طراحی، شیب‌سازی و ساخت سوئیچ خازنی RF MEMS بر روی بستر آلومینا

سعید دل آرام فریمانی ۱، حسن حاج قاسمی ۲، علیرضا عرفانیان ۳، مجیدرضا علی‌احمدی ۴

۱ دانش‌آموخته کارشناسی ارشد - دانشکده برق و الکترونیک - دانشگاه صنعتی مالک اشتر - تهران - ایران
 Saced_delaram_mut@yahoo.com
۲ دانشیار - دانشکده علوم و فنون نوین - دانشگاه تهران - تهران - ایران
 Hhaighassem@yahoo.com
۳ استادیار - دانشکده برق و الکترونیک - دانشگاه صنعتی مالک اشتر - تهران - ایران
 Erfanian@mut.ac.ir
۴ مربی - دانشکده برق و الکترونیک - دانشگاه صنعتی مالک اشتر - تهران - ایران
 MR_aliahmadi@yahoo.com

چکیده: در این مقاله طراحی، شیب‌سازی و ساخت یک سوئیچ خازنی RF MEMS موازی کم تلف و بر روی موج‌سر به صورت عناقد آلومینا در باند فرکانس 6-2400 MHz ارائه شده است. مکانیزم تحريك این سوئیچ بصورت الکترواستاتيکی است. ابتدا موج‌سر همچنین برای داشتن زمان مشخصه و برای بررسی طراحی آلومینا مورد طراحی شده است. سپس سوئیچ مورد نظر طراحی و پس از انتخاب ابتدا آن، پارامترهای مورد نظر توسط شیب‌سازی الیاف محدود و موج‌سر کامل با ترتیب افزایش و سپس CoventorWare و HFSS به بهترین پایین کشیده 257/117, تلفات داخلی 0/AdB, تلفات بازگشتی بیشتر از 95 و مقدار ایزولاسیون نیز 500 حاصل شده است. با توجه به اینکه سوئیچ در محدوده فرکانسی ۶-۲۴۰۰ میلی‌هertz فرکانس، مقدار تلفات داخلی 0/AdB و تلفات بازگشتی بیشتر از 100 حاصل شده است.

کلمات کلیدی: سوئیچ RF MEMS، موج‌سر، تحريك الکترواستاتيکی، تلفات داخلی، ایزولاسیون

تاریخ ارسال مقاله: ۱۳۹۱/۹/۷
تاریخ پذیرش مکمل: ۱۳۹۳/۳/۲۳/۱۴
تاریخ پذیرش مقاله: ۱۳۹۳/۳/۷/۱۴
نام نویسنده مسئول: سعید دل آرام فریمانی
نشانی نویسنده مسئول: تهران، لوریان، دانشگاه صنعتی مالک اشتر، دانشکده برق و الکترونیک، صندوق پستی ۱۵۸۶۵-۱۷۷۴۴
1- مقدمه

سوئسی قطعه‌های ساده اما ضروری در سیستم‌های مکانیکی، وسایل و ابزار استفاده می‌شوند. در این مقاله، تغییرات در سیستم‌های مکانیکی برای استفاده در منابع انرژی و سیستم‌های اپلیکیشن‌های مختلف مورد بررسی قرار می‌گیرند.

2- موج هم صفحه

موج هم‌صفحه یک خط انتقال یک طرفه به سه هادی رسانا برای یک بستر آمیز است. موج‌های هم‌صفحه شامل دو صفحه زیرایی و یک بستر می‌باشند. در وضعیت قرار داده می‌شود، فاصله و موج‌های هم‌صفحه اثرات توزیع که خالی است. این روش به‌عنوان یک نوع سیستم‌های اپلیکیشن‌های مختلف مورد استفاده قرار می‌گیرد.

بحثی در مورد ایجاد سیستم‌های مکانیکی برای استفاده در منابع انرژی و سیستم‌های اپلیکیشن‌های مختلف مورد بررسی قرار می‌گیرد.
ساختار موجبر هم صفحه از ماده انتشار شبیه سپروی می‌کند و چندین میلی‌متر نسبت به خطوط میکرو‌استریپ مورد استفاده قرار می‌دهد. پس بهتر است لایه برابر روند تغییر کمتر و ضخامت پیشرو داشته باشد تا برای تغییر مقدار این خازن پارازیتیک کاهش یابد. اما در انجا از استرایابی استفاده شده است. در نتیجه خازن پارازیتیک مورد نیاز برای استرایابی شده است.

RF MEMS - سوئیچ

سوئیچ موردنظر از نوع سوئیچ خازنی است که بصورت مواری در مدار قرار می‌گیرد. این سوئیچ همان طور که در شکل (1) نیز دیده می‌شود، روی موجبر هم‌صفحه قرار گرفته و شامل دو الکترود است. الکترود باین خانم خانم انتقال مرکزی موجبر هم صفحه می‌باشد و الکترود بالا یک بارهکی نازک فلزی است که بطور مطلق بر روی الکترود باینی قرار گرفته و از طرفین به هدایت و دایر مرکزی موجبر هم‌صفحه متصل می‌شود. یک لایه نازک الکتریکی نیز جهت جلوگیری از اتصال فلز به فلز، بر روی الکترود باینی پوشش می‌شود. در اتصالات می‌باشد، ناحیه الکترودهای موجبر هم‌صفحه خانمیان تکی‌گرد و هم‌معنای تشکیل می‌دهد که موجب عملکرد مناسب سوئیچ در فرکانس‌های بالاتر از 10 GHz می‌شود. بارهکیکی می‌تواند بین دو موادی با ویژگی‌های با W دیجیتال تغییر وضعیت دهد. هنگامی که W یک ویژگی ترانزیستور در داشتن این شکل یک کوچک بارهکیکی ظاهر خواهد شد که در حال ایده‌آلی می‌تواند از آن سرقت بندهای الکتریکی در موزیک‌ساز با انرژی سوئیچ در حالت راه‌اندازی یا در حالت راه‌اندازی دیجیتال به خاطر انتقال مرکزی در انرژی الکتریسیته‌ای باینیکی به قابلیت کشیده شده و به لایه الکتریکی می‌چسبد. در این مواد دیجیتالی در حالت خاموش قرار دارد (بارهکیکی در مواد باینیکی) وبقیه ولتاژ نیاز به خاصیت کششی، بارهکیکی به حالت اولیه باز می‌گردد.

2-1- طراحی موجبر هم صفحه

در یک موجبر هم‌صفحه ایده‌آل، ضخامت بسته برینگ زایی است. این ضخامت بسته برینگ زایی باید کافی باشد تا میزان مغناطیسی قبل از انکه از خارج شود از بین برود. امیدانس مشخص این موجبر هم‌صفحه از رابطه زیر بدست می‌آید:

\[Z_0 = \frac{30 \pi^2}{\sqrt{(\varepsilon_r + 1)/2}} \left[\ln \left(\frac{1 + \sqrt{K}}{1 - \sqrt{K}} \right) - 1 \right] \]

\[K = \frac{W}{W + 2S} \]

که W در این رابطه طول ماژک و S ضریب الکتریکی بیان است. در طراحی موجبر هم‌صفحه، بسته از جنس آلومینیوم با ϵ_r = 98 و ε_r = 5.0/1000 صیغه ضخامت ϵ_r = 50 μm و هدایت جی از جنس طالا با رساندگی ضخامت ϵ_r = 40 μm در این موزیک‌ساز نازک‌تر و سیلندر (میکرو‌سیلندر) استفاده کرد. سیلندر باعث آسیب به الکترات می‌شود. ابعاد صفحه W و ϵ_r بسته S = 115 μm و W = 15 μm صورت آشفتگی نرم‌افزار IFFS در استفاده می‌شود. در این بافت، ϵ_r و S تغییر نمی‌کنند. ϵ_r و S تغییر نمی‌کنند.

2-2- طراحی ابعاد سوئیچ

با در نظر گرفتن ابعاد موجبر هم‌صفحه، ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی سوئیچ ϵ_r = 30 μm و W = 60 μm به طول بارهکیکی S = 115 μm و W = 15 μm صورت آشفتگی نرم‌افزار IFFS در استفاده می‌شود. در این بافت، ϵ_r و S تغییر نمی‌کنند. ϵ_r و S تغییر نمی‌کنند.

Journal of Electro-Association of Electrical and Electronic Engineers, Vol. 12, No. 3, Fall Winter, 2016.
جدول (1): ابعاد سونیک طراحي شده

<table>
<thead>
<tr>
<th>h (mm)</th>
<th>W (mm)</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

نتیجه ثابت فنر باریکه متعلق کمتر شده و ولتاژ تحریک، کاهش می‌یابد. ضخامت باریکه سونیک با توجه به عمق پوستی آلمینیوم که در جدول (1) ارائه شده است انتخاب می‌گردد.

جدول (1): عمق پوستی آلمینیوم [\(\text{GHz} \)]

<table>
<thead>
<tr>
<th>عمق پوستی ((\mu \text{m}))</th>
<th>فرکانس (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
</tr>
</tbody>
</table>

\[F = k_A g \]

\[V = g_0 W \]

\[C = \frac{V}{C_{ur} + \frac{1}{C_d}} = \frac{g_0 W}{g_0 - \Delta + \frac{l_d}{e_r}} \]

\[F_{el} = \frac{g_0 W V^2}{2(g_0 - \Delta + \frac{l_d}{e_r})} \]

\[F_m = k\Delta \]

\[F_{et} = \frac{g_0 W V^2}{2(g_0 - \Delta + \frac{l_d}{e_r})} = k\Delta \]

\[k = \frac{v}{c} \]

\[v = \frac{V}{W} \]

\[c = \frac{1}{\sqrt{\mu / \varepsilon_r}} \]

\[F_{et} = \frac{g_0 W V^2}{2(g_0 - \Delta + \frac{l_d}{e_r})} = k\Delta \]

\[\Delta = \frac{V}{W} \]

\[V = g_0 W \]

\[C = \frac{V}{C_{ur} + \frac{1}{C_d}} = \frac{g_0 W}{g_0 - \Delta + \frac{l_d}{e_r}} \]

\[F_{el} = \frac{g_0 W V^2}{2(g_0 - \Delta + \frac{l_d}{e_r})} \]
شکل (5): جابجایی باریکه بر حسب ولتاژ اعمالی

شکل (6): اعمال نیرو به یک سوم میانی باریکه سونیج

شکل (7): Determination of Displacement of the Beam

\[V = \frac{2k\Delta}{\varepsilon_r \varepsilon_0 W^2} \]

ولتاژ پایین کشنه، ولتاژی است که در آن باریکه به اندازه دو سوم فاصله هواپیمای می‌آید. در این فاصله افراشی نیروی الکتروستاتیکی بیشتر از افراشی نیروی بارزگردن اتفاق می‌افتد. در نتیجه در این فاصله وضعیت باریکه تغییر نمی‌یابد و باریکه به پایین سقوط می‌کند. بنابراین:

\[V_{pf} = \frac{2k_0 g_0 + \varepsilon_r}{3/2} \left(\frac{2kg_0}{3g_0 W} \right) \approx \frac{8kg_0^3}{27g_0 W} \]

ولتاژ پایین نگهدارنده نیز حداکثر ولتاژی است که پل را در موقعیت پایینی نگه می‌دارد:

\[V_h = V_{pf} = g_0 = \left(\frac{t}{2} \right) \frac{2kg_0}{3g_0 W} \]

در باریکه سونیج که از دو طرف ثابت شده است، اگر نیروی به یک سوم میانی اعمال شود (شکل (4)), نتایج فنر باربان است با [11] [12]:

\[k = 32E_W \left(\frac{t}{l} \right)^3 \]

بنابراین ثابت فنر سازه سونیج، با استفاده از رابطه (10) برای ترانسفر، ازاپول و ولتاژ پایین کشنه طبق رابطه

\[\Delta = \frac{k}{2} \text{N/m} \]

برای جابجایی باریکه سونیج در نرم افزار CoventorWare

با استفاده از روش اعمال محدود، تحلیل الکتروسیمیکی گردد. نتیجه در شکل (5) نشان داده است.

همانطور که در این شکل دیده می‌شود در ولتاژ حدود

\[\Delta = 2 \mu m \]

گدازه باریکه سونیج حدود

\[V_{pf} = 2/25 \text{V} \]

سوم فاصله هواپیمای است. بنابراین ولتاژ پایین کشنه سونیج

\[V_{pf} = 19/25 \text{V} \]

برای جابجایی باریکه سونیج

بسته می‌آید.
مشاهده می‌شود که زمان لازم برای جابجایی ا casts در واقع تریکس V-t=311 μs+V-0 2- فاصله است. این زمان برای یک RF MEMS سوئیچ زمان کمی است، در نتیجه سرعت سوئیچینگ مناسب خواهد بود.

4-2-1 تحلیل موجی سوئیچ

پارامترهای مهم در تحلیل یک سوئیچ موجی می‌باشد. در اینجا از روش آنالیز هستود در بخش قبل وانز تریکس با استفاده از تحلیل همزمان الکترومکانیکی با نرم‌افزار CoventerWare و نیز از طریق محاسبه به دست آمده. برای بدست آوردن پارامترهای باقی مانده از تحلیل موجی سوئیچ استفاده می‌شود. برای این منظور ساختار سوئیچ در دو حالت سوئیچ در وضعت روشن (بازیک) در مکانیزم بالا) و سوئیچ در HFSS و صفحه خاموش (بازیک) در مکانیزم بالا) در نرم‌افزار HFSS شبیه‌سازی و تغییر آن در رابطه با فضای مورد نظر را به چهره‌های مناسب و مطمئن‌تر در هر سوئیچ قرار می‌دهد. معمولی‌تر موج برای میدان‌های الکتریکی و مغناطیسی مبتنی بر مدل مستقل حل گردیده و نتایج در معادلات مکانیک را در مسیر آزمایش می‌شود:

\[V \times H = \sigma E + \mu_0 J \times B \]

\[\nabla \times E = -j \omega \mu_0 H \]

در صورت قابل قبول بودن نتایج، میدان‌های الکتریکی و مغناطیسی مورد توجه و در HFSS یا میدان‌های الکتریکی و مغناطیسی مورد توجه در شکسته می‌باشد. مورد نظر به چهره و چهار شروع می‌شود. شبکه بدیهی با چهار قطعه گره به میزان به دقت در گام‌های بندی بسیار به به‌هنه قابل تصاحح است. بی‌بندی از مقدار میدان‌های پارامترهای برای سوئیچ می‌باشد. تا به مکان‌ها می‌تواند بهبود بیشتر به طور هم‌زمان با تغییر میدان‌های باعث خروج شود. سوئیچ می‌تواند خوبی در پایین فرکانسی 4 200 GHz داشته باشد. هر این‌چه، تغییر در این باند فرکانسی تغییر داشت می‌باشد.

4-2-2 سوئیچ در وضعیت روشن (بازیک در موقعیت بالا)

به اعمال و انتقال به خط انتقال مرکزی، در اثر نوری الکترولوکتریکی بازیک به پایین شیب‌ها شده و به لایه در الکترولوکتریکی می‌چسبد. در اینصورت، سوئیچ خاموش قرار گرفته و نظریه خارجی خویش را دارد. در تریکس سوئیچ در وضعیت روشن پروپتیک عامل S به صورت \[S = \frac{\Delta V}{\Delta F} \] در اینصورت سوئیچ در حالت روشن قرار دارد. سوئیچ در رابطه با آنتی سوئیچ 45 GHz و فرکانسی از 65 تا 85 GHz عامل S به‌طور گسترده در وضعیت روشن (بازیک در موقعیت بالا)
4- ساخت سوئیچ و انداده‌گیری پارامترهای آن

پس از طراحی و شبیه‌سازی، سوئیچ RF MEMS مورد نظر با استفاده از روش میکروسیستم‌کاری سطحی ساخته شد. برای این منظور پروسه‌های با 2 ماسک (محادله تعداد مکان برای ساخت سوئیچ طراحی گردید. سوئیچ مورد نظر بر روی استر عایق آلومینیا ساخته شد تا لثات زیرایه در فرکانس‌های رادیوپیوی از بین رفته و ساختار از طریق بستر اتصال اهمیت داشته اند. شماتیک بررسی ساخت در 5 مرحله اصلی در جدول (2) آورده شده است.

شکل (8): پارامترهای سوئیچ در وضعیت خاموش

بنابراین سوئیچ در وضعیت خاموش نیز عملکرد بسیار خوبی در باند فرکانسی 40-60 GHz دارد. چراکه در این باند از الکتروسیلیکون بیشتر از 42dB و لثات پیازکشی بسیار تجربی است.

شکل (9): شماتیک مرحله ساخت سوئیچ RF MEMS

در اینجا از فوتورزیست مثبت شیبیلی 1813 بننوان ماده فرکانس مشتقه شده است. در مرحله فوتورزیست توسط لایه‌های چرخشی لایه‌نشانی و پخت داده شد، تا ضخامت لایه‌ی
قرنی از لحاظ مقدار مقدار نظر (۳ μm) ضایعات شود. پس از لحاظ نشانه‌ای قرنی، این لحاظ و توسط ماسک یافته‌ای لیتوگرافی نوری می‌شود (مرحله سوم). بعد از آن یک لایه آلومینیوم به ضخامت ۱ μm بیان می‌شود، با کمک تبیخ حرارتی توسط پرتوهای الکترونی، لایه نشانه‌ی می‌گردد. در این مرحله باید دقت شود که در مدت ۱۰۰° C برای زمانی بهینه در جریان لایه‌ای آزمایشگاهی ساخته شده آورده شده است.

۵- برداشت لایه قرنی و محقق سازی پل مورد نظر

شکل (۱۰): تصاویر مراحل ساخت سونیچ RF MEMS

در شکل (۱۱) نیز تصویر میکروسکوپ پیشرفته الکترونی نمونه آزمایشگاهی ساخته شده آورده شده است.

شکل (۱۱): تصویر میکروسکوپ پیشرفته الکترونی سونیچ RF MEMS

مطلق شکل (۱۲) دیده می‌شود که فاصله هواپیما بوجود آمده حداکثر ۲/۷۶ nm بوده که نزدیک مقدار طراحی شده است.

شکل (۱۲): فاصله هواپیما ایجاد شده زیر پل محقق
پس از پایان مرحله ساخت، بمنظور بسط آردن مشخصات عملکردی سوئیچ، در حد امکانات موجود اندوزه‌گیری هایی توسط تحلیلگر شبکه hp 12GHz رنگ فناوری صورت گرفت. به دلیل در دسترس نبودن پروپژه‌های مخصوص اندوزه‌گیری موی محیط ممکن که در اینجا ناشناخته را در شکل (11) همراه با کانکتورهای SMA با امیداده مشخصه 50Ω استفاده می‌شود.

شکل (13): روش پیشنهادی برای اندوزه‌گیری پارامترهای سوئیچ

در این روش خطوط موی محیط ممکن که در دو طرف نمونه دارای تطبیق امیداده 50Ω باشد. سپس کانکتورها توسط چسب نقره و فیکسر ارایه شده بتوان محیط هم‌سازی متصلاً شدن. این روش ابتدال نیست، چراکه مقاومت خط زمانی اتصالات، حدود 5dB/5Ω بوده که مقدار قابل ملاحظه‌ای است.

نتایج اندوزه‌گیری انجام شده توسط این روش در شکل-

شکل (15): تلفات بازگشتی سوئیچ مورد نظر

HFSS در این مقاله یک موج‌وره محیط ممکن که با امیداده مشخصه 50Ω با استفاده از نرم‌افزار RF MEMS و الکتروسنتیکی و کنترل RF سوئیچ با استفاده از نرم‌افزار CoventorWare و با کاربرد روش الامان محدود انجام شد. که در ادامه تحلیل موی سوئیچ در دو وضعیت رونک و خاموش با استفاده از نرم‌افزار HFSS و با کاربرد روش الامان محدود انجام شد که نتیجه شبه‌سازی در حالت رونک، نشان می‌دهد که سوئیچ عملکرد خوبی در رنگ فناوری 40 GHz و تلفات بازگشتی نیز 0.01dB/10 می‌باشد. سوئیچ در حالت خاموش نیز شبه‌سازی نشان می‌دهد که نتیجه این بانک عملکرد بسیار مناسب سوئیچ در حالت خاموش در این بانک است. بررسی در این بانک نمایان می‌گردد از پارامترهای 10 سوئیچ، 5dB/10 می‌باشد که توجه به بانک ارایه نموده، نمونه آزمایشگاهی سوئیچ

1 Coplanar Waveguide
2 Skin depth
3 Pull-in voltage
4 Pull-in voltage