سنجد استعداد ابتلا به فیبریلاسیون دهلیزی با استفاده از تحلیل‌های غیر خطی سیگنال الکتروکاردیوگرام

محمد سپهری‌نیا\محمد پویان
1- دانش‌آموخته - کارشناسی ارشد - دانشگاه فنی و مهندسی - دانشگاه شهید - تهران - ایران
 Sepehrinia77@gmail.com
2- استاد - دانشگاه فنی و مهندسی - دانشگاه شهید - تهران - ایران
 pooyan@shahed.ac.ir

چکیده: فیبریلاسیون دهلیزی یک ناحیه آریتمی فوق بطنی است. که با فعالیت دهلیزی غیرهماهنگ و تعاقب آن و همکاری مکانیکی دهلیزی مشخص می‌شود. در این پژوهش در مدل بالایی از جمعیتی جهان آن را به یک مشکل اجتماعی و اقتصادی تبدیل کرده است. با تشخیص زودهنگام این آریتمی کشش‌دهی قلبی می‌توان آن را پیشگیری و مدیریت نمود. در این تحقیق برآوردهای استفاده از روش‌های غیرتیکمی، بر پایه تجزیه و تحلیل غیرخطی سیگنال الکتروکاردیوگرام افراد مستعد ابتلا به فیبریلاسیون دهلیزی را نشان می‌نماید. این تحقیق شامل سه مرحله است. در گام نخست سیگنال‌های ECG جمع‌آوری شده از سایت فیزیوتین پیش‌برداری می‌شوند تا نویز‌های ناشی از برق‌های شرکت‌های موجود در سیگنال حذف شوند. در ادامه آزمایشات constructing HRV سیگنال از آنها استخراج می‌گردد. در مرحله دوم، دو گروهی غیرخطی از سیگنال HRV مشتمل بر میزان انحراف نمودار پویانگره، بعد همبستگی، نمایه لیاپانوف، آنتروپی تقریبی و آنتروپی طیفی و پنج گروهی از تحلیل کم‌نمودارهای بای‌گشتی استخراج می‌شوند. در مرحله سوم با استفاده از طبقه‌بندی کننده ماسیو بردار پشتیبانی به طبقه‌بندی دو گروه افراد سالم و افراد در معرض ابتلا به حملات فیبریلاسیونی می‌پردازیم. نتایج نهایی نشان می‌دهد که طبقه‌بندی کننده ماسیو بردار پشتیبانی توانسته است افراد بیمار را در زمان‌های سیگنالHRV آنها 0.5 دقیقه پیش از شروع حملات فیبریلاسیون دهلیزی تحلیل شده است با صحت 93% از افراد سالم تفکیک نماید.

کلمات کلیدی: فیبریلاسیون دهلیزی، سیگنال HRV، سری زمانی، کم‌نمودار، ماسیو بردار پشتیبانی

تاريخ ارصال مقاله : 1391/9/23
تاريخ پذيرش مشروط : 1392/10/7
تاريخ پذيرش مقاله : 1393/8/18
نام نويسنده مسئول: محمد سپهری‌نیا
نشاني نويسنده مسئول: ايران - تهران - آتووان تهران - روبروی عوارضی قم - دانشگاه شهید - دانشکده فنی مهندسی
مقدمه

بیماری‌های قلبی و عروقی یکی از علل اصلی مرگ و میر در جهان است. امروزه فیبرلایسون دهلیزی یکی از بروز انماتکی‌های بیماری‌های قلبی و عروقی است. به‌طور کلی، این بیماری در زنان و مردان، افراد بالای 40 سال زندگی می‌کند.

طی سیگنال اپی‌پریزی گردهی می‌تواند درد و اختلالات قلبی را منجر به شکست خونی و انسداد رگ‌ها شود. این مسئله خطر ابتلا به سکته مغزی و مرگ را در این بیماران افزایش می‌دهد. به طوریکه از حدود 15٪ از جمعیت سکته‌های مغزی را نیز یک‌سانی می‌کند. این بیماری ممکن است در افراد بالای 40 سال نوعی امروز مشکل اصلی است.

آماره‌های نشان دهنده این بیماری وجود دارد که این بیماری با علائم و اختلالات قلبی و اسکلرولیزیون اپی‌پریزی گردهی در بیماران دیگری نیز مشاهده می‌شود. این بیماری ممکن است ناشی مانگیا، باعث تغییرات قلبی و اسکلرولیزیون در بیمار بگردد.

در دهه‌های گذشته تحقیقات باسیاری در زمینه شناسایی بهبود و همکاری با Hayn خانم‌های فیبرلایسون دهلیزی با تغییرات و تغییرات قلبی و اسکلرولیزیون در سیگنال اپی‌پریزی گردهی مشاهده می‌شود. این بیماری در افراد بالای 40 سال و افراد حامل حاملی فیبرلایسون دهلیزی کاهش قابل ملاحظه‌ای در مقدار و همکاروانش در مقالاتی با بررسی اجتماع‌های زودرس دهلیزی کی پیش‌بینی گردید. خانم‌های فیبرلایسون دهلیزی نیز به دلیل حمایت‌های اپی‌پریزی گردهی و اسکلرولیزیون در مقاله‌هایی که در دهه‌های گذشته از شروع آزمون‌های قلبی و اسکلرولیزیون در مقاله‌های دارای تغییرات قلبی (HRV) در دوره‌های پیش از شروع در مقاله‌های به دلیل حمایت‌های اپی‌پریزی گردهی و همکاروانش در مقالاتی با بررسی اجتماع‌های زودرس دهلیزی کی پیش‌بینی گردید.

نتایج تحقیقات نشان می‌دهد که داده‌های سیگنال ECG نشان می‌دهد که شایع‌ترین داده‌های سیگنال ECG در کرای چربی در این بیماری نشان می‌دهد. این تحقیقات نشان می‌دهد که بیماران دیگری با این مسئله خطر ابتلا به سکته مغزی و مرگ را در این بیماران افزایش می‌دهد. به طوریکه از حدود 15٪ از جمعیت سکته‌های مغزی را نیز یک‌سانی می‌کند. این بیماری ممکن است ناشی مانگیا، باعث تغییرات قلبی و اسکلرولیزیون در بیمار بگردد.
4- ویژگی‌های آشوبی
نظره‌ی سیستم‌های گیرش‌خیپبی به طور کلی‌تر در سال‌های اخیر برای توصیف رفتار سیستم‌های دیاینامیکی و به طور خاص در تفسیل‌های EEC و ECG ضرورت استفاده از گرفتم و تحلیل سیگنال‌های ECG به‌صورت استنتاجی، امکان‌پذیر نیست. در اینجا از این مفاهیم استفاده می‌کنیم.

2- پایگاه داده‌ها
داده‌های سیگنال ECG که در این مقاله مورد استفاده قرار گرفته‌اند از آرشیف فیبرولیسانس در دانشگاه سایت فیزیوتون استخراج شده‌اند [11]. این پایگاه داده شامل اطلاعات از گروه 50 تا از افراد سالم و بیمار می‌باشد. هر یک از افراد در گروه‌های مربوط به سطح استخراج دسته‌بندی شده‌اند. این اطلاعات شامل عوامل محاسبه‌ای ECG و محاسبه‌ی طول سیگنال است. ECG آنها به صورت دو بخش 3 دقیقه و 5 دقیقه به صورت دقیقه‌ای دیجیتالی داده شده است.

1- نمودار پویاگره
نمودار پویاگره به صورت سیگنال R در سیگنال ECG به صورت FQ7 منفی می‌باشد و یک فضاي فاز رسم را نشان مي‌دهد. همانطور که در شکل 1 ملاحظه می‌شود، این نمودار در شکل 1 رسم نشان می‌دهد. در این نمودار، یک خط به طول نشان می‌دهد، تا به‌صورت FQ7 منفی می‌باشد.

2- پیش برداشته داده‌ها
میانگین نسخه‌های ECG معمول شامل نشان‌های زمانی از لرزه‌های جهت شده در سیگنال ECG می‌باشد. این نشان‌های زمانی از لرزه‌های جهت شده در سیگنال ECG می‌باشد.

شکل (1): نمودار پویاگره FQ7 منفی می‌باشد و یک خط به طول نشان می‌دهد. این نشان‌های زمانی از لرزه‌های جهت شده در سیگنال ECG می‌باشد.
نامی لیاپانوف

یکی دیگر از ابزارهای مفید برای توصیف جابجایی یک سیستم، نمای لیاپانوف است. این شاخص میانگین واقعی نمایی از توزیع دلخواه در طول زمان به شکل یک سیستم می‌باشد. هر سیستم که در آن توزیع دلخواه در طول زمان ثابت می‌گردد، یک تابع لیاپانوف دارد که نمای لیاپانوف m به سیستم، به عنوان m یک تابع لیاپانوف می‌باشد.

برای نمای لیاپانوف، به صورت رابطه 2، می‌تواند به صورت رابطه 3 نمایانگر این تابع تخمین زده شود.

\[C(R) = \lim_{N \to \infty} \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \theta(R - |x_i - x_j|) \]

(3)

که تعادل داده‌ها و ثابت سیگنال است. اگر تعادل داده‌ها به سیستم می‌باشد، به صورت رابطه 4، می‌تواند به صورت رابطه 5 طبقه‌بندی شود.

\[\log R = \lim_{N \to \infty} \frac{\log C(R)}{\log N} \]

(4)

برای رسیدن به می‌تواند به طبقه‌بندی مطابق رابطه 3 داده‌ها در این تابع قرار دهند.

\[X(i) = [x(i+r), x(i+2r), ..., x(i+(m-1)r)] \]

(2)

برای مدل‌سازی 15 می‌تواند به صورت رابطه 6، برای مدل‌سازی است. در این مدل، به عنوان ابزار Swinney و Fraser به عنوان ابزار 16 بکار می‌رود.

\[\text{ApEn}(m, r, N) = (\phi^m(r) - \phi^{m+1}(r)) \]

(5)
تباشتاریان [18]، در ادامه به برخی از این معارفه اشاره می‌کنیم.

1- نرخ بازگشت جامع (REC)

نرخ بازگشت در نمودارهای بازگشتی می‌باشد.

\[\text{REC}(\varepsilon) = \frac{2}{N^2} \sum_{i,j=1}^{N} R_{ij}(\varepsilon) \] \hspace{1cm} (8)

2- قطعیت (DET)

نرخ ناقص بازگشتی که از ساختارهای قطري حسن‌دند (با حل‌داداش Lmin) نسبت به حالت غیر قطري در بازگشتی به عناون قطعیت با پیش‌بینی زمانی در مورد بازگشتی است. به توجه به سیاست مورد نظر، بازگشتی برای این مقدار تعیین می‌شود.

\[\text{DET} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} I_{ij} p(I_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{N} p(I_{ij})} \] \hspace{1cm} (9)

3- متوسط طول خطوط قطری (Lmean)

متوسط طول خطوط قطری را به سیاست Lmean جمع‌آوری می‌کنیم.

\[L_{\text{mean}} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} I_{ij} p(I_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{N} I_{ij}} \] \hspace{1cm} (10)

4- طول طولانی‌ترین خط قطری (Lmax)

طول طولانی‌ترین خط قطری به استاندارد بزرگ‌ترین خط قطری می‌باشد. این یک تغییر نسبی مهم در بازگشتی است که این فضای ماتریسی سیگنال پس از ترازکتوری دو نشان می‌دهد. به مناسبت Lmax به حالت اولیه، این مقدار تعیین می‌شود.

\[L_{\text{max}} = \max \{|I_{ij}|_{i,j=1}^{N} \} \] \hspace{1cm} (11)

5- تحلیل کمی نمودارهای بازگشتی

نمودار بازگشتی یکی از بهترین پیش‌بینی‌هایی از سیستم‌های دینامیکی بوده و در توصیف رفتار سیستم در پایان مورد استفاده قرار گرفته. نمودار بازگشتی نمایش دهنده آنها به یک انتاسیون مشخص Lmean است. به همین دلیل، بازگشتی برای استفاده در نظر گرفته شده است.

\[\text{SampEn}(m, r, N) = -\ln \left[\frac{a_m(r)}{a_{m+1}(r)} \right] \] \hspace{1cm} (12)
مشخصات مورد نظر را بر روی 15 دقیقه پایانی سیگنال‌های بیش از وقوع حمله در افراد بیمار انجام می‌دهیم. هر ۱۵ دقیقه را به ۳ بخش ۵ دقیقه‌ای تقسیم می‌کنیم، و مقدار کمیت‌های آشوبی را در هر ۵ دقیقه محاسبه و با کمیت‌های استخراج شده از افراد سالم مقایسه می‌نماییم. مقدار نیز با نمواد P02 R-R Interval یوتکاره داده می‌شود.

دیدکشی نمایی لیالات متغیر به نام تاخیر زمانی مطلق با روش اطلاعات متغیر عدد ۱ انتخاب گردید. این مقدار در مطالعات قبلی نیز به کار گرفته شده است [۱۹]. بعد از باراکسازی با استفاده از روش تبدیلکرین همسایه اشتباه c در نظر گرفته شد.

گزاره‌های جهت محاسبه نمایی لیالات را به همراه ابعاد و مقدار مطلق انتخاب می‌کنیم. آنها به بیماری‌های ویروسی و گوارشی نسبت به موارد سالم می‌یابند. اگر در نظر گرفته شود که همان‌طور که در شکل (۱) دیده می‌شود این HRV نمواد برای لیالات قبل از وقوع حمله دچار تغییرات می‌شود. کمیت‌های آشوبی استخراج شده برای فرد سالم و فرد بیمار ۵ دقیقه پیش از وقوع حمله در جدول (۱) نشان داده شده است.

جدول (۱) نمودار بارگشته فرد سالم را در مقایسه با بیمار

<table>
<thead>
<tr>
<th>No.</th>
<th>Feature</th>
<th>NSR</th>
<th>5 minute before PAF onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lmean</td>
<td>23/086</td>
<td>44/01</td>
</tr>
<tr>
<td>2</td>
<td>Lmax</td>
<td>219/92</td>
<td>276/7</td>
</tr>
<tr>
<td>3</td>
<td>REC</td>
<td>41/433</td>
<td>56/42</td>
</tr>
<tr>
<td>4</td>
<td>DET</td>
<td>98/738±0.2</td>
<td>99/224±1.2429</td>
</tr>
<tr>
<td>5</td>
<td>ShanEn</td>
<td>3/483±0.2</td>
<td>3/911±0.7821</td>
</tr>
<tr>
<td>6</td>
<td>SD1/SD2</td>
<td>0/4619±0.2</td>
<td>1/30518±0.24</td>
</tr>
<tr>
<td>7</td>
<td>ApEn</td>
<td>0/9321±0.2</td>
<td>0/727±0.133</td>
</tr>
<tr>
<td>8</td>
<td>SampEn</td>
<td>1/148±0.2</td>
<td>0/825±0.2328</td>
</tr>
<tr>
<td>9</td>
<td>D2</td>
<td>2/696±0.2</td>
<td>2/164±0.2</td>
</tr>
<tr>
<td>10</td>
<td>LLE</td>
<td>0/4289±0.2</td>
<td>0/4031±0.111</td>
</tr>
</tbody>
</table>

شکل (۲) نمودار بارگشته فرد سالم را در مقایسه با بیمار P02 را در ۵ دقیقه پایانی قبل از وقوع حمله حیاتی، نشان می‌دهد.
6- طبقه‌بندی داده‌ها

ماشین بدراد پشتیبانی (SVM) است که کوپن استفاده‌ی همکارانش پیش‌نهاد شد [22]. ماشین بدراد پشتیبانی در واقع یک طبقه‌بندی کننده دوویی غیر آماری است که دو کلاس را با استفاده از یک مرز خلیف از هم جدا می‌کند. در این روش با استفاده از تعدادی منحنی به نام HRV و سالم را مشکل می‌دهند به دست می‌آیند. این نمونه‌ها را بدراد پشتیبانی گویند. مرز تصمیم‌گیری به‌همراه مزیت است که حداکثر حاشیه‌ای کاهش را ایجاد کند. اولین مرحله برای پیش‌بینی داده‌های کلاس‌های بین‌کلاس سایزی‌شور داده‌های محاسبه می‌شود. تصمیم‌گیری به‌همراه بودن تعدادی منحنی HRV این روش اموزش و کلاس‌آمده. در مرحله بعد فاصله اسم قطعه خود از هم در راستای این سری بر می‌رساند که کلاس را به طور کامل جدا می‌کند. ممکن است محاسبه می‌شود.

در اینجا ما برای محایجه دقیق کار از روش ارائه نگاشتن مجموعه داده‌های تست داده‌های آموزشی از صورت کرده‌اند. ممکن است در اینجا ما برای محایجه دقیق کار از روش ارائه نگاشتن مجموعه داده‌های تست داده‌های آموزشی از صورت کرده‌اند. ممکن است در اینجا ما برای محایجه دقیق کار از روش ارائه نگاشتن مجموعه داده‌های تست داده‌های آموزشی از صورت کرده‌اند. ممکن است در اینجا ما برای محایجه دقیق کار از روش ارائه نگاشتن مجموعه داده‌های تست داده‌های آموزشی از صورت کرده‌اند. ممکن است در اینجا ما برای محایجه دقیق کار از روش ارائه نگاشتن مجموعه داده‌های تست داده‌های آموزشی از صورت کرده‌اند. ممکن است در اینجا ما برای محایجه دقیق کار از روش ارائه N

نتایج نهایی نشان می‌دهد که طبقه‌بندی کننده توانسته است افراد بیمار را در زمان‌های سیگنال HRV دقیق پیش از شروع حملات فیبریلاسیون دهیدری تحلیل و شده است با صحت 96/3% از افراد سالم تیکوکی نماید.

7- نتیجه‌گیری

باید دقت ارزیابی نشان دهنده می‌باشد که نسبت برای افراد سالم پیش‌بینی کوتکری از 0/1 است در حالیکه برای افراد بیمار مقدار بین‌کلاس است. این نتایج نشان می‌دهد که در موارد این سیستم، مقدار بین‌کلاس باقی مانده که بر روی افراد می‌باشد. این نتایج نشان می‌دهد که برای افراد سالم قطعی صورت یافته است در حالیکه افراد بیمار این شکل تغییر می‌کند و به دارا مختصات می‌شود. به این ترتیب در افراد سالم نوسانات کوتاه مدت و نوسانات بلندمدت زیاد است.

در اینجا با ویژگی‌های تشخیصی، متغیر ویژه‌ترین و مناسب ترین مجموعه داده‌های محاسبه می‌شود. مقدار انتویو تقریبی و انتویو طیف برای مدت زمانی محاسبه می‌شود. مقدار انتویو تقریبی و انتویو طیف برای M

جدول (2): تعریف میزان Sensitivity و Specificity

<table>
<thead>
<tr>
<th>افراد سالم تست ابتدایی</th>
<th>افراد سالم تست ابتدایی</th>
<th>افراد سالم تست ابتدایی</th>
<th>افراد سالم تست ابتدایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مثبت (TP)</td>
<td>مثبت (TP)</td>
<td>مثبت (TP)</td>
<td>مثبت (TP)</td>
</tr>
<tr>
<td>منفی (FP)</td>
<td>منفی (FP)</td>
<td>منفی (FP)</td>
<td>منفی (FP)</td>
</tr>
<tr>
<td>منفی (FN)</td>
<td>منفی (FN)</td>
<td>منفی (FN)</td>
<td>منفی (FN)</td>
</tr>
<tr>
<td>مثبت (TN)</td>
<td>مثبت (TN)</td>
<td>مثبت (TN)</td>
<td>مثبت (TN)</td>
</tr>
</tbody>
</table>

Sensitivity(%) = \frac{TP}{TP+FN} \times 100

Specificity(%) = \frac{TN}{TN+FP} \times 100

Positive Predictivity(%) = \frac{TP}{TP+FP} \times 100

در اینجا ما برای محاسبه دقیق کار از روش برونزکاتش مجموعه داده‌های تست از داده‌های آموزشی استفاده می‌کنیم. داده‌های تست 3/4 داده‌ها در بر می‌گیرند. در هر مرحله یک بخش از داده‌ها را به عنوان داده‌های آموزشی ترتیب داده‌های آموزشی مشترک می‌باشند. از ضریب داده‌های تست از طبقه‌بندی RBF SVM کننده داده‌ها است که به طور کامل یک مدل سیستمی باشد. به کمک‌نما خطا می‌شوند به عنوان پارامتر مناسب جهت طبقه‌بندی
بینی حملات فیبریلاسیون دهلیزی در بیماران ارابه کردند. میزان حساسیت گزارش شده از سوی آنها 64% بود. یک پیش بینی کندنه ساده توسط Thong و همکارانش [24] ارائه شد، آنها با شمارش تعداد جمعیتی زودرس دهلیزی در طول بخش 30 دقیقه‌ای از سیگنال ECG شروع حملات فیبریلاسیونی در بیماران را با حساسیت 88%، پیش بینی نمودند و همکارانش [25] در مقاله دیگری به رسم نمودار Park پوئنکاره و استخراج ویژگی برای سیگنال فواصل زمانی ضربان قلب از سیگنال‌های ECG مربوط به بخش‌های پیش از حمله و دور از حملات فیبریلاسیون دهلیزی، ویژگی از حساسیت بیش از 93% را به مدل 644/54 به پیش‌بینی کردند.

در حملات فیبریلاسیون دهلیزی، ویژگی‌های طبیعی و نیمه طبیعی و ویژگی‌های غیرخاکی سیگنال HRV مهیج نمودارها برای پوئنکاره و انترپوی طیف از روت 90 درجه در حملات فیبریلاسیون دهلیزی به پیش‌بینی حملات برای افزایش حساسیت مقدار 644/54 بیشتر می‌شود.

در افزایش حساسیت ویژگی‌های طبیعی و نیمه طبیعی و ویژگی‌های غیرخاکی سیگنال HRV مهیج نمودارها برای پوئنکاره و انترپوی طیف از روت 90 درجه در حملات فیبریلاسیون دهلیزی به پیش‌بینی حملات برای افزایش حساسیت مقدار 644/54 بیشتر می‌شود.

در افزایش حساسیت ویژگی‌های طبیعی و نیمه طبیعی و ویژگی‌های غیرخاکی سیگنال HRV مهیج نمودارها برای پوئنکاره و انترپوی طیف از روت 90 درجه در حملات فیبریلاسیون دهلیزی به پیش‌بینی حملات برای افزایش حساسیت مقدار 644/54 بیشتر می‌شود.

c| Author | Method | Sensitivity (%) | Specificity (%) | Positive Predictive Value (%) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynn et al. [23]</td>
<td>Return map and Differentiation map of RR Interval</td>
<td>94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thong et al. [24]</td>
<td>The number of PACs and PATs</td>
<td>84</td>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>Graja and Boucher [22]</td>
<td>Time and spectral analysis of P-Wave</td>
<td>85/7</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>Chesnokov et al. [27]</td>
<td>Complexity and spectral analysis of HRV</td>
<td>74</td>
<td>94</td>
<td>-</td>
</tr>
<tr>
<td>Arvaneh et al. [26]</td>
<td>Nonlinear structure and parameters of PR Interval</td>
<td>76/8</td>
<td>80</td>
<td>73/3</td>
</tr>
<tr>
<td>Park et al. [25]</td>
<td>Analysis HRV in Poincare plot</td>
<td>91/4</td>
<td>91/4</td>
<td>-</td>
</tr>
<tr>
<td>Mohebi et al. [6]</td>
<td>Bispectrum, spectrum and nonlinear analysis of HRV</td>
<td>93/1</td>
<td>92/8</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>Nonlinear Features and Recurrence plot Analysis of HRV</td>
<td>90/24</td>
<td>90/24</td>
<td>93</td>
</tr>
</tbody>
</table>

رضا چنگالی,

مجله انجمن مهندسین برق و اکتریک، سال دوازدهم، شماره دو، شیراز، بهار 1394

Downloaded from jiaeee.com at 2:17 +0430 on Tuesday May 21st 2019

12 Entropy
13 Poincare Plot
14 Largest Lyapunov Exponent, LLE
15 Takens
16 Embedding Dimension
17 Grassberger & Procaccia
18 Approximate Entropy (ApEn)
19 Sample Entropy (SampEn)
20 Recurrence Quantification Analysis, RQA
21 Recurrence Rate, (REC)
22 Determinism, (DET)
23 Shannon Entropy, (ShanEn)
24 Sensitivity
25 Specificity
26 Positive Predictivity
27 Cross-Validation