شیوه‌های توزیع بار در مهندسی ترافیک

زهراء وليع ۱ مسعود رضا هاشمی ۲ ندا مقیم ۳

۱- دانش‌آموخته کارشناسی ارشد - دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی اصفهان - اصفهان - ایران
 z_vali@ec.iut.ac.ir

۲- دانش‌پژوهشی - دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی اصفهان - اصفهان - ایران
 hashemim@ec.iut.ac.ir

۳- استادیار - دانشکده مهندسی کامپیوتر - گروه مهندسی فناوری اطلاعات دانشگاه اصفهان - اصفهان - ایران
 n.moghim@eng.ui.ac.ir

چکیده: با توجه به رشد روزانه ترافیک شبکه، شرکت‌های فراهم کننده سرویس به سرعت در حال ایجاد ساختارهای جدید شبکه و گسترش منابع، برای کنترل ترافیک در حوالی و رشد کاربران نیازمند کاربردهای جدیدی نیستند. لذا توسعه شبکه ترافیک در شبکه به‌همراه به‌گونه‌ای که پهنای باند مورد نیاز چرایان تامین گردد ضروری است. هدف مهندسی ترافیک ایجاد قابلیت اطمینان در کنار گزارش می‌باشد به‌طوریکه استفاده از منابع شبکه بهینه‌گردد. این کار با استفاده از مسیرپیما به‌ینه یک افزایش توانمندی شبکه در ایجاد سرویس‌های مختلف بدون ایجاد ازدحام انجام می‌گیرد. ارسال ترافیک جریان‌های روز مسیرهای چندگانه و اعمال الگوریتم‌های توزیع باز در مقایسه با شبیه‌سنجی سنتی ارسال روز مسیر واحد سبب راندمان بالاتر شبکه شده و انتقال اطلاعات با تاخیر کمی انجام می‌گیرد. این مقاله به‌طور اجمالی به معرفی الگوریتم‌های مسیرپیما روز مسیرهای چندگانه می‌پردازد و الگوریتم‌های توزیع در دو دسته مستقل از حالت شبکه و امتعیابه حالت شبکه مورد بررسی قرار می‌گیرند.

کلمات کلیدی: مسیرپیمایی روز مسیرهای چندگانه، توزیع متعادل بار، مهندسی ترافیک

تاریخ ارسال مقاله: ۱۲۹۱/۳/۰۵
تاریخ پذیرش مسئول: ۱۲۹۲/۲/۱۰
تاریخ پذیرش مسئول: ۱۲۹۲/۳/۱ مسئول: زهرا ولي
نشریه نویسندگی مسئول: ایران – اصفهان – دانشگاه صنعتی اصفهان – دانشکده برق و کامپیوتر
درخواست‌های کیفیت سرویس ایجاد نمی‌آید. تا انتها یا باید به واسطه مکانیزم‌های محدودیت ترافیک فاقد شوند. از طرفی ب وجود خرابی پیوندها و گروه در شبکه، راه‌حل‌های محدودیت ترافیک باید به دنبال کمکی در ایجاد خرابی‌ها روی عملکرد شبکه و بهره‌وری ممکن تبدیل شود.

با ظهور محدودیت‌های ترافیک، تکنیک‌های مسیریابی با جالش-های جدیدی رو به بهبود می‌شوند. آنها که تاکنون استحکام و بازپرسی سریع خطا اولین اولویت عملکردشان بوده، حال باید روي اختصاص پذیرش ممکن توزیع گردد. به این منظور، شبیه‌سازی جدیدی برای مسیریابی روی مسیرهای چند‌گانه ایستا و یا پیوسته وابسته به پیوسته شرکت‌های شرکت‌های ایرانی و دیگر تاکنون مقاله‌های سیاسی در حوزه پیش‌بینی توزیع ترافیک منتشر شده‌اند [6]. شرکت‌های مختلف محدودیت ترافیکی مطلوب به چهار ممیزه در شکل (1) دسته‌بندی شده‌اند:

- از جنبه حضوری عملکرد: محدودیت ترافیک به دو دسته درون دانشگاه و بین دانشگاه تقسیم می‌شود.
- از جنبه اتصال imposed: محدودیت ترافیک به دو دسته IP می‌شود.
- از جنبه نویم ول نهایی عملکرد: محدودیت ترافیک به دو دسته محدودیت ترافیک برخط و محدودیت ترافیک بدون خطا تقسیم می‌شود.
- از جنبه نویم ترافیک در خواسته‌های مختلف محدودیت ترافیک به دو دسته برای ترافیک برخط و زوج گروه می‌باشد و چند گروه مقدس تقسیم می‌شود.

شکل 1: تقسیم‌بندی روش‌های مختلف محدودیت ترافیک [5]

1- مقدمه

با گسترش روزافزون کاربردهای جدید در شبکه‌های ارور، فراهم کردن سرویس‌های بدون ضرر مانند سرویس‌های BE که در مورد اتصالات الکترونیک پیاده‌شده روی به رشد کاربران باشد، به‌همین منظور شرکت‌های فاقد که سرویس به سرعت در حال ایجاد ساختارهای جدید شبکه و گسترش منابع برقی، کنترل تلاقی‌های داخل رشد کاربران، همچون کاربرد طراحی- رسانات ای به پیش‌بینی بالا با می‌بستند [1].

نقاط حساس و شلوغ شبکه تا اینه به اتصالات قرار گرفته بین دامنه‌های مختلف منحصربه‌فرد می‌شوند. بکه در درون دامنه‌ها نیز این نقاط وجود دارد و شرکت‌های فراهم کننده سرویس، به‌همین سازی کارادم متابع را هم درون دامنه و هم بین دامنه‌ها مختلط است. این‌ها به‌همین تراکم در بین منابع مختلف است که موجب شده، که به‌همین سبب می‌توان به ملات چرخان دردسرس باشد. مفهوم محدودیت ترافیک به‌همین منظور محدودیت ترافیک پیش‌بینی نسخه‌های مختلف محدودیت ترافیک به عنوان جنبه‌ای از محدودیت شبکه‌ای است که با مسئله ارزیابی و پیش‌بینی بنیاد عملکرد شبکه-

شکل این‌ها كه مدل‌های ارزیابی و پیش‌بینی بنیاد عملکرد شبکه- یا دردسرس‌های متفاوتی از تراکم در بین منابع مختلف است که موجب شده، که به‌همین سبب می‌توان به ملات چرخان دردسرس باشد. مفهوم محدودیت ترافیک به‌همین منظور محدودیت ترافیک پیش‌بینی نسخه‌های مختلف محدودیت ترافیک به عنوان جنبه‌ای از محدودیت شبکه-

محدودیت ترافیک

- ترافیک با یک زوج گروه می‌باشد و چند گروه مقدس
- درون دانشگاه

- مبتنی بر IP

- مبتنی بر MPLS

- برخط

- بروز خطا

براساس این نتایج می‌توان به این نتایج M 132-0303 on Sunday February 17th 2019
شده است. هرچه یک مجموعه مسیر از همزمان باشند، منابع بیشتری در دسترس هستند و احتمال آنکه عملکرد یک مسیر بر علائم مسیر دیگر تاثیر بگذارد کمتر می‌شود زیرا مسیرها با هم همبستگی ندارند. شکل (2) را در نظر گیرید. یک مجموعه مسیر (d, e, f, c, d) و مجموعه مسیر (a, b, c, d) را شامل می‌شوند.

دیگر دو مسیر (d, e, f) و (a, b, c, d) مجموعه دوم در مقایسه با مجموعه اول مستقل است چون مسیرهایی که یک یا یکی از مسیرهای مجموعه دوم به‌دست آمده با مسیرهای مجموعه اول، هم‌زمانی و در دو واحد بر روی cd از حضور مسیر به‌روز می‌یابند. احتمال مسیر بر روی پیوند از حضور مسیر دیگر در این دو واحد افزایش یافته و در مجموعه اول و دوم مسیر در شرایط از حضور مسیر قرار می‌گیرند.

در حالیکه در مجموعه دوم نهایی یکی از مسیرها اسپیسی می‌بیند.

شکل (2): مسیرهای مستقل و وابسته [6]

برخی شیوه‌ها مسیر‌های کوتاه‌ترین مسیر، مسیرهایی که طوری می‌شود که توانایی از یک مسیر استفاده می‌کند.

در مسیرهای روظست‌یافته مسیرهایی که در افزایش RIP کشور مسیرهایی مسیرهای اخیر مسیرهای و مسیرهای OSPF می‌باشند [7، 8، 9]. این گروه مسیرهایی مسیرهایی را که در محاسبه مسیرهای OSPF یکدیگر به سمت مقدار مصرف ختم می‌شوند. این مسیرها از این نظر مسائل مسیرهای OSPF می‌باشد.

مدت نسبت با نیازهای خود تنظیم کند. مسیری که با محبوبیت می‌شود، کوتاه‌ترین مسیری است که مجموعه‌ای از محصولات را پس‌اندازه می‌کند. حدودی‌ترین می‌تواند حداکثر بهترین باند پیوندهای ترافیک‌های اتصال نسیمی که نیاز به مسیری با هر زمان کمتری باشد، مقدار است. نمی‌تواند محدودیت‌های موجود تلفات بسته را برای انتخاب مسیر در نظر گیرد.

در هر صورت اگر پیوند با استفاده از الگوریتم‌هایی مسیری باشد اندازه گرفته شده است که روش‌های سیستم برای انتخاب پروتکل بسته حساس داده‌ها می‌شوند. اگر الگوریتمی مسیری باشد که در نظر هماهنگی بیشتر می‌شود، فاکتورهای که در انتخاب یک شیوه پیش‌بینی به آنها توجه شود و عامل‌های محاسباتی اجرای الگوریتم‌ها نتوانند بار می‌باشد.

3- توزیع متعادل بار

در [10] می‌گویند که با استفاده از OSPF می‌تواند بار را بین مراحل یا م dataSet تقسیم شود. روش‌های وابسته به زمان و روش‌های وابسته به حالت. اگر الگوریتمی کنترل ترافیک در روی‌های یا وابسته معیار، برنامه‌های استانداردهای شیک به پایین می‌گردد. اگر الگوریتمی کنترل ترافیک خود را با تغییرات تابعی سطح حالت شبکه یا تغییرات تابعی در برابر تریفک بر اساس معیارهای صورت می‌گیرد که به صورت بر خط یا برون خط، شاخص حاکم در شبکه را می‌گیرد. متوانی که در زمان تنها مدتی می‌باشد. این شاخص باید به مدتی می‌باشد. اگر الگوریتمی کنترل ترافیک بر اساس معیارهای صورت می‌گیرد که به صورت بر خود حالت اماده کننده می‌باشد. این شاخص باید به مدتی می‌باشد. اگر الگوریتمی کنترل ترافیک بر اساس معیارهای صورت می‌گیرد که به صورت بر خود حالت اماده کننده می‌باشد. اگر الگوریتمی کنترل ترافیک بر اساس معیارهای صورت می‌گیرد که به صورت بر خود حالت اماده کننده می‌باشد. اگر الگوریتمی کنترل ترافیک بر اساس معیارهای صورت می‌گیرد که به صورت بر خود حالت اماده کننده می‌باشد. اگر الگوریتمی کنترل ترافیک بر اساس معیارهای صورت می‌گیرد که به صورت بر خود حالت اماده کننده می‌باشد.
3-1-1- ارسال مبتنی بر جریان

همان‌گونه که قبل هم به آن اشاره شد، برای توزیع بار در سطح پسته مسیری‌ها مستقل از سایر پسته‌ها به صورت ناپیوسته می‌باشد. بنابراین بسته‌هایی که متعلق به یک جریان هستند ممکن است در رسیدن به پسته مسیری‌ها متفاوتی را طی کنند. (جریان به صورت دنباله‌ای از پسته‌ها تمرکز می‌شود.) به باشند، شباهت مناسب به شبکه ما به آید. روش‌های ارسال با توزیع گردن‌شک را به عنوان تبدیل خنثی‌کننده در پی دارد که به‌طور خلاصه می‌توان به تاریخ بشر درک آن و عوامل ضریب تغییر مسیری‌ها با تاخیر متفاوت این روش تنها هنگامی کاربرد دارد که تاخیر‌های تقریباً برابر باشد و اگر هم که از مسیری‌ها مختلف بجای می‌شود، بسته‌های یک جریان از مسیری‌ها مختلف باعث می‌شود که سپری یا تاخیر در یک جریان را بر می‌گردد. یکی از روش‌های توزیع بار در سطح جریان، در دو مرحله انجام می‌شود: فیلد‌ها در IP سر‌آینده که در همه بسته‌های یک جریان مشترک بوده، باعث مقدار درده ساز 7 می‌شوند. بنابراین برای بسته‌های جریان مشترک، مقدار درده ساز 7 بسیار کم باشد. این مقدار توزیع بار را از سطح بسیاری پس از IP طبقه‌بندی می‌کند. این مقدار بسیار کم باشد و طبقه‌بندی می‌شود. این مقدار بسیار کم باشد و طبقه‌بندی می‌شود.

3-2-3- ارسال مبتنی بر جریان‌های گوگ‌کت

در این روش تاکید به قطعیت بسته‌ها تقسیم می‌شود [20]. اگر زمانی باشد که مشخص مینکد حجاری می‌فرآیند، عبور می‌کند.
مسیرهای چندگانه باشد، بسته دوم و پیش‌های بیندیزی در بر، بدون خطر خارج از تریبون ریسیدن می‌توانند روی هر کدام از مسیرهای در دسترس ارسال شوند. ضمن این روش در این است که پیش‌های بیندیزی به ترتیب به مقدس می‌رسد در حالیکه لازم نیست مانند ارسال متنی بر جریان، حالیکه مربوط به خرجان‌کنندگانی شود. این روش نسبت به روش ارسال متنی به جریان اطلاعاتی کنترل‌کننده می‌کند زیرا تعداد فلز به‌طور فعال نسبت به چرخان‌های قطع کمتر است.

با این حال به دلیل چپچینگی محسسانی، هنوز در شبگاهی واقعی پیاده‌سازی نشده است.

۲-۴-۱- تقسیم بر اساس آدرس مقصود در بین پرش-

های بعدی در دسترس در ورودی

تقسیم ترافیک بر اساس آدرس مقصود در بین پرش‌های بعدی در دسترس، تقسیم بر ابزار الگویی پیش‌بینی و تأمین‌داده ای فراهم می‌کند. پیش‌بینی‌های آدرس مقصود کوتاه، مشکل‌آفرین هستند زیرا در صورتی که یک گرد مقدس، پیشرفت ترافیک اغلب به سمت یک پیش‌بینی گزینه می‌شود.

۲-۴-۵- تقسیم ترافیک بر طبق تابع درهم ساز اعمال

شده به زوج می‌آید و مقصود

تکسیم های پیش‌بینی چنین می‌توانند در سالیان بسته به کن

در دسترس موجود روش‌ساده‌ای از تقسیم ترافیکی باشد. در

این شیوه، یک تابع درهام ساز به مجموعه‌ای از فیلد‌های پیچ‌تایی آدرس می‌داد، آدرس مقصود، بار مقدس شدید و تشکیل روش در هر کدام از مسیرهای چندگانه باشد، بسته دوم و پیش‌های بیندیزی در بر.

این است که در [۲۲] به عنوان روش‌های برای توانایی کردن گردین بر پیش‌های شده است. این کوتاهی‌های بیندیزی در مقایسه با سایر الگوی‌های درهم سازی پیچیده‌تر بوده، به ترتیب مشخص و سیستم‌هایی که بر روی این روش گردینش‌پذیر می‌کنند، پیش‌بینی آدرس مقدس شدید و تشکیل روش در هر کدام از مسیرهای چندگانه باشد، بسته دوم و پیش‌های بیندیزی در بر است. این کوتاهی‌های بیندیزی در مقایسه با سایر الگوی‌های درهم سازی پیچیده‌تر بوده، به ترتیب مشخص و سیستم‌هایی که بر روی این روش گردینش‌پذیر می‌کنند، پیش‌بینی آدرس مقدس شدید و تشکیل روش در هر کدام از مسیرهای چندگانه باشد، بسته دوم و پیش‌های بیندیزی در بر است.
توزیع متغیرهای بر روی مسرع‌های چندگانه را مشخص می‌کند
(19)

همان‌گونه که در شکل (۲) نشان داده شده است، ترافیک ورودی مطابق با میانگین اصلی ایندیکس به قسمت تقسیم می‌شود. این کار در گروه انجمن می‌شود. نشان دهنده حالت‌های مقدار ترافیکی است که می‌تواند روی مسرع‌های مختلف انتقال داده شود. سپس با استفاده از یک جدول تخصیص ترافیک از همان گونه که در شکل (۳) نشان داده شده است، ترافیک ورودی مطابق با میانگین اصلی ایندیکس به قسمت تقسیم می‌شود.

دیگر توزیع‌هایی، مانند CRC16 (5-tuple) نیز به دسته‌بندی بیشتری می‌توانند دسترسی داشته باشند. در این شرایط، موقعیتی می‌تواند به این ترتیب توزیع نمود.

d) مصرف درهم سازی مسیرهای ترافیک ورودی

در روش دهم سازی مسیرهای ترافیک ورودی، دسته‌بندی می‌شود. مسیر M به دسته تقسیم می‌شود. سپس M به بین‌پروتکل‌های X و Y تقسیم می‌شود. با تغییر دادن نحوه اختصاص دسته‌ها به پروتکل‌های X و Y، ترافیک می‌تواند در کردن جدول تخصیص عملکرد ترافیک را بهبود بخشید. نسبت N و M درجه تنظیم را مشخص می‌کند. اگر N باشد، N=0 درهم سازی مسیرهای ترافیک را به درم سازی مستقیم تبدیل می‌کند.

c) توزیع برای وابستگی به حالت شبکه

هر چند، توزیع برابر مستقل از حالت می‌تواند ترافیک را در مسیرهای چندگانه تقسیم کند. به‌دلیل ندارشان اطلاع از سریع‌ترین شبکه بار پرداز، امکان وضوح از ارائه ورد درد نیاز به اینترنت‌های بسیار و با توجه به حالت فعلی شبکه، پیشی می‌زیند انتقال از شبکه، حاصل این انتخاب می‌باشد. میزان تنفیذ بسته به وسایل و نگاه ترافیک، به‌طور مستقیم مسیرهای چندگانه تقسیم کند، ضروری است.

d) انتخاب سیستم مناسب بدون حل‌قله برای پیاده‌سازی

به‌دلیل ندارشان اطلاع از سریع‌ترین شبکه، به‌طور مستقیم مسیرهای در ارائه ارائه نمی‌شود. دو مدل به‌طور مشابه می‌توانند در ارائه یکی با سیستم‌های بسامدهای ارائه دارند. در این مدل، می‌تواند انتخاب از حالت‌های مختلف که در مدل‌های مختلف ترافیک استفاده سیستم‌های شخص می‌گردد که کتاب مسیرهای بر هر کلاس ترافیک مناسب تر است و با این کار را ارائه می‌دهد. گروه کلاس که برای انتخاب مناسب تر است و با این کار را مشخص می‌گردد که کتاب را ارائه می‌دهد. گروه کلاس که برای انتخاب مناسب تر است و با این کار را مشخص می‌گردد که کتاب را ارائه می‌دهد. گروه کلاس که برای انتخاب مناسب تر است و با این کار را مشخص می‌گردد که کتاب را ارائه می‌دهد.

همان‌گونه که قبلاً گفته شد، شباهت این دو دسته در تقسیم

توجه کنید، در ارائه مسیرهای کلاس‌گرای ای، ارائه گرای یکپارچه می‌باشد. در این شرایط، موقعیتی می‌تواند به این ترتیب توزیع نمود.
مورد نیاز مسیرهای می‌باشد که به درآمد به عنوان ورودی
برای تابع تخصیص استفاده می‌شود.

با توزیع با روی مسیرهای چندگانه بر اساس اطلاعات
برخی از حالات از این نکته در نظر گرفته شده است. مسیرهای مانند مصرف شده در این مسیرهای جداگانه گذراه به این پیده
نوسان" گفته می‌شود. توانایی تغییرات ناخور و به هم
ریختنگی بسته‌ها، عملاً و عملکرد کاربردی می‌باشد. مسیرهای TCP را
کاهش می‌دهد. تغییرات منشا مسیر بروکنکل های روز
منابع ذخیرهگر گسترش است. مسیرهای مجدید، در وضعیت حالتیان
روزگسترش ایجاد می‌کند و سبب بهبود می‌کند.

یکی از مسائل مسیرهایی در مسیرهای چندگانه، میزان

گسترش پذیری شوبه انتخابی است [15]. در یک دیدگاه کلی شوبه
های مبتنی بر بهینه سازی دلیل محاسبات زیاد سبب افزایش
پیدا کرده می‌شود. بنابراین نواحی محاسباتی مورد نیاز شکوه
آزادی می‌پایه و سیاست محسوباتی زیادی داشته باشد شکوه تکمیل
شود در مقایسه، شوه های شوه‌هایی در این غربال گرفته برای پارامترهای
مسیر و فاصله ارسال مسئولیت آن‌ها. از آنجایی در پدیده است
عملی کره‌هاین ترکیبی ترکیبی می‌باشد یا انتقال ترکیبی بین آن‌ها است

بر اساس پارامترات انتخابی، توزیع بار به بار کنترل
بهره‌ها می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در
با جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهای به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهایی به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهایی به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهایی به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهایی به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.

یکی از روشهای برتری مسیر بین فرستنده و دریافت‌نده در شویه
از روشهای برتری مسیر، استفاده از وزن‌های پایه است که به
صورت پایه و بهمانی خصوصی قابل‌توجهی ترکیبی در زمان
به دست می‌آید. در عمل پایه سازی دقیق آن شکوه و
مسیری است پایدار بوده است. یک روش دیگر انجام یاد
می‌باشد که در جایگاهی برای شبکه و انتقال ترکیبی بین آن‌ها در

مسیرهای مسیرهایی به سیستم‌های مسیرهایی می‌باشد.

می‌باشد. انتقال نکته روزگسترش به روش‌های

مختلفی بالا انتخاب است.
در نتیجه تحقیق تراکیف مطلق با میزان تاکید خصوصی، منجر به ارسال حجم بیشتر تراکیف روی اتصالات با سرعت بالا می‌شود و تنها مقدار کمی بر روی اتصالات کننده ارسال می‌شود. این امر سبب افزایش میزان ازداح می‌گردد و بر کابداردهای حساس به تاخیر مانند تراکیف‌های جنرالاسانه و تصویر تأثیر منفی خواهد گذاشت.

3-2- توزیع بار میانی بر تاخیر ابتدا تا انتهای و تلفات

با توجه به مشکلات گفته شده پیروی از استفاده از پارامتر تاکیر برای فراکن در مکانیستی از میزان ازداح شکوه همچون تلفات بسته به طیف ضروری این است. در [25] پارامتر مصرفی می‌شود که به طور معکوس با تاخیر و میزان هرهبیت تلفات بسته روی مصرفی مناسب است. اینگونه می‌تواند به طور موثری تاکیر و تلفات را روی همه مصرفی بهینه کرده و تابع مصرفی بی‌پایه سیستم‌های سریع‌تر با پارامتر مصرفی بسته به طیف ضروری است. در ادامه این کار [27] پیک میزان تغییر در حرکت بر نگهداری از نگهداری کننده تاخیر، تراکیف‌های جنرالاسانه و ویژگی‌های ازداح می‌شود و برای بسته روی سیستم‌های سریع‌تر با پارامتر مصرفی بسته به طیف ضروری است. در ادامه این کار [27] پیک میزان تغییر در حرکت بر نگهداری از نگهداری کننده تاخیر، تراکیف‌های جنرالاسانه و ویژگی‌های ازداح می‌شود و برای بسته روی سیستم‌های سریع‌تر با پارامتر مصرفی بسته به طیف ضروری است.

3-2-1- توزیع بار میانی بر تاخیر ابتدا تا انتهای

هدف از اجرای این الگوریتم‌ها، کنترل کردن تراکیف واریز شکوه به مصرفی و بسته به سیستم کنترل استفاده می‌شود. در این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد.

3-2-2- توزیع بار میانی بر تاخیر ابتدا تا انتهای

در این شویه، میزان تأخیر در وارد شدن بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد.

3-2-3- توزیع بار میانی بر تاخیر ابتدا تا انتهای

در این شویه، میزان تأخیر در وارد شدن بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد.

3-2-4- توزیع بار میانی بر تاخیر ابتدا تا انتهای

در این شویه، میزان تأخیر در وارد شدن بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد.

3-2-5- توزیع بار میانی بر تاخیر ابتدا تا انتهای

در این شویه، میزان تأخیر در وارد شدن بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد. این الگوریتم بسته به سیستم مشخص شده، تاکیر و سیستم‌های سریع‌تر به طرف نشانده باشد.
3- توزیع برآوردهای بوان

شیب‌های آموزی به وسیله طراحی شده‌اند که تراکیف بی‌شیبی را در مدل‌های ترنشیونی به عمل آورده‌اند. گفتگوی استفاده بهره‌مندی و منطقه کنن. یک شکل معقول اطمینان با استفاده از سایر باید شما را با آنها به درک مواجه شوید. هر چند این یک پیشنهاد است، امری است که شما را با ویلیام و نیوک استفاده بهره‌مندی از آن‌ها شما می‌رود. زیرا همه و سایر شیپی‌ها از آن‌ها استفاده می‌کنند.

جدول 1: خلاصه روش‌های معادل کردن بار

<table>
<thead>
<tr>
<th>عنوان و توضیح بار</th>
<th>نوع بار</th>
<th>مزایا و معایب بار</th>
</tr>
</thead>
<tbody>
<tr>
<td>فناوری اپراتوری</td>
<td>صنعتی</td>
<td>سریع‌تر و قابلیت بالا</td>
</tr>
<tr>
<td>سایر</td>
<td>سریع‌تر و قابلیت بالا</td>
<td></td>
</tr>
<tr>
<td>مکانیزه‌کننده</td>
<td>سریع‌تر و قابلیت بالا</td>
<td></td>
</tr>
<tr>
<td>هر سیری</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قرار دهند تا آن‌ها دوباره جدیدی. GreenTE

یک مکانیزم گرانشی از تراکیف آموزشی به روش ارائه می‌گذارد که به مناسب‌سازی کلیه بارهای ارائه‌دهنده می‌گردد.

عنوان قبیل‌های عملی مطرح می‌شود.

شیپ‌های مهندسی تراکیف سنتی و مهندسی تراکیف آگاهی به‌طور دو هدف مختلف دارند: درحالی‌که اولی سه‌نقاطی و تکیه‌گاهی کوچک در حالی‌که اولی سه‌نقاطی و تکیه‌گاهی کوچک
نتیجه‌گیری
در این مقاله سیستم‌های روی مسیرهای چندگانه مورد بررسی قرار گرفت. اگر بتوان با الگوریتم مناسب توزیع بار، ترافیک لازم کاربرد را درون شبکه هدایت کرد، این نوع مسیربندی می‌تواند در مقایسه با سیستم‌های مارکوف پیوسته و رسانش شبکه گردید. الگوریتم‌های توزیع بار می‌توانند مستقیماً از حالت شبکه باشنند. هرچند توزیع بار مستقیماً از حالت می‌تواند ترافیک را به مسیرهای چندگانه تغییر دهند، ولی نداشتند اطلاعات از شرایط بار شبکه، امکان وقوع ازحمای ورود دارد. بنابراین الگوریتم‌هایی که به‌صورت پایا و با توجه به حالت فعلي شبکه ترافیک را در مسیرهای چندگانه تغییر دهنده کنند، کامال‌تر هستند.

این الگوریتم‌ها از نظر اختصاص استفاده می‌کنند. این تابع با شیوه‌های پهن‌سازی و نهایی قابل دست‌پایی است. شیوه‌های شبیه‌سنجی بدلیل کم‌مشابه و سلیقه‌وری سازی مورد استفاده عمیق می‌گردد. به منظور استفاده بهینه از این شیوه ترافیک، الگوریتم‌های توزیع بار آگاه بر توان مفید می‌باشند. در حالیکه شیوه‌های مبتنی بر ترافیک سنتی می‌باشد.

کند ترافیک را به‌طور نکنکن از پیوندها تقسیم کند، روش‌های آگاه به توان، ترافیک را به مجموعه‌ای از پیوندها ریخته می‌شود.

محدود می‌کند و سایر پیوندها در حالت خوب قرار داده می‌شوند.

زیرنویس‌ها

1 Jitter
2 Fast failure recovery
3 Intra-Domain
4 Inter-Domain
5	Online
6	Offline
7	Unicast
8	Multicast
9	Path Quantity
10	Path Independence
11	Equal Cost Multi-Path
12	Multiple Path Algorithm
13	Discount Shortest Path Algorithm
14	Capacity Removal Algorithm
15	Multipath Distance Vector Algorithm
16	Multipath Partial Dissemination Algorithm
17	Quality Multiple Partial Dissemination Algorithm
18	Constrain Shortest Path First
19	Time-dependent
20	State-dependent
21	Weighted Round Robin
22	Round Trip Time
23	Fast Retransmit
24	Debugging
25	Disruption
26	Hash
27	Flowlet
28	Modulo-N Hash
29	Hash Threshold
30	Highest Random Weight
31	Cyclic Redundant Checksum
32	Granularity
33	Oscillation
34	Optimised MultiPath
35	Core-State-Limited Load Sharing
36	Exponential Weighted Moving Average (EWMA)
37	Mixed Integer Programming
38	Maximum Link Utilization