیز محدود‌کننده انتهاش به سال میزان انتشار مربوط به هر دو حالت برناخت رزی توسعه شکل (3) و تعداد واحدهای تجدیدپذیر انتخاب شده برای سیستم‌های تجدیدپذیر در طرح توسعه، بدون اعمال FIT نیز در جدول (6) نشان داده شده است.

در مورد نتایج مندرج در جدول (5) باید توجه داشت که در این مقایسه، برناختی که این تحقیق مربوط به طول دوره برناختی، همواره با حداقل افت تغییر دو مورد به‌داری می‌گردد. درصد مشارکت هر یک از منابع مناسب تامین به‌صورت مورد نیاز در هر یک از سالهای برناختی
سود میر [۲۱] این امر می‌تواند به‌جایی محاسبات و کنترل روند جستجو را با‌دین‌الدش‌باشد.

شکل (۳): میزان انتشار در هر دو حالت برنامه‌بری (تن بر ساعت)

جدول (۲۶): تعداد واحدهای تجدیدپذیر بدون در نظر گرفتن FIT

<table>
<thead>
<tr>
<th>سال‌های برنامه‌بری</th>
<th>فاتری</th>
<th>هیدروژن</th>
<th>ویند</th>
<th>بیوماس</th>
<th>زباله</th>
<th>آب‌زیابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۸</td>
<td>۱</td>
<td>۵</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۶</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۴</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۲</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
</tbody>
</table>

مقایسه تعداد واحدهای تجدیدپذیر منتفی در هر دو حالت برنامه‌بری، کم‌کننده مصرف سرمایه‌گذاری بر روی این نوع از منابع را نشان می‌دهد که از هزینه‌ای اولیه بالا و عملکرد کم مربوط به این منابع ناشی می‌شود. با توجه به شکل (۳) نیز واضح است که با کاهش سهم تجدیدپذیر در ناحیه‌های منطقی، تعداد اثرات افزایش می‌شود و اینها متعارف در ناحیه‌های بیشتر خواهد بود.

برای ارزیابی توانمندی کارکردهای خوراکی در حل مسائل بی‌پنجه‌سازی و محدودیت در این منابع، عملکرد این کاربرد با سطح‌های دیگر کریگی در واحدهای تجدیدپذیر در طول افزایش سود شرکت درون‌روی و سود شرکت درون‌روی در دو سطح با توجه به‌شیوهی‌های است که علاوه بر مراحل مختلفی که کاهش وابستگی به سوخت‌های فلزی، باعث کاهش اسپرسنسی وارد می‌گردد. از این‌رو، اجرای سیستم‌های برق‌کاری در شرکت‌های تولیدی و تولیدکننده‌های پیش‌بینی می‌تواند سود مشتری را تحت تأثیر قرار دهد. با توجه به نتایج است که با کاهش سهم تجدیدپذیر عاتخبیتهای جوان به‌هم‌رنگی را نسبت به کارکردهای خود این افزایش می‌نماید. شایان ذکر است که بر خلاف کریگی جستجوی گرانشی، کریگی اتوماتیک در حال حاضر نیز به‌عنوان کارکردی شرکت‌ها گزارش شده‌بود که در این‌ها در اطلاعات که‌شته خود و استقرار مربوط به‌یک‌فرات در روند به‌منی‌بیندی می‌باشد.

FIT
مطالعاتی قرار گیرند که در این راستا حائز اهمیت بوده و می‌توانند در اشاره‌سازی هرچه بیشتر ضرورت ترویج منابع انرژی تجدیدپذیر مؤثر واقع شوند.

مراجع
[1] خراسانی، حمید رشیدیزاده، ""گوش دادن به روش ترکیبی برای برنامه‌ریزی توسعه شبکه انگال""، نشریه مهندسی برق و الکترونیک ایران، سال نهم، شماره اول. 1391.